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Abstract: The use of e-book reading systems such as Bookroll, and their ability to record 

readers' activities allows the design of predictive models capable of identifying at-risk students 

from their reading characteristics. Even though previous works have obtained promising results 

in this task, these results may not evidence the expected prediction performance in practical 

applications due to their selected assessment methods. Accordingly, in this paper, we assess this 

performance in two practical scenarios. The first is when we keep stored data from previous 

years of our course which can be used to train our model, and the second is when we only have 

data from a different course to use in this training process. In order to obtain a more accurate 

assessment, we collected 92,574 samples of predictive performances from different models 

under the above-mentioned conditions. We also considered different feature representations 

along with variational latent representations, which can leverage our previous data to 

automatically design general hidden features. From our results, we understand that in the first 

condition we can expect a relatively good predictive performance, especially when using 

variational latent representations. However, in the second condition we found that even when 

using them, the predictive performances are very limited resulting in an impractical solution. 
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1. Introduction 
 

The adoption of digital textbook reading systems in learning environments has opened the possibility to 

analyze the students’ behaviors and predict their learning outcomes based on the action logs they leave 

in these systems (Flanagan & Ogata, 2017). An example of these reading systems is Bookroll, an 

application used in university classrooms for distributing class reading materials. This e-book 

application also includes features that provide students with a variety of digital interactions, such as 

adding memos, jumping to an arbitrary page, highlighting text, etc. (Flanagan & Ogata, 2017; Ogata et 

al., 2017) 

From previous works, we know that Bookroll users can be modeled as a set of features 

extracted from their set of action logs. These features are usually defined as some actions’ frequencies 

(e.g., the number of times that a student uses the highlight function of the application), counted from a 

certain predefined subset of the total data (e.g., the subset of in-class activities), and selected after 

conducting a features engineering process. By using their own designed feature representations, 

different works have attempted to use Machine Learning (ML) supervised models to predict at-risk 

students (defined as students who get a low score) and obtained promising results (Akçapinar et al., 

2019; Hasnine et al., 2018; Huang et al., 2020; Murata et al., 2021; Okubo et al., 2018; Yin et al., 2019). 

However, apart from Huang et al. (2020), these works limited their evaluation scope to a similar dataset 

(e.g., subsets of data from the same course) without considering test subsets from different datasets (low 

variance in the data). 

While all these developments are useful in the design of strategies for identifying at-risk 

students with predictive models, in practice, we are limited to using past data to train our models, which 

means that our data may preserve some differences. Considering that a usual methodological issue in 

Learning Analytics (LA) is the presence of biases (Pelanek, 2020), we need to verify whether the 

reported predictive performance in the literature applies to practical implementation. This assessment is 
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also in line with the idea of designing a model robust enough to still work with a dataset generated from 

a different educational environment proposed by Baker (2019) in a LAK 2019 keynote, and by 

Flanagan et al. (2018) in a workshop from ICCE2018 on predictive models based on Bookroll data. 

Consequently, in the present work, we employ an improvement of the best assessment method 

found in the literature to explore the generalizability and practical performance (predictive performance 

in a practical condition) of different models and existing sets of features. Additionally, since previously 

designed feature sets do not necessarily represent the best choices, based on the papers (Le et al., 2018, 

Lopez et al., 2022) we implement Variational Autoencoders (VAE) and Semi-supervised VAE 

(Semi-VAE) to generate latent representations and assess the general performance achieved by them. 

On that account, our research questions are as follows. 

 

RQ1: In a university course supported by the Bookroll application and in a practical scenario 

where we use past data from the same course, to what extent can we predict the presence of 

at-risk students? 

 

RQ2: In a university course supported by the Bookroll application, to what extent can we use 

past data collected from a course with different characteristics to predict the presence of at-risk 

students? 

 

RQ3: Can VAE latent representations improve the predictive performance in practical 

scenarios? 

