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Abstract: The ever-growing abundance of learning traces in the online learning platforms 

promises unique insights into the learner knowledge assessment (LKA), a fundamental 

personalized-tutoring technique for enabling various further adaptive tutoring services in these 

platforms. Precise assessment of learner knowledge requires the fine-grained Q-matrix, which is 

generally designed by experts to map the items to skills in the domain. Due to the subjective 

tendency, some misspecifications may degrade the performance of LKA. Some efforts have been 

made to refine the small-scale Q-matrix; however, it is difficult to extend the scalability and apply 

these methods to the large-scale online learning context with numerous items and massive skills. 

Moreover, the existing LKA models employ flexible deep learning models that excel at this task, 

but the adequacy of LKA is still challenged by the representation capability of the models on the 

quite sparse item-skill graph and the learners’ exercise data. To overcome these issues, in this 

paper we propose a prerequisite-driven Q-matrix refinement framework for learner knowledge 

assessment (PQRLKA) in online context. We infer the prerequisites from learners’ response data 

and use it to refine the expert-defined Q-matrix, which enables the interpretability and the 

scalability to apply it to the large-scale online learning context. Based on the refined Q-matrix, 

we propose a Metapath2Vec enhanced convolutional representation method to obtain the 

comprehensive representations of the items with rich information and feed them to the PQRLKA 

model to finally assess the learners’ knowledge. Experiments conducted on three real-world 

datasets demonstrate the capability of our model to infer the prerequisites for Q-matrix 

refinement, and also its superiority for the LKA task. 

 
Keywords: Learner Knowledge Assessment, Prerequisite Inference, Q-matrix Refinement, 

Graph Representation Learning 

 

1. Introduction 

 
The popularity of online learning has increased in recent years, with increasingly many intelligent 

tutoring systems (ITSs) becoming available to learners (Hasanov, Laine, &Chung, 2019; Gan, Sun, & 

Sun, 2020; Gan, Sun, & Ye, 2019a, 2019b). The application of techniques from artificial intelligence 

and cognitive psychology has brought increasing intelligence to these systems (Hasanov et al., 2019), 

and has led to a very wide range of advantages, e.g., enabling the knowledge-acquisition through a 

series of individualized learning activities that accommodate learners with different needs and 

knowledge proficiencies (Gan, Sun, Peng, & Sun, 2020; Q. Liu, Shen, Huang, Chen, & Zheng, 2021). 

A key technique underlying these adaptive tutoring services is LKA (Gan, Sun, Peng, & Sun, 2020; 

Gan, Sun, & Sun, 2022b, 2022a). 

LKA assesses learner knowledge in the granularity of a set of specific skills, also called 

knowledge concepts, based on the learners’ exercising logs in the systems, thereby providing the 

detailed information about their strength and weakness. Detailed assessment of skills requires a fine-

grained mapping of items to skills, i.e., the Q-matrix (M. Desmarais, Beheshti, & Xu, 2014). A binary 

Q-matrix indicates how the skills are combined to correctly answer the items, hence bridging the latent 

skill mastery patterns of learners and their explicit responses. However, building the Q-matrix for a 
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domain is a non-trivial task (Desmarais, Xu, & Beheshti, 2015; Desmarais & Naceur, 2013), which 

requires the involvement of domain experts. It is widely recognized that this subjective process may 

consist of some misspecifications (Chiu, 2013; Desmarais et al., 2014), which may negatively degrade 

the estimation of learner knowledge (Chen, 2017; Jiang et al., 2021). To alleviate the subjective bias in 

manually-defined Q-matrix, existing researches in the data mining and cognitive diagnostics fields have 

proposed various methods to infer the Q-matrix in a data-driven manner (J. Liu, Xu, & Ying, 2012), 

further refine the existing Q-matrix (M. Desmarais et al., 2014; Desmarais et al., 2015; Chiu, 2013; 

Kang, Yang, & Zeng, 2019), and validate the Q-matrix by combining with the cognitive diagnostic 

models (CMD) (Ma & de la Torre, 2020; de la Torre & Chiu, 2016). They also verified that in most of 

the cases, the refined Q-matrix has better model fit on the data than the original expert-labeled Q-matrix 

(M. C. Desmarais & Naceur, 2013; Matsuda, Furukawa, Bier, & Faloutsos, 2015). However, most of 

the efforts have been devoted to the scenarios of small tests with quite limited number of skills and 

items. Even for the famous fraction-subtraction dataset with only twenty items and eight skills, the 

obtained Q-matrix is still controversial (Kang et al., 2019). It is difficult, and sometimes impractical, to 

extend the scalability and apply these methods to the large-scale online learning context with numerous 

items and massive skills. 

