
 83 

Iyer, S. et al. (Eds.) (2022). Proceedings of the 30th International Conference on Computers in Education. 
Asia-Pacific Society for Computers in Education 

 

Exploring Relationships Between Temporal 
Patterns of Affect and Student Learning 
Anthony F. BOTELHOa, Seth A. ADJEIb, Vedant BAHELc, & Ryan S. BAKERd 

aUniversity of Florida, USA 
bNorthern Kentucky University, USA 

cUniversity of British Columbia, Canada 
dUniversity of Pennsylvania, USA 

*a.botelho@ufl.edu 
 

Abstract: Numerous prior articles have studied the relationships between student affect and 
various outcomes of learning. Prior research has found these relationships are complex; shifts 
in student affective experiences and the duration in which students remain in particular states 
form temporal patterns that are often difficult to interpret. Much of the existing research in this 
area focuses on the correlation between the overall prevalence of particular affective states and 
learning outcomes, ignoring the temporal and sequential characteristics of student affect. In this 
work, we leverage temporal clustering methods to identify emerging patterns of affect while 
students work within a computer-based learning platform to explore how sequence patterns of 
student concentration, boredom, confusion, and frustration correlate with student performance 
on a delayed assessment test. Similar to prior work, we find strong relationships between affect 
and student learning, even accounting for a measure of prior knowledge. Additionally, we 
identify that the directionality of these correlations in regard to specific affective states differs 
across clusters. While some affective states such as boredom are identified to exhibit negative 
relationships with learning within some patterns, a strong positive relationship between 
frustration and learning is found within one of the emerging pattern clusters. 
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1. Introduction 

 
There is a complex relationship between students’ affective experiences and their learning. Affective 
transitions are highly complex and often do not seem to follow a specific interpretable sequence 
(Karumbaiah et al., 2021a), and there is also variation in the duration of individual affective experiences. 
Despite these known complexities, much of the research on the relationship between affect and learning 
looks for linear relationships between the prevalence of affective states with learning gains. This line of 
work has shown some clear relationships (see research synthesis in Karumbaiah et al., 2022). For 
instance, boredom is associated with poorer learning outcomes in several studies (e.g., Rodrigo et al., 
2009; Bosch & D’Mello, 2017; Gong et al., 2019)) and engaged concentration is replicably associated 
with better learning outcomes in several studies (e.g., Rodrigo et al., 2009; Brom et al., 2014; Fancsali, 
2014). However, confusion has inconsistent relationships with learning, varying considerably between 
studies (Karumbaiah et al., 2022). One empirical study suggested that the key to the inconsistent 
findings around learning’s relationship to confusion may be the duration of these affective experiences. 
Liu and colleagues (Liu et al., 2013) found that extended confusion and frustration were associated with 
poor learning outcomes, but that brief confusion and frustration were associated with positive learning 
outcomes. 

While previous works have observed trends within and across affective states, the current work 
attempts to observe how patterns of affect relate to student learning as measured by a delayed measure 
of learning (described further in a later section). It is therefore important to further define what these 
patterns refer to and how this work may be distinguished from other related research on student affective 
patterns (Andres et al., 2019) as introduced in the previous section. To help illustrate this, consider the 
example sequence in Figure 1. Each of the lines represents a probabilistic estimate of one of four 
affective states (engaged concentration, boredom, confusion, and frustration) over the span of the 
assignment. In describing a sequence such as this one, prior works including D’Mello & Graesser (2011) 
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Figure 1. Example sequence of affect estimates for a student working on an assignment. 

and Botelho et al. (2018) would have described affective chronometry, or periods of this sequence where 
the student remained in a single affective state for an extended time period. Alternatively, other works 
such as D’Mello & Graesser (2012) would have described the sequence’s affect dynamics, characterized 
by the shifting between one affective state and another. Observing this sequence, however, it can be 
noted that there are few consistent trends; shifts and periods of affect appear to occur in bursts, with 
subsequent periods of uncertainty where there is arguably no clear singular state exhibited. The patterns 
exhibited within and across these affective states may provide novel insights into the relationships 
between affect dynamics and student learning. 

Work on affect dynamics has not been extensively connected to the work on affect 
chronometry. Typically, chronometry is only considered in affect dynamics in terms of comparing brief 
(20 second or less) and extended periods (60-80 seconds) of the same affective state (Liu et al., 2014; 
Andres et al., 2019). Another limitation in the affect dynamics literature is the focus on relatively simple 
one-step models, which only look at single affective transitions (i.e. from state 1 to state 2). Affect 
appears to manifest in complex patterns over time, and our understanding of these is limited. 