 

2. Previous Work 
 

2.1 Feature representations of Bookroll data 

 

As mentioned in the previous section, there is found a trend of works that employed ML supervised 

models to map their designed set of features to the probability of being an at-risk student. We identify a 

total of 52 possible features through these works with 4 prevalent sets of features, which are designated 

as Feature Sets 1 to 4 (“FS1”, “FS2”, “FS3”, and “FS4”) in the present paper. Specifically, Hasnine et 

al. (2018) and Akçapinar et al. (2019) make use of similar features related to the engagement (e.g., 

number of sessions, short events, etc.), included in “FS1”. Yin et al. (2019) present a unique set that 

considers hidden features (e.g., the ratio between the number of PREVs and NEXTs) included in “FS2”; 

while Huang et al. (2020) and Cheng et al. (2021) employ larger sets of basic features (e.g., number of 

PREV, NEXT, ADD_BOOKMARK, etc.) considered in “FS3”. The “FS4” includes the features used 

by Okubo et al. (2018) and Murata et al. (2021), which consists of the number of ADD_BOOKMARKs, 

ADD_MEMOs, read slides, and the total number of events. We should point out that these last works 

also use data from sources other than Bookroll. However, we include their set of features because only 

these works employ time-aware models such as RNNs, and therefore, their designed features can be 

important when assessing these models' performances. Finally, in order to implement VAE models, we 

also consider all the existing features in the “ALL” Features Set. 

 

2.2 Variational Autoencoders 

 

Since each course has particular characteristics, the same feature may have different meanings in 

different datasets. Accordingly, the best feature selection may depend on the dataset characteristics. 

On that account, we also explore the automatic feature selection with the use of VAE. This 

model is a special type of autoencoder where the encoder maps the input vector to a probability 

distribution of latent representations instead of a fixed one. The term “Variational” comes from the 

Variational Bayesian approach employed to define the optimization equations required to learn the 

parameters of this probabilistic model without facing intractability problems (Kingma & Welling, 

2014). The VAE can be trained just as an autoencoder that learns the mean and standard deviation of 

their latent probabilistic distribution (Figure 1). The VAE Loss function is shown in equation 1, where 

DKL is the Kullback-Leibler divergence that decreases when qφ(z|x) is near to be a normal distribution, 

and β is a hyperparameter introduced by Higgins et al. (2017) to avoid entanglement in the latent space. 
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            (1) 

Although our previous work was the first approximation to the use of VAE models for modeling 

Bookroll users' data (Lopez et al., 2022), different works in the LA field have used these models earlier. 

One example is that of Du et al. (2020), who implement a VAE for modeling at-risk students' latent 

representations and from them generate new samples of at-risk students to address the data imbalance 

issue presented in the K-12 datasets. Also, Ding et al. (2019) model MOOCs users with the use of a 

modified LSTM-AE to avoid the challenging process of designing handcrafted features that are 

effective for their prediction task. In this case, the authors use the model to substitute the feature 

representations with latent representations when training a predictive model, a method that allows an 

improvement of its prediction accuracy and reduces overfitting. Similar to this work, Bosch (2017) uses 

a VAE to extract the latent representations and feed them into a predictive model to detect the students’ 

boredom. Its results also show a performance improvement when compared to predictive models that 

used manually designed features. 

 

 
Figure 1. VAE architecture. 

 
Figure 2. VAE-supervised model integration. 

 

The data pipeline implemented by Ding et al. (2019), Bosch (2017) with educational data, and also by 

Lopez et al. (2022) with Bookroll data is shown in Figure 2. It can be described as the integration of two 

models, the first consisting of a trained VAE encoder and the second consisting of an ML-supervised 

model. Here the trained VAE encoder will apply non-linear transformations to the input vector to obtain 

its latent representation, and the ML supervised model may learn the relations between this 

representation and the probability of being an at-risk student. Since the VAE encoder is first pretrained 

on the task of reconstructing the data, it can encode any input data into general latent features. 

 

2.3 Predictive models and methods 

 

The works from Section 2.1 have examined the predictive performance of different ML supervised 

models to predict at-risk students from their Bookroll data traces (Akçapinar et al., 2019; Hasnine et al., 

2018; Huang et al., 2020; Murata et al., 2021; Okubo et al., 2018; Yin et al., 2019). In Table 1 the reader 

can observe the models present in the literature and the number of times that have been considered by 

different works. These frequency values are based not only on a review of the mentioned works but also 

on the summary presented by Flanagan et al. (2018) from a workshop on learning performance 

prediction with Bookroll data. 

 

Table 1. ML supervised models in the literature. 
 