Moreover, most of the existing research refine the Q-matrix by considering a set of Q-matrices 

in the latent space and determining the one with superior model fitness on the data using some fit 

strategies (Kang et al., 2019). Typical studies are the maxDiff (De La Torre, 2008), minRSS (Chiu, 

2013), and the ALS (M. C. Desmarais & Naceur, 2013). These researches showed good performance 

on the learner data, but they generally ignore the explainable structural and inherent information among 

the questions and skills. Actually, the interdependencies between the skills in a domain have long been 

acknowledged as prerequisites in both cognitive and education science (P. Chen, Lu, Zheng, & Pian, 

2018). Correspondingly, a question with a specific skill also requires the prerequisite skills. These 

prerequisites between pedagogical concepts can be represented as a knowledge graph (KG) (Q. Liu et 

al., 2019), which contains additional structural information about the learning domain, and provides the 

potential for further refining the Q-matrix. Nevertheless, the prerequisites specifying the structure of 

skills has rarely been applied in the refinement of Q-matrix because obtaining the KG of a domain is 

labor-intensive (Pan, Li, Li, & Tang, 2017; Zhang & King, 2016; Nakagawa, Iwasawa, & Matsuo, 

2019). Fortunately, the ever-growing abundance of learning traces in the online learning platforms 

further enhances our capacity to obtain the prerequisites (KG) directly from the data through data 

mining techniques. Based on this idea, we infer the prerequisites between skills from the data and use 

them to refine the Q-matrix, and apply the refined Q-matrix to assess the knowledge proficiency of 

learners. We try to balance the interpretability of Q-matrix refinement and the performance in applying 

it to the LKA task. 

To assess learner knowledge in the online learning systems, plenty of researches have been 

conducted leveraging the compelling attribute of deep learning methods, such as the deep knowledge 

tracing (DKT) (Piech et al., 2015) and Dynamic key-value memory networks for KT (DKVMN) 

(Zhang, Shi, King, & Yeung, 2017), and excelled at this task. However, most of these models used the 

underlying skills as input (also termed as skill-level KT models) and did not distinguish questions 

containing the same skills. The loss of distinctive information related to the questions may lead to 

imprecise inferences of the learners’ knowledge states (Ghosh, Heffernan, & Lan, 2020; Gan et al., 

2022b). To enrich the question representation, graph KT methods, such as the graph-based interaction 

KT (GIKT) (Y. Yang et al., 2020) and graph for KT (GKT) (Nakagawa et al., 2019), have been proposed 

to learn the embedding of questions from the question-skill graph. However, they ignore the prerequisite 

information of the skills in the domain, and the sparseness of the original question-skill graph and the 

learner data greatly limit the capability of the graph learning methods. To overcome this sparseness, in 

this paper we refine the Q-matrix and propose a graph representation learning model to enrich the 

embedding learning from the prerequisite-enhanced question–skill graph and integrate it into the LKA. 

To summarize, in this paper we refine the Q-matrix for learner knowledge assessment in online 

learning context and propose a prerequisite-driven Q-matrix refinement framework for LKA 

(PQRLKA). Specifically, we first explore eight methods to infer the prerequisites from learners’ 

response data in the online learning systems and use it to refine the expert-defined Q-matrix to eliminate 

the potential subjective tendency of experts in designing the Q-matrix. This Q-matrix refinement 

method offers two advantages over the existing methods: first, it leverages the additional structural 
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information about the learning domain to refine the Q-matrix rather than use the model fit indices to 

brutally change some entries from zeros to ones, thus enabling the interpretability of this process. 

Second, it refines the Q-matrix by applying the inferred prerequisites in a date-driven manner without 

relying on the specific cognitive diagnosis models (i.e., model-independent), and hence has good 

scalability. Based on the refined Q-matrix, we propose a graph representation learning model for LKA 

to verify its effectiveness in the online learning scenarios. A Metapath2Vec (Dong, Chawla, & Swami, 

2017) enhanced convolutional representation method is then proposed to obtain the comprehensive 

representations of the attempted questions with rich information. These representations for the learners’ 

exercising sequences are fed into the PQRLKA model, which considers the long-term dependencies 

using an attention mechanism, to finally predict the learners’ performance on new problems. The main 

contributions are listed below.  

