
 
259 

Iyer, S. et al. (Eds.) (2022). Proceedings of the 30th International Conference on Computers in Education. 

Asia-Pacific Society for Computers in Education 

 

 

Monitoring of Learners’ Activities 

in Software Structure Design Exercises 

Yasuhiro NOGUCHIa*, Kanta INOUEa, Satoru KOGUREa, 

Koichi YAMSHITAb & Tatsuhiro KONISHIa 
aFaculty of Informatics, Shizuoka University, Japan 

bFaculty of Business Administration, Tokoha University, Japan 

*noguchi@inf.shizuoka.ac.jp 

 
Abstract: Learners acquire modeling skills from software design exercises using UML class 

diagrams by recognizing and solving errors by comparing their models with the requirement 

specifications. Teachers and teaching assistants must identify learners' impasse according to the 

learners’ modeling activities and provide them appropriate feedback when they cannot solve 

their impasse. In this study, we constructed a system to observe learners' modeling activities 

during exercises. In an experiment, we also collected modeling activity data from learners and 

analyzed the patterns identifying learners' impasse based on their activities. 

 
Keywords: Modeling exercises, software design, impasse detection, monitoring 

 

 

1. Introduction 
 

In recent years, as software has become larger and more complex, the importance of learning about 

software design has increased. A wide variety of learners, both university students and working 

professionals who are in computer science specialties, require to acquire software design skills (Hara et 

al., 2019; Krusche et al., 2020). In an exercise to acquire software design skills, learners create a model 

based on provided requirement specifications, and the learnes review their models each other. However, 

some learners experience an impasse in the process of creating their own models, and they have trouble 

reaching the milestone to be reviewed and refining their model based on the feedback. Before the 

exercise, knowledge of typical mistakes in learners’ modeling process (Chren et al., 2019; Chourio et 

al., 2019) can be provided to learners. However, in the exercises, learners must improve their modeling 

skills to enable them to recognize and solve errors in their models by themselves. Therefore, teachers 

and teaching assistants (TAs) should follow learners’ modeling activities, including their trial and error, 

and support them when they cannot break the impasse by themselves. 

In such modeling exercises in actual classrooms, a small number of teachers/TAs often must 

support many learners, and it is difficult to provide one-on-one support for each learner's modeling 

activities. In addition, it is difficult for teachers to identify only from the learner’s created model which 

part of the model caused an impasse and how the learner performed the trial and error. In this study, we 

constructed a system for monitoring the modeling activities of multiple learners during their exercises. 

In an experiment, we collected the modeling activity data of six learners and analyzed the pattern of 

learners' impasse based on their modeling activities. 

 
 

2. Modeling Activity Monitoring System 
 

Figure 1 shows an overview of our system. In the exercise, learners use the modeling tool Astah* 

(Change Vision, 2022) with our add-on software. The add-on software periodically records learners’ 

class diagram in JSON format. The system aggregates these models, which are recorded periodically 

during the exercise via the network, and extracts the differences between recorded models to create a 

record of the learner's editing history in the modeling exercise. 

The learner's editing history is categorized into three types of operations: create, modify, and 

delete. Additionally, these operations are classified by the elements to be edited: classes, attributes, 

methods, and relations (e.g., association, aggregation, composition, inheritance, dependency, etc.). 

mailto:noguchi@inf.shizuoka.ac.jp


 
260 

Moreover, each element has specific properties (e.g., an attribute has type, name, visibility, multiplicity, 

etc.). Figure 2 shows an example of a learner's modeling activities. In the extraction process, an element 

is categorized as “create” if it exists in the history at a particular moment but not in the previous point. 

The reverse case is categorized as “delete.” An element is classified as “modify” if the same location of 

the element is edited between one point and the previous point. For instance, in (2) of Figure 2, the role 

name “corners” was modified from “points” and the multiplicity “4” was created. The class “Circle” 

with an attribute “radius” and method “draw” were created. The association between “Point” and 

“Circle” was created with the multiplicity “1” and the role name “center.” 
 

Figure 1. Overview of the monitoring system. 

 

Figure 2. Learner’s modeling activity. 

 
 

3. Experiment 
 

In this experiment, we collected the modeling activity data of six learners in an exercise to create a 

model of a point-of-sale system in 60 minutes, and they recorded the time when they felt an impasse. 

We evaluated three impasse-detection rules based on the learners’ activity data that were customized 

from rules to detect programming exercise impasses (Yamashita et al., 2017): 

- A learner did not change the model for more than 10 minutes. 

- A learner deleted an element more than five times within 5 minutes. 

- A learner deleted more than 15% of the diagram and it reverted to the previous model. 