Model Frequency 

BartMachine 1 

CN2Ruler Inducer 1 

Generalized Linear Model 1 

Rule-Based Classifier 1 

AdaBoost 2 

Gated Recurrent Unit 2 

k-Nearest Neighbors 4 
Logistic Regression 5 

XGBoost 6 

Decision Tree 6 

Naïve Bayes 6 

Neural Networks 8 

Random Forest 8 
 Support Vector Machine  10  
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Since these works have adopted different predictive performance metrics and used different datasets, 

their results cannot be compared. However, from the variety of optimal models found in them, we can 

infer that even when delimiting our problem as an at-risk students' prediction using Bookroll data, no 

one model is the best. For this reason, is also difficult to assert if any of the possible set of features in the 

literature is better at encoding the information about the students' behaviors. 

Furthermore, as regarded by the bias-variance trade-off (Kohavi & Wolpert, 1996), there is a 

chance that some features or models are good at making predictions in datasets with the same 

characteristics as their training one, but struggle to work with slightly different datasets. This causes 

assessment methodologies based on two datasets from the same course, and on two datasets from 

different terms of the same course to lead to different performance results. With this in mind, we should 

also review and analyze the assessment methodologies present in the literature. 

First, Hasnine et al. (2018), Akçapinar et al. (2019), and Murata et al. (2021) only have data 

from a single course, and consequently, employ a cross-validation method to obtain their results. This 

methodology avoids a possible bias generated when selecting the train and test splits. However, it is 

difficult to account for the predictive performance gain due to the lack of variance in data, meaning that 

their results may be different from those obtained when using past data for training. 

Although Huang et al. (2020) do not detail their methodology, we can infer from their results 

that they assessed an already trained model across 17 different datasets. Some of their performance 

results suggest that the LA bias problem prevents models to work with different datasets. 

Finally, Okubo et al. (2018) and Cheng et al. (2021) implement a methodology based on using 

data from different sections of the same course. Specifically, the first work uses 15 different datasets 

and applies cross-validation for each course. In other words, for each validation loop, they define the 

data from 14 different sections as a train set and the remaining one as a test set. In contrast, the second 

prepared two datasets, each one corresponding to a course section, and applies 3-fold cross-validation 

with one of them to generate their train-test subsets, while using the other to assess them. This method is 

the best designed to avoid possible biases since it considers an additional test set taken from another 

environment (we will refer to it as assess_test). However, similar to the first kind of work, their results 

do not address the case when its assess_test contains past data or data with different characteristics. 

 

3. Dataset 
 

We used four datasets previously collected by our laboratory, of which the first one is managed 

internally, and the other three have been released to the public in the LAK22 Data Challenge Workshop. 

The datasets details are provided below. 

DS1: A dataset containing 5,377,001 logs of unlabeled data from 2054 Kyushu University 

students enrolled in 16 different courses for the years 2019 and 2020. The considered courses have 

different characteristics, such as their duration, the professor in charge, their corresponding academic 

department, etc. The dataset does not preserve these details but contains information about their class 

schedule. 

A-2019: A dataset containing 129,358 logs of labeled data from 50 Kyushu University students 

enrolled in the course “Programming Theory” in the year 2019. 

A-2020: A dataset containing 147,452 logs of labeled data from 62 Kyushu University students 

enrolled in the course “Programming Theory” in the year 2020. 

B-2020: A dataset containing 197,593 logs of labeled data from 90 Kyushu University students 

enrolled in the course “Cybersecurity Basic Theory” in the year 2020. 
We detail some additional characteristics regarding these datasets in Table 2. 

Table 2. Datasets additional characteristics 
 

Characteristics A-2019 A-2020 B-2020 

# Students 50 62 90 

# At-risk students 19 16 15 

# Materials 21 12 9 

Weeks duration 8 8 7 

Professor ID SA SA MT 
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4. Method 
 

4.1 Experiment Preparations 

 

The labels of our labeled datasets consisted of the students' final grades. We should mention that this 

grade is specific to its corresponding course. Similar to previous works, we considered the students with 

low scores (D and F) as at-risk students and prepared our datasets based on these new labels. Then, we 

prepared feature representations of the data considering FS1, FS2, FS3, FS4, and ALL sets. Also, we 

trained VAE and Semi-VAE models to generate data latent representations. 