• We explore eight methods that automatically discover the domain prerequisites from learner 

response data and leverage it to refine the expert-defined Q-matrix. 

• We propose the PQRLKA framework to assess the learner knowledge with a Metapath2Vec 

enhanced convolutional representation method for comprehensive question representations with 

rich information. 

• We integrate the Q-matrix refinement with the task of learner knowledge assessment, joint these 

two tasks together and leverage the former to benefit the later. 

• We conduct comprehensive experimental evaluations on three real-world datasets. The results 

demonstrate the superiority and effectiveness of our method in Q-matrix refinement and learner 

knowledge assessment in the online learning context. 

 

2. Proposed Method 

 
This section introduces the proposed PQRLKA framework for assessing learner knowledge, as shown in 

Figure 1. The framework proceeds the LKA task using three modules: Q-matrix refinement, Metapath2Vec 

enhanced convolutional question representation, and learner knowledge state evolution. It first builds a KG 

for the learning dom ain by inferring the prerequisite relations from the learner response data, and then uses 

it to refine the expert-defined Q-matrix, thus generating a refined Q-matrix, which can be naturally 

represented as a prerequisite enhanced question–skill graph. Based on this enhanced graph, it conducts the 

question representation learning based on a Metapath2Vec enhanced convolutional neural network. To 

incorporate more distinctive information, A convolutional representation method is then proposed to 

fuse the question and skill embeddings with the question difficulty, thus obtaining the comprehensive 

representations of questions (see Figure 3). Compared with the existing methods, the proposed question 

representation learning method incorporates both the distinctive information of the specific question 

and the various relations between questions and skills, a factor making it more superior for the later 

assessment of learner knowledge. These representations are then fed into the attentive LKA network 

for predicting learner performance. It is worth noting that we conduct the Q-matrix refinement and the 

learner knowledge assessment together. 

 

2.1 Q-matrix Refinement 

 

2.1.1 Prerequiite Inference from Data 

 

Figure 1: The framework of the proposed method  
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In practical educational scenarios, there always exists a topological order (prerequisites) among the 

skills in a domain, because skills are taught and learned in sequence. Here we infer the prerequisites 

from the order of the learners’ mastery of skills, which is explicitly represented by the exercising 

performance data. We first build a skill relation matrix R∈ R|S|×|S|, in which entry Ri,j  represents the 

prerequisite relation si↣sj between skill si and sj. Inspired by the definition of question similarity in 

previous methods (Tong et al., 2020; Pel´anek, 2019), we explore the underlying KG using eight 

methods: Skill Transition, Cohen’s Kappa, Adjusted Kappa, Phi coefficient, Yule coefficient, Ochiai 

coefficient, Sokal coefficient, Jaccard coefficient, as described below. 

Skill Transition: The skill-transition matrix 𝑅 contains the transitions of different skills. Its entries 

are 𝑅𝑖,𝑗
𝑆𝐾 =

𝑛𝑖,𝑗

∑ 𝑛𝑖,𝑘
|κ|
𝑘=1

, where 𝑛𝑖,𝑗 denotes the number of times in which skill 𝑠𝑗 is trained immediately after 

training skill 𝑠𝑖.    
To further leverage the impact of the learners’ performance of one skill on the performance of 

another, we summarized the learners’ performance on skill pair 𝑠𝑖 and 𝑠𝑗 in a contingency table (see 

Table 1). As mentioned above, we interpreted the learners’ correct or incorrect responses as mastery 

indicators of the underlying skills of the given questions. It is worth noting that in Table 1, the question 

requiring skill 𝑠𝑖 occurs before the question requiring 𝑠𝑗 in the learning sequence. Based on the 

contingency table, we discovered the KG using the evaluation indices (Pel´anek, 2019) in Table 2, 

which measure the agreement of the prerequisite relation between a pair of skills.  

As the KG is always a unidirectional graph, we simplified it by a suitable strategy. We also 

imposed a threshold that controlled the sparsity of the relations in KG. The final skill relation matrix 

was denoted as Rw, w∈{SK, Kappa, Kappa’, Phi, Yule, Ochiai, Sokal, Jaccard}. The elements along 

the diagonal of Rw were set to one. 