Temporal or sequence clustering is now a well-studied practice in research pertaining to pattern 
recognition (Liao, 2005). While specific implementations of time-series clustering methods vary, many 
rely on the generation of correlation-, spectral-, and wavelet coefficient-based features (Montero & 
Vilar, 2014) in combination with “warping” or scaling procedures (Berndt & Clifford, 1994) to describe 
the sequence holistically, before clustering based on these generated features. 

There have been major advances in the detection of affect as well. Early work in affect detection 
within learning relied upon a complex array of sensors (Conati et al., 2003; D’Mello et al., 2007), 
utilized in laboratory settings, making it difficult to scale across long time periods and large selections 
of learners. Although more scalable sensor-free affect detection soon emerged, early models were only 
moderately better than chance (D’Mello et al., 2008; D’Mello & Graesser, 2012). Recent work 
leveraging deep learning algorithms has increased the quality of sensor-free affective detectors to the 
point where they can plausibly be used for fine-grained work (Botelho et al., 2017; Hutt et al., 2019), 
achieving AUC values approaching or equaling 0.8 for many affective states. Furthermore, even early 
affect detectors were more likely to obtain statistically significant findings about rare affective states 
than self-report or observational methods (Karumbaiah et al., 2022), possibly because they provided the 
opportunity to collect a much larger number of measurements, by 3 or more orders of magnitude. 

In this paper, we leverage contemporary affect detectors to study affect dynamics and learning, 
specifically applying affect detectors developed using deep learning for the ASSISTments platform 
(Botelho et al., 2017). Specifically, we apply temporal clustering algorithms to investigate the patterns 
of student affect that emerge within student work on an assignment and examine whether affective states 
correlate differently with learning outcomes between the emerging patterns. 

 
2. Methodology 

 
The dataset used in this work is composed of interaction logs from students who used the ASSISTments 
learning platform (Heffernan & Heffernan, 2014) to complete mastery-based “skill builder” 
assignments during the 2016-17 through 2018-19 academic years. A skill builder is a problem set from 
which the system continues to present a series of problems to a student until they answer 3 consecutive 
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Figure 2. The sequences of affect estimates within each of the five affect pattern clusters. 

problems correctly. The dataset used here contains 3065 skill builder assignments from 867 students; 
this data did not include students from rural settings, following prior works which have identified that 
the affect detectors used in this work have difficulty extrapolating to this population (Ocumpaugh et al., 
2014; Karumbaiah et al., 2021b). We applied a deep-learning-based affect detector, pre-trained on 
historic ASSISTments data, developed and reported in Botelho et al. (2017), based on the collection of 
affect labels collected using BROMP classroom observations (Baker et al., 2020). The Botelho et al. 
(2017) model utilized in this work inherently assumes that students exhibit only one affective state at a 
time and produces a probability distribution over the 4 affective states. 

To examine the relationships between patterns of student affect and learning, we utilize another 
feature of ASSISTments which provides a delayed learning outcome measure. The Automatic 
Reassessment and Relearning System (ARRS) is a feature of the ASSISTments ecosystem which can 
be coupled with skill builder assignments where teachers opt to have students reassessed on the 
knowledge component they had learned during the initial skill builder assignment (Xiong et al., 2013). 
This assessment has previously been used as a measure of student learning (Wang & Heffernan, 2015). 

 
2.1 Patterns of Affect in Relation to Learning 

 
To explore the relationship between patterns of affect and this measure of student learning, we apply a 
two-phase methodology. First, we cluster sequences of affect estimates and then we use those clusters 
within a regression analysis. Traditionally, clustering methods are used to group similar samples based 
on their proximity within a defined feature space. However, in this work we are observing sequences of 
student affect, where each time step in a sequence is defined by four probabilistic affect estimates. 

In this work, we utilize the TSClust R package (Montero & Vilar, 2014) to generate the 
temporal features for our observed sequences of affect estimates before then applying a K-means 
clustering method based on a dynamic time warping distance measure (Ratanamahatana & Keogh, 2004; 
Lemire, 2009). This process involves first creating a matrix of samples as described by a vector of 
features before then using a simple elbow method to examine the ratio of within- and cross-sum of 
squared distances of samples at increasing numbers of clusters (i.e. the range of 2 to 15 clusters in our 
analysis). From this, we select K=5, and use a coding package-supplied method to plot these 5 emerging 
clusters as seen in Figure 2. These clusters represent different temporal patterns of student affect. 

We build 5 separate logistic regression models, one for each cluster, to examine how each 
affective pattern correlates with our learning outcome. For each cluster, we generate a set of features to 
help describe the dynamics of each affective state within the cluster; these features include the natural 
log of the length of each sequence in addition to the mean and variance of detector estimates of each of 
three observed affective states (boredom, confusion, and frustration) composing each sequence; the 
fourth affective state, engaged concentration, is omitted due to a high inverse correlation and collinearity 
between these estimates and the other three affective states. Due to the large differences in 
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Table 1. Coefficients for each cluster’s regression predicting the one-week assessment performance. 
Boldface indicates statistical significance while marginally-significant values are denoted with †. 