 

4.1.1 VAE latent representations 

 

We first obtained the feature representations of dataset DS1 and then trained a VAE for each set. Each 

VAE training process was based on two steps. In the first, we made an approximation of the optimal 

architecture, the number of latent dimensions, and the values of the hyperparameters with an 

explorative studio with the support of the optimization framework Optuna (Akiba et al., 2019). In the 

second step, we manually set these values with a visual inspection of the training and validation loss 

values. For these two steps, we applied z-score normalization across the feature columns and randomly 

split the 2054 samples into train and validation datasets to avoid overfitting. 

 

4.1.2 Semi-Supervised VAE representations 

 

As the reader may note, the VAE models can eliminate information relevant to the at-risk students' 

prediction task in their search for better generalizability. The Supervised VAE proposed by Lopez et al. 

addresses this problem with the use of labels in the whole dataset. However, since we cannot access the 

labels of DS1 (unlabeled data), we need a model able to use only the existent labels. On that account, we 

propose a Semi-Supervised VAE model, which has the same architecture as a Supervised VAE (See 

Figure 3) but defines its prediction loss as shown in Equation 2. 

 

     (2) 

 

Therefore, if we label with a masking value of −1 all the unlabeled samples, the model will be able to 

only consider the samples with at-risk probability labels to calculate its prediction loss and hence 

prevent itself to eliminate the information of features related to the prediction performance. 

Accordingly, we considered DS1 as our unlabeled dataset and A-2019 as our labeled dataset. 

We generated the masking labels to DS1 and applied the same methodology described in the previous 

section to obtain 10 additional Variational models. 
 

Figure 3. Semi-Supervised VAE architecture. 
 
4.2 Models 

 

Since no one model is the best for our application, we selected 7 models from Table 1. Our selections 

are the Support Vector Machine (SVM), Naive Bayes (NB), Logistic Regression (LR), Decision Trees 

(DT), XGBoost, Neural Networks (DNN), and Gated Recurrent Unit (GRU). We selected the XGBoost 

over the Random Forest since they share the same architecture but the first usually outperforms the 

second. Also, we included the GRU because is the only one that considers the time dimension. 
4.3 Experiment 
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We conducted two similar experiments. In the first experiment, we select one Feature Set (e.g., FS1) to 

represent our different datasets. Then, similar to the best-found assessment method of Cheng et al. 

(2021), we use 3-fold cross-validation to split the A-2019 dataset into train-test subsets. Next, we train 

one selected model (e.g., DNN) with these subsets and collect its test performance results. After that, we 

use the A-2020 dataset as an assess_test subset (Section 2.3) to collect a new predictive performance of 

the same model. We finally repeat this process across all our selected models, Feature Sets, and latent 

representations of our Feature Sets (generated by our VAE models, Section 4.1.1 and 4.1.2). In the 

second experiment, we conduct the same process using the B-2020 dataset as the assessment dataset. 

The reader may note that the first experiment is intended to answer RQ1 since we use past data to make 

predictions in a current course, while the second can answer RQ2 since the A-2019 and B-2020 courses 

exhibit different characteristics (especially, the professor in charge and delivered content). 

 

5. Results and discussion 
 

5.1 Results of models trained on feature representations 

 

From the two described experiments, we collect 92,574 samples of predictive performance results from 

different models trained on different feature and latent representations. To address RQ1 and RQ2 

avoiding a bias due to our proposed latent representations, we consider only the results from models 

trained on the different Feature Sets. In Figure 4, the reader can see the distribution of the assessment 

predictive performance (F-score) samples collected in experiment 1 (N = 10,363) and experiment 2 (N 

= 10,363). We also plot the test predictive performance samples distribution (N = 10,363) to allow 

verification that our results are in line with the test performances reported in the literature. 
 

Figure 4. Test and assess_test subsets predictive performances. 
 

From the experiment 1 results, we understand that when using past data to train our models, even if it is 

from the same course, we should expect a significant decrement (around 0.2 F-score in this case) in the 

predictive performance in contrast to our k-fold cross-validated test results. However, the mean of the 

experiment 1 distribution is 0.552 F-score, which is higher than the expected F-score of a non-predictor 

model (model that always predicts that a student is not at risk, 0.41 F-score for experiment 1), meaning 

that our designed models are still useful. 

On the other hand, the experiment 2 results suggest that using past data from a different course 

may not be of use for making predictions, since their mean distribution of 0.257 F-score is lower than 

the expected F-score of a non-predictor model (0.286 for experiment 2). 

Finally, although the literature suggests there is no optimal model, we account for the 

differences between models in our results. To this end, we compared the distributions from different 

models (N = 300) when using a fixed Feature Set and validated this comparison with a T-Test (p<0.05). 