{
𝑅𝑖,𝑗
𝑤 =  𝑚𝑎𝑥(𝑅𝑖,𝑗

𝑤 , 𝑅𝑗,𝑖
𝑤), 𝑅𝑗,𝑖

𝑤 = 0, 𝑖𝑓 𝑅𝑖,𝑗
𝑤  ≥  𝑅𝑗,𝑖

𝑤

𝑅𝑗,𝑖
𝑤  =  𝑚𝑎𝑥(𝑅𝑖,𝑗

𝑤 , 𝑅𝑗,𝑖
𝑤), 𝑅𝑖,𝑗

𝑤 = 0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                             (1) 

𝑅𝑖,𝑗
𝑤 = {

1, 𝑖𝑓 𝑅𝑖,𝑗
𝑤  ≥  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                          (2) 

 

2.1.2 Refine the Expert-defined Q-matrix 

 

After obtaining the inferred skill relation matrix Rw ∈ R|S|×|S| of the KG that includes all the 

prerequisites among skills, we refine the original expert-defined q-matrix O ∈ R|Q|×|S|. The matrix 

representation Ô ∈ R|Q|×|S| of the refined new Q-matrix is obtained as follows: 

�̂� = 𝑂(𝑅𝑤)𝑇                                                                          (3) 

�̂�𝑖,𝑗 = {
1, 𝑖𝑓 �̂�𝑖,𝑗  ≥  1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                        (4) 

In Eq. (3), the transpose of the skill relation matrix 𝑅𝑤 accounts for the skills that are prerequisite to 

the skills of the current question. In other words, a question requiring a specific skill is also related to 

the prerequisite skills. The procedure of the refinement can be shown in Figure 2. 

Table 1: Contingency table for a 

pair of skills si and sj 

Table 2: Evaluation indices for obtaining KG 

using the contingency 
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2.2 Learner Knowledge Assessment Based on Refined Q-matrix 

 

2.2.1 Metapath2Vec Enhanced Convolutional Question Representation 

 

The matrix Ô can be naturally represented as a graph, hereafter denoted as the KG-enhanced question-

-skill graph. This graph includes not only the multi-hop relations between questions and skills, but also 

the prerequisite relations among the skills. The embeddings in this graph were obtained using the 

adapted Metapath2Vec method (Dong et al., 2017). 

The adapted Metapath2Vec method proceeds in two main steps: meta-path generation and skip-

gram-based embedding learning. A meta-path is a sequence of nodes following the edges in the graph. 

To assure that all questions and skills appear in the final embeddings, we generate the meta-paths from 

the KG-enhanced question--skill graph using a question--skill--question (QSQ) pattern, in which every 

meta-path begins with a question node followed by a skill node and then by a question node; for 

example, ρ: q1
�̂�1,1
→  𝑠1

�̂�2,1
→  𝑞2

�̂�2,2
→  𝑠2

�̂�3,2
→  𝑞3. Setting two hyper-parameters---the path length ℘ and 

number of paths ℵ---for each question node, we generated all meta-paths on the graph. The 

heterogeneous skip-gram is leveraged to learn the node embeddings. The interested reader can refer to 

(Dong et al., 2017) for the original Metapath2Vec method. Finally, we obtain all embeddings (𝑞 for 

questions and 𝑠 for skills) with the same dimension 𝑑 of question and skill nodes in the graph, which 

also enclose the relation information.   

To distinctively represent the questions, we fuse the various feature representations through 

convolutional operations to obtain the comprehensive question embeddings with additional distinctive  

information, i.e., the skill information and the cognitive difficulty information (Gan, Sun, Ye, Fan, & 

Sun, 2019). The cognitive difficulty 𝑑𝑞 and 𝑑𝑠 (represented as vectors) is calculated following prior 

work in (Gan, Sun, Peng, & Sun, 2020). Following (Y. Liu et al., 2020) and (S. Yang, Zhu, Hou, & Lu, 

2020) that learn the high-order latent patterns through feature interactions and convolution operations 

(rather than directly concatenating the features), we map and fuse the separate features and their 

interactions using convolution operations, as shown in Figure 3. For questions containing multiple 

skills, we represent the skill as the average skill embedding 𝑠 = 𝐴𝑣𝑔(𝑠1, … , 𝑠𝑞). Fusing the above-

obtained features, we generate the linear information 𝑀 and quadratic information 𝑁 for question 𝑞. 