 

scales of estimates across the different affective states, likely caused by the rarity of confusion and 
frustration, we use a median split to dichotomize the mean and variance values to represent high/low 
mean and high/low variance. 

 
3. Results 

 
Figure 2 shows the results of the temporal clustering analysis. Within each cluster, the chart displays 4 
sections denoted by a vertical dotted line, ordered by engaged concentration, boredom, frustration, and 
confusion. Within each cell, the x-axis refers to the time step of the contained sequences while the y- 
axis represents the estimates of each affective state; the lines within each section of each cell represent 
an overlay of these estimates for each of the affective sequences found within the cluster. Clusters 1 and 
4 show the longest sequences; this denotes that the students who spent the most time and attempted the 
most problems are contained within these clusters, but does not necessarily indicate that students 
remained in any particular affective state for a longer period compared to other clusters. 

The 5 regression analyses are shown in Table 1. Across these regressions, there are several 
observations worth highlighting. First, the measure of prior knowledge (prior percent correct), reliably 
predicted assessment performance in Clusters 1, 2, and 3, but not in Clusters 4 and 5. The length of the 
sequences was a reliable (negative) predictor in Clusters 1, 3, 4, and 5, likely as an inverse measure of 
both initial knowledge and speed of learning within this mastery-based assignment. 

 
4. Discussion and Future Works 

 
Analyzing the relationship between affect and learning across five distinct temporal clusters, we find 
that boredom and frustration exhibit reliable relationships with learning, but only in some clusters. 
Within several of the clusters, boredom was negatively correlated with learning (cf. Karumbaiah et al., 
2021a). Curiously, a relatively strong positive relationship between high frustration and student learning 
was found for Cluster 4, aligning to previous findings by Pardos et al. (2014); from our analysis, students 
with high frustration were twice as likely to answer the assessment item correctly. Distinctive from 
Cluster 1 where we see similarly-long sequence lengths, frustration emerges as a positive predictor of 
learning; in other clusters it is associated negatively or weakly with learning. The findings across 
clusters align with other prior work (Baker et al., 2010). The temporal clusters we have generated 
provide means to identify this “productive” frustration previously theorized in (D’Mello & Graesser 
2012). It is also worth noting that this positive relationship between frustration and our learning outcome 
is found in the cluster with the lowest overall performance on the assessment. Cluster 4 appears to 
characterize students who are struggling to learn the material, where frustration is an indicator of the 
most successful of these students; perhaps for a struggling student, the only way to succeed is to persist 
through that struggle and the frustration it generates (e.g. D’Mello & Graesser 2011). 
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As the clusters were generated using multivariate, continuous-valued estimates of affect over 
time, it is worth highlighting that we see at most one affective state emerging as a reliable predictor of 
learning within each cluster. These significant states were rarely the highest estimate among the detector 
outputs; in other words, if one were to convert the estimates to discrete labels by simply taking the state 
corresponding with the highest estimate, subtle affective trends would not have been possible to identify. 
However, the lack of a discrete label makes it more difficult to interpret the patterns that emerged (cf. 
(Andres et al., 2019). Retaining full probability information capturing more complex relationships within 
and across affective states, but sacrifices a level of interpretability as a result. 

We have, then, a trade-off between characterizing complex affective patterns and 
interpretability. Future work may overcome this by exploring better ways of describing the patterns 
within each cluster. We approached this initially by dichotomizing the means and variances of each 
affective state, but future work could consider additional measures of affective dynamics and 
chronometry, to better represent the properties being captured by the temporal clustering. 

Another potential limitation of the current work is in the use of sensor-free detectors to measure 
affect. While the detectors have been shown to exhibit high performance in predicting human-recorded 
observation labels (Botelho et al., 2017), (further) improvements to these detectors could provide more 
accurate insights into patterns of student affect. It is also important to emphasize that the detector model 
used in this work was trained on a dataset collected between 2010 and 2012, as reported in Botelho et 
al. (2017). It is uncertain whether later changes to the system or user population might lead to lower 
detector reliability (cf. Levin et al., 2022). Future work should examine longitudinal and contextual 
factors that may affect detector performance, to identify and mitigate potential threats to validity. 

Overall the findings of our analyses provide new insights into the relationship between the 
dynamics and chronometry of affect and student learning. The subtle complexities of affect, in a 
temporal sense, are not currently well-understood, but the methods presented in this work provide a 
means to better explore this. This method may be particularly useful for better understanding affective 
and behavioral patterns exhibited by students and eventually we may be able to use these clusters to 
identify what recommendations to give students (for instance, who should persist and who should seek 
help). In this fashion, these analyses may be a step towards building better supports for students that 
avoid negative interactions and experiences that may lead to poorer learning outcomes. 
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