However, these rules did not adequately identify the learners’ impasse records. Figure 3 shows a 

learner's editing activities and number of elements in the diagram during the modeling exercise. The 

purple, red, and blue arrows show the time when a rule correctly identified the learner’s impasse record, 

the time only when the learner recorded an impasse, and the time when a rule was triggered at not 

impasse time, respectively. 

Regarding the red arrowed time, we observed that the learner recorded the impasse; however, the 

learner focused on another area instead of refining the elements related to the impasse. Regarding the 

blue arrowed time, the learner deleted all the attributes in a class and replaced them. The extraction 

process should be improved to be categorized as “modify” even when the learner takes time to replace a 

chunk of elements. From the observed modeling activities, learners used various modeling 

methodologies (Torre et al., 2018; Störrle et al., 2018). One attempted to complete one class and then 

begin creating the next. Another attempted to create all the classes first and then detail them. 

Impasse-detection rules must be adjusted depending on the modeling methodology selected by the 

learner. In addition, some models created by the learners included major errors even when they did not 



 
261 

experience an impasse. The rules should be designed based on the learners not having tool-supported 

systematic verification methods such as “build,” “run,” and “trace” in programming exercises. 
 

Figure 3. Number of elements and editing activities for a learner 

 

4. Conclusion 
 

In this study, we built a prototype to monitor and analyze learners' modeling activities. Using the 

prototype, we collected modeling activity data from six learners and analyzed learners' impasse based 

on their activities. From the learners’ activities, we could observe the characteristics of learners’ 

modeling activities and differences from programming exercises. In a future study, we will refine the 

impasse-detection mechanism based on these characteristics. 

 
 

Acknowledgements 
 

This work was supported by JSPS KAKENHI, Grant Numbers JP18K11566 and 22K12311. 

 
 

References 
 

Change Vision. Premier Diagramming, Modeling Software & Tools | Astah, https://astah.net, accessed on 

2022/05/01. 

Hara, S., Kayama., M., Nakao, T., Nagai., T, & Taguchi, N. (2019). A UML programming environment for ICT 

related subject at Junior High School. In Proceedings of the 2019 The 3rd International Conference on 

Digital Technology in Education (ICDTE 2019). ACM, USA, 141–146. 

https://doi.org/10.1145/3369199.3369215 

Krusche, S., Frankenberg, N., Reimer, L. M., & Bruegge., B. (2020). An interactive learning method to engage 

students in modeling. In Proceedings of the ACM/IEEE 42nd International Conference on Software 

Engineering: Software Engineering Education and Training (ICSE-SEET '20). ACM, 12–22. 

https://doi.org/10.1145/3377814.3381701 

Chren, S., Buhnova, B., Macak, M., Daubner, L., & Rossi., B. (2019). Mistakes in UML diagrams: analysis of 

student projects in a software engineering course. In Proceedings of the 41st International Conference on 

Software Engineering: Software Engineering Education and Training (ICSE-SEET '19). IEEE Press, 100–

109. https://doi.org/10.1109/ICSE-SEET.2019.00019 

Chourio, P., Azevedo, R., Castro, A., & Gadelha, B. (2019). Most common errors in software modeling using 

UML. In Proceedings of the XXXIII Brazilian Symposium on Software Engineering (SBES 2019). ACM, 

244–253. https://doi.org/10.1145/3350768.3353820 

Störrle, H., Baltsen, N., Christoffersen, H., & Maier, A. M. (2018). How do modelers read UML diagrams? 

Preliminary results from an eye-tracking study. In Proceedings of the 40th International Conference on 

Software Engineering, ACM, 396–397. https://doi.org/10.1145/3183440.3195025 

Torre, D., Labiche, Y., Genero, M., Teresa., M. B., & Elaasar, M. (2018). UML diagram synthesis techniques: a 

systematic mapping study. In Proceedings of the 10th International Workshop on Modelling in Software 

Engineering (MiSE '18). ACM, 33–40. https://doi.org/10.1145/3193954.3193957 

Yamashita, K., Sugiyama, T., Kogure, S., Noguchi, Y., Konishi, T., Itoh, Y. (2017). An educational support 

system based on automatic impasse detection in programming exercises. Proceedings of the 25th 

International Conference on Computers in Education, 288-295. 

https://doi.org/10.1145/3369199.3369215
https://doi.org/10.1145/3377814.3381701
https://doi.org/10.1109/ICSE-SEET.2019.00019
https://doi.org/10.1145/3350768.3353820
https://doi.org/10.1145/3183440.3195025
https://doi.org/10.1145/3193954.3193957