𝑀 = [𝑞, 𝑠, 𝑑𝑞 , 𝑑𝑠] ∈ 𝑅
𝟜×𝑑 ,   𝑁 = [⟨𝑀𝑖, 𝑀𝑗⟩] ∈ 𝑅

𝟜×𝟜,                                          (5) 

where ⟨. ⟩ represents the interactions of two vectors obtained by the inner product. We then apply the 

two-dimensional convolution operation with eight kernels of size 2 × 2 on both 𝑀 and 𝑁, and 

maxpooling on each feature map to obtain 𝑙𝑚 ∈ 𝑅
𝟙×(𝑑−𝟙)×𝟠 and 𝑙𝑛 ∈ 𝑅

𝟙×𝟛×𝟠. These two parts are then 

concatenated into eight longer vectors 𝑙𝑚+𝑛 ∈ 𝑅
𝟙×(𝑑+𝟚)×𝟠 including the convolutions from the separate 

features and their interactions. Inspired by the multi-head mechanism in the transformer model 

(Vaswani et al., 2017), we concatenate and linearly transform the eight vectors and hence obtain the 

final question representation �̃� ∈ 𝑅𝟙×𝑑
′
.  

�̃� = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑙𝑚+𝑛
1 , … , 𝑙𝑚+𝑛

8 )𝑊𝑂                                                           (6) 

where 𝑊𝑂 ∈ 𝑅((𝑑+𝟚)×𝟠)×𝑑
′
 is the parameter that transforms the convolution results into a vector. 

 

2.1.2 Learner Knowledge State Evolution 
Since the dynamic evolution of learner knowledge in the online learning systems, the learner exercising 

sequences are fed into an attentive KT framework that predicts the learner performance, as shown in 

the right part of Figure 1.  

Figure 2: The procedure of Q-

matrix refinement. 

 

Figure 3: Use of Metapath2Vec enhanced 

convolutional question representation 
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The log data of each interaction in the exercising sequences consists of a tuple representing the 

question, the correctness, and the elapsed time. Look-up operations are performed on an embedding 

matrix 𝐸𝑟 ∈ 𝑅
𝟚×𝑑′, in which row vector 𝑟𝑡 contains the incorrectness or correctness of the responses. 

The elapsed time 𝑒𝑡 strongly evidences a student's proficiency in knowledge and skills (Shin et al., 

2020). This time is converted to seconds and capped at 500 seconds. A 𝑑′-dimensional latent embedding 

vector for 𝑒𝑡𝑘 is computed as 𝑡𝑘 = 𝑒𝑡𝑘𝑊𝑒𝑡 + 𝑏𝑒𝑡, where 𝑊𝑒𝑡 and 𝑏𝑒𝑡 are learnable vectors. The 

interaction embedding is obtained as 𝑥𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(�̃�, 𝑡𝑡 , 𝑟𝑡). 
 

 
The sequence data of the learners' exercising process are modeled using LSTM (Piech et al., 

2015) within the KT framework, The hidden knowledge state ℎ𝑡 of a learner at step 𝑡 is updated based 

on the current input and the previous state as: ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1; θ).    
We then employ an attention mechanism that accounts for the impact of previous attempts on 

the current attempt. A new question will likely be strongly affected by similar questions or questions 

requiring the same skillset as the new question. To describe these effects, we assume that the learner-

knowledge state in the current step is the weighted sum of the aggregated states in the previous steps. 

The weights are based on the correlations:  

ℎ𝑡+1 = ∑ α𝑖,𝑡+1ℎ𝑖
𝑡
𝑖=1 .                                                            (7) 

The attention α𝑖,𝑡+1 was calculated using a combination of the shared skill-based attention and the 

question similarity-based attention. The learner performance at step 𝑡 + 1 can be predicted from the 

question representation 𝑞𝑡+1̃ and the current knowledge state ℎ𝑡+1 as follows: 

𝑠𝑡+1 = 𝑡𝑎𝑛ℎ(𝑊𝑠[𝑞𝑡+1̃, ℎ𝑡+1]) + 𝑏𝑠,    𝑝𝑡+1 = σ(𝑊𝑝𝑠𝑡+1 + 𝑏𝑝),                        (8) 

where 𝑊∗ and 𝑏∗ are parameters in the fully connected layer and the sigmoid activation layer, 

respectively. Finally, we optimized our model by the cross-entropy loss; specifically, we minimized the 

following objective function between the true answer 𝑙𝑡 and the predicted performance 𝑝𝑡+1 at each 

interaction:  ℒ = −∑ (𝑟𝑡+1𝑙𝑜𝑔 𝑝𝑡+1 + (1 − 𝑟𝑡+1)𝑙𝑜𝑔(1 − 𝑝𝑡+1))𝑡 .       
 