We then ranked these models (The 1st order means the best model, the largest order the worst, and the 

same order indicates there is no statistical difference) as shown in Figure 5. 

We observe that only the GRU model gets better results in all sets, meaning that we can rely on 

improving the test performance of our GRU models to also improve their performance in a real 

application. This result can be explained by the time-awareness of the models, meaning that the data 

changes in time preserve similar information in any course. Additionally, we also note that the simple 

models LR and SVM get better performances in the A-2020 assessment set, while there is no best model 

in the B-2020 assessment set. Finally, we can select only LR, SVM, and GRU to get a more accurate 

expected performance when using past data from the same course to train our models. Through this 

process, we get that their corresponding means are 0.582, 0.572, and 0.575 F-scores respectively. 
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Figure 5. Models' performance rank in the test and assessment subsets. 

 

5.2 Results of models trained on latent representations 

 

To address RQ3, we now use also the VAE latent representations performance results. In this case, we 

fix a Feature Set and model to compare the results distributions of this model without latent 

representations (N = 300), the same model with the use of VAE (N = 300), and with the use of 

Semi-VAE (N = 300). We validated this comparison with a T-Test (p<0.05) and ranked the 

distributions from 1st to 3rd, assigning the same order when there is no statistical difference. The 

summarized results are shown in Figure 6. 
 

Figure 6. Feature Set, VAE, and Semi-VAE performance rank in the assessment subsets. 
 

We observe that in general the VAE and Semi-VAE latent representations lead to models with better 

results in the A-2020 assessment data, however, in dataset B-2020 is difficult to determine which 

representations are better. If we consider each model mean as a sample and compare the distributions 

(N=7), in the A-2020 assessment data we get that the VAE and Semi-VAE performance are better than 

the non-latent representation (p=0.0362, p=0.0191 respectively). However, if we conduct the same 

process in the B-2020 data we get no statistical difference (p=0.5506). In addition, we see in Figure 6 

(A-2020 data) that Semi-VAE tends to get better results more often, however, we do not have the 

statistical validation to claim that it is better than VAE (p=0.3418). 

Finally, we report in Table 3 some of the better results obtained by VAE and Semi-VAE 

representations in the A-2020 assessment data. With also these last results in consideration, in response 

to RQ1, we conclude that in a university course supported by the Bookroll application and in a practical 

scenario where we use past data from the same course, we can still make predictions about the presence 

of at-risk students and expect an F-score 0.2 higher than a non-predictor model. In response to RQ2, we 

conclude that considering the current state of the art, it is not possible to predict the presence of at-risk 

students when using past data collected from a course with different characteristics (specific differences 
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in this study: delivered year, course content, and professor in charge). Moreover, in response to RQ3, 

we conclude that VAE latent representations can improve the predictive performance in the practical 

scenario when we use past data of the same course. However, we cannot assert whether VAE or 

Semi-VAE latent representations are better for this task. 

 

Table 3. Some of the highest performance distributions means (F-score) 
 

Model Feature Set Non-latent VAE Semi-VAE 

DT ALL 0.5529 0.6257 0.5334 

GRU ALL 0.5462 0.6215 0.6113 

SVM FS1 0.5898 0.6158 0.6185 

NB FS1 0.5806 0.6197 0.6333 

GRU FS2 0.5689 0.5595 0.6212 

NB FS3 0.4458 0.5740 0.6193 

XGBM FS4 0.5249 0.6294 0.5971 

GRU FS4 0.5872 0.6079 0.6070 

 

5.3 Latent representations 

 

The importance of the VAE models is that they can automatically select some features and how to use 

them to design their latent representations. In this regard, we additionally conduct a feature importance 

test (permutation feature importance algorithm proposed by Bisher, Rudin, & Dominici, 2019) for our 

variational models. The results for the VAE and Semi-VAE models are detailed in Figure 7. Though, 

these results are specific to our datasets and may not apply to any Bookroll dataset. 
 

 

Figure 7. Left. VAE features importance. Right. Semi-VAE features importance. 
 