3. Experiments 

 

3.1 Datasets 
E xperiments were performed on three well-established datasets, namely, Assist09101, 

Assist12132, and EdNet3. All datasets are public real-world datasets containing the temporal interaction 

records between learners and real computer-aided tutoring systems. For the EdNet dataset, following 

(Y. Yang et al., 2020), we randomly selected 5000 students who answered 12,372 questions requiring 

188 skills, thus obtaining 347,866 interaction logs. As done in existing studies (Vie & Kashima, 2019; 

Y. Yang et al.,  

2020), we eliminated noise by deleting users with fewer than 10 interaction entries and questions with 

NaN skills from the three datasets. Table 3 summarizes the statistics of the datasets. 

 

3.2 Compared Model 
 As part of our model evaluation, we competed the model against several state-of-the-art skill- 

and question-based KT models:  BKT (Corbett & Anderson, 1994), DKT (Piech et al., 2015), DKVMN 

(Zhang et al., 2017), KTM (Vie & Kashima, 2019), DKT-Q (a variant of DKT that replaces the skills 

 
1 Assist0910: https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010 
2 Assist1213: https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect 
3 EdNet: http://bit.ly/ednet_kt1 

Table 3: Statistics of the three datasets used in this study 
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embedding with a one-hot encoding of questions as the input), DKT-Q&S (a variant of DKT that inputs 

both the questions and skill representations to the DKT),  DKT-CQE (a variant of DKT that inputs our  
convolutional question embeddings to the DKT), GIKT (Y. Yang et al., 2020), DAS3H (Choffin et al., 2019), 

RKTM (Lai et al., 2021), and AKT (Ghosh et al., 2020). 

 Among the baseline models, the former three are skill-based models, in which the LKA is based on 

the skills contained in the questions. The latter eight and the proposed model are question-based models that 

account for the distinctive question information. 

 

3.3 Setup and Implementation 

 
Before conducting the experiments, we extracted 20% of the sequences in the dataset as the test set and 

retained the remaining 80% as the training set. To embed the nodes in the graph using Metapath2Vec, we 

set the length of all meta-paths as ℘ = 7  and the number of paths as ℵ = 100  for each question node in the 

graph. The embedding dimension 𝑑 of the skill and question representations was set to 128. The final 

dimension of the convolutional question representation was 𝑑′ = 256. The size of the hidden layers of the 

LSTM was set to 256. The other hyperparameters were set through grid searching. The model was optimized 

using Adam optimization of the learning rate on a case-by-case basis in the three datasets. The norm clipping 

threshold and batch size were maintained at 10 and 64, respectively. Similar to the existing models, the 

sequence length of the model input was fixed at 200. The proposed model was implemented using 

TensorFlow. The other baselines were implemented with their best parameter settings, as specified in the 

original works. As the evaluation metric, we selected the area under the receiver operating characteristic 

(ROC) curve (AUC), which is widely used in existing studies.  

 

4. Results and Analysis 

 

4.1 Performance Prediction 

 
The different models were evaluated by their performances in predicting the future learner scores from the 

estimated knowledge state. Table 4 presents the AUC results of all models on the three datasets. Our model 

outperformed the other models on all three datasets. Specifically, the AUC scores of the PQRLKA model 

were 0.8242, 0.7851, and 0.7754 on the Assist0910, Assist1213 and EdNet datasets, respectively, 3.97%, 

1.39%, and 2.25%, respectively, above those of the state-of-the-art AKT model. Similarly, to the original 

DKT model, our model processes the time-series data using a recurrent neural network framework, but 

achieved 8.3%, 5.95%, and 8.65% higher AUCs than the DKT model on the Assist0910, Assist1213 and 

EdNet datasets, respectively.  
The skill-based BKT model was the worst performer among the models because it tracks the mastery 

of each skill separately, without considering a contextual trial sequence of all skills. KTM framework, which 

incorporates several traditional models, typically obtained similar AUC scores to those of DKT and 

DKVMN. DKT extended with various input-question embeddings (DKT-Q, DKT-Q&S, and DKT-CQE) 

demonstrated noticeable performance differences. DKT-Q using the one-hot encoding of question 

representations performed much worse than the original DKT model, owing to the sparsity of question 

interactions in these datasets. DKT-Q&S and DKT-CQE decidedly outperformed the original DKT and 

DKT-Q models, consistent with our intuition that each question contains distinctive information even when 

it requires the same skills as one or more other questions in the dataset. Therefore, incorporating the 

distinctive question and skill information into the question representations can improve the model 

performance. The comparison between DKT and DKT-CQE also shows the effectiveness of the proposed 

convolutional question representation. DAS3H and RKTM are built on the KTM model by considering 

additional rich information and show better results than the original KTM model. Here we do not present the 

results of RKTM on the EdNet as the code for implementing RKTM is not published by the author. Our 

PQRLKA model outperforms GIKT and AKT, which also take the well-designed question embedding as 

input. This result validates the effectiveness of the Q-matrix refinement for the task of LKA.   
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4.2 Model Analysis 

 

4.2.1 Comparison of Prerequisite Inference by Different Methods 

 
Figure 4 compares the AUC results of the predictions of nine methods on the three datasets. Here the 

“original” method represents the embedding learning on the original question--skill relation graph and 

the other eight methods are based on the prerequisite-enhanced graph. As evidenced in the figure, the 

eight KG enhanced methods generally outperformed the “original” method on all three datasets, 

validating the effectiveness of the KG enhanced graph in KT tasks. The adjusted Kappa yielded the best 

performance on both Assist0910 and EdNet, whereas the skill transaction method performed best on 

Assist1213. 

 

Table 4: Comparisons of the AUC results of different models on the three datasets 

 

Figure 4: KS inferred from the learner response data  

Figure 5: Visualization of the directed KG graphs generated by four methods on Assist0910 
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4.2.2 Visualization of Inferred Prerequisites 

 
Figure 5 illustrates the KGs generated from the prerequisites using four methods, inferred from the 

learner response data in Assist0910. The right-hand side of this figure enlarges a part of the graphs to  

show their local connections. The nodes and edges in the KG form dense graphs with similar structures, 

showing several interconnected nodes. These graphs also show some interesting properties. In the 

adjust-Kappa graph, four nodes (25, 111, 90, and 95) were locally interconnected and revealed a perfect 

ordering of the skills (prerequisite and post-requisite relations) in the geometry. The local connections 

in the Phi coefficient graph also presented reasonable relations among the three skills. These results 

confirm that our KG discovery methods can infer prerequisite skill pairs from the ordering of learners' 

mastery of skills. 

 

5. Conclusions 

 
In this paper we proposed a prerequisite-driven Q-matrix refinement framework for learner knowledge 

assessment in online learning context. We first explored eight methods to infer the prerequisites from 

learners' response data in the online learning systems and used it to refine the expert-defined Q-matrix 

to eliminate the potential subjective tendency of experts in designing the Q-matrix. This refinement 

leveraged the additional structural information (prerequisites) to allow the interpretability of the 

optimized Q-matrix while enabling the scalability to apply to the large-scale online learning context. 

Based on the refined Q-matrix, we proposed a Metapath2Vec enhanced convolutional representation 

method to obtain the comprehensive representations of the attempted items with rich information. These 

representations for the learners' exercising sequences are fed into the PQRLKA model, which considers 

the long-term dependencies using an attention mechanism, to finally predict the learners' performance 

on new items. Extensive experiments conducted on three real-world datasets demonstrated the 

capability and interpretability of our model to infer the prerequisites from the learning data, and the 

better performance of the embedding representation on the prerequisite enhanced graph, thus 

contributing to the superiority of the proposed model for learner knowledge assessment and validating 

its potential applicability to real online learning environments.  

In future work, we intend to embed KG learning into our model in an end-to-end manner. The 

KG will then be automatically learned in the training process rather than computed from the learner 

performance data. Such automation can potentially expand the KG to new skills in the domain, for 

example, enlarging the KG of mathematics from the primary school to high school level.  
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