We observe that the order of importance differs from the VAE to the Semi-VAE model. Since the two 

models are based on the same architecture, we may attribute these differences to the incorporation of 

prediction labels in the Semi-VAE model. To better understand these differences, we first should 

remember that the VAE model attempts to find general latent features that can reconstruct the data. This 

can be translated into two types of importance attributions. The first is based on the non-linear 

relationship that a feature has with other features, for example, the number of NEXT events and 

NN_NEXT (the number of NEXT events longer than 3 seconds) may be strongly related and the model 

should decide to attribute high importance to only one of these features. The second is based on the 

frequency of non-zero values of the feature across the students. For example, the feature 

ADD_HW_MEMO (adding a handwritten note) is not often used by the students and consequently, the 

VAE model may not attribute high importance to it. Accordingly, we may conclude, for example, that 

the NOT_GET_IT feature (number of times that a student pressed the button “did not understand this 

slide”) is probably not very related to other features and relatively frequent (relatively to other 

independent features). 

However, in the case of Semi-VAE, the model should also consider how important the feature 

is to make a prediction. This means that in our previous example the model may not consider that the 
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NOT_GET_IT feature is really important when estimating the probability of being an at-risk student. 

Moreover, the reader may note that the second most important feature of our Semi-VAE model is the 

previously mentioned ADD_HW_MEMO, which received low importance from the VAE model. This 

probably means that despite its infrequency, when a student uses this feature, our model can make a 

better prediction. 

Besides the differences, we can find some similarities. One example is that redundant features 

such as N_WEEK and N_DAY have low importance in both models. The reason is probably that other 

reader's activities features are related to these features in all courses and the variational models do not 

need to preserve their information since it can be inferred (e.g., a student with a high number of notes, 

highlights, and search activities probably has a greater number of active days and weeks). 

Finally, we would like to note that a Semi-VAE has more difficulty learning its mappings to the 

latent space since it has to deal with a trade-off between the importance of the features that have unique 

information and the importance of the ones that are better predictors. In this context, a features 

engineering process may be required to design better Semi-VAE latent representations, which in turn 

could lead to a statistically validated improvement of the VAE results. This idea is also supported by the 

results in Table 3, where the best results obtained by Semi-VAE representations take place when 

encoding a designed Feature Set (FS1 and FS2), in contrast to VAE, which works better encoding all 

possible features (ALL Feature Set). 

 

6. Limitations 
 

The experiment results reported in the previous section should be considered in light of some 

limitations. In this section, we will describe the two which we consider the most important. 

The first is the optimality of the hyperparameters selected for our models. Even though we 

conducted several explorative trials to select the best hyperparameters, ideally, we should sample over 

different values for each model to avoid any bias from our selections. However, the computation time 

for our experimentation was more than 100 hours, which means that looping across hyperparameters 

would require months of computation. 

The second is the collection time range of the DS1 unlabeled dataset used for training the 

variational models. As the reader may note, this dataset was collected in the same years of our datasets 

A-2019, A-2020, and B-2020. This means that our variational models were able to learn some singular 

characteristics present only in these years (e.g. The online activities due to the pandemic). While this 

ability is a good characteristic of the variational models, it also possibly introduces a bias that we cannot 

account for from our test and validation results. We should note that our first idea to avoid this possible 

bias was to use a dataset collected from 2018 and 2019. However, the datasets containing 2018 course 

data did not preserve their class schedule information. 

 

7. Conclusions 
 

From the inclusion of digital textbook reading systems in classrooms, several works have contributed to 

the idea of using the readers’ data to identify at-risk students. The present work complements these 

contributions. Specifically, our results reinforce the idea that readers’ interactions data preserve 

information related to their academic performance, but also evidence that these relationships are to a 

certain extent dependent on the course’s characteristics. For this reason, it is difficult to use a model to 

make predictions across different courses. Nevertheless, we proved that the VAE latent representations 

and the Time-aware predictive models tend to manifest better generalizability characteristics, allowing 

an improvement of the predictive performance in a practical implementation. 

Additionally, this paper introduces the Semi-supervised VAE to generate latent representations 

able to encode not only the feature relations present in different courses but also the course-specific 

features and their relationship with the academic performance. Since results do not provide evidence to 

prove or disprove that the Semi-VAE representations are better than the VAE ones, we conclude that 

further research is required to understand their differences. Considering that the Semi-VAE training is 

more complicated and easier to find a local minimum, a starting point can be to study techniques to 

improve their training. Some ways are to conduct a features engineering process or to design 

“warm-up” functions and apply them to certain loss components. 
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