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Abstract: Since the demand for programmers is increasing, programming courses are being 

offered widely. In this context, students’ motivation can be damaged by difficulties they 

encounter in their programming courses. Although teachers’ support is necessary to prevent 

such an issue, it is impossible for teachers to directly monitor all students’ programming 

activities at the same time and determine which students have troubles with programming. 

Therefore, several studies have been conducted to help teachers monitor students. However, 

these studies do not provide an understanding of the activities of students who do not run their 

code, which may lead researchers to miss students who are in trouble. In this paper, we propose 

an indicator for detecting students who need coding support by analyzing programming logs 

that are recorded even when the students do not run their code. This gives teachers deeper 

insight into the students’ programming performance. Although further work remains, the 

validation of this indicator shows that it could detect those students who are in trouble. 
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1. Introduction 
 

Recently, the demand for programmers has been rapidly increasing, and the lack of programmers has 

become serious. Therefore, developing programmers is an urgent need, based on which various changes 

are being implemented in the field of education. For example, programming education became 

mandatory in Japanese elementary schools in 2020. 

Jenkins (2001) and Pilkington (2018) have reported that students’ motivation to learn is 

important in order for them to succeed in programming courses. However, their motivation is often 

affected by the difficulties they encounter in coding, which may lead students to drop out (Martins et al., 

2010; Feldgen et al., 2004). To prevent this, teachers must monitor students’ programming activities 

and determine which students have troubles with programming (hereafter, at-risk students). However, 

the larger the number of students, the more difficult it is to monitor all of them at the same time. 

To help the teachers monitor students, various studies have been conducted (e.g., Fonseca et al., 

2018; Fonseca et al., 2021; Penmetsa et al., 2021). Many of them include the creation of a dashboard. Fu 

et al. (2017) developed a dashboard that enables teachers to identify the patterns of errors students 

frequently make by obtaining error messages from the compiler. Furthermore, Diana et al. (2017) 

analyzed programming logs to predict the students’ final grade in a programming course. In those 

works, however, the researchers only used students’ programming logs that were recorded when they 

ran their code, which means that they could not collect programming logs for analysis from students 

who wrote their code without execution. This leads to some problems in monitoring students. One such 

problem is the lack of logs to analyze. For students who seldom run their codes, researchers cannot 

collect a sufficient number of logs. This leads us to miss at-risk students due to the reduced accuracy of 

detection. If we can obtain programming logs while the students are coding regardless of execution, we 

can increase our sample size and deepen our understanding of students’ programming activities. 

In this paper, we design a better indicator to detect at-risk students by calculating the 

frequencies of execution errors and autosaves. Autosave is an event that automatically records the 

students’ programming logs such as time and code even if they do not execute their code. This enables 

us to get a sufficient number of programming logs and identify students’ programming activity while 

they are coding without execution. In addition, we validate how effective the frequencies of the 

execution errors and autosaves are at finding at-risk students. 
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2. Programming Log Collecting Tool 
 

The WEVL is an online coding application currently being developed in our laboratory as well as being 

used in some programming courses in our university (Taniguchi et al., 2022). Figure 1 shows the user 

interface of WEVL. If a student writes a code in the text box on the left side and clicks the yellow 

execution button, the execution result of the code is displayed on the right side. While writing a code on 

WEVL, various pieces of information such as name, time, and code are automatically recorded to the 

WEVL database. This recording event occurs twice. The first time is when students run the code. In this 

case, the result of the execution is also saved. The second is when the student stops typing for three 

seconds. However, if the code is the same as the one that was saved previously, this event does not 

occur. 
 

Figure 1. The User Interface of WEVL. 
 

By automatically recording the programming logs, we can obtain a sufficient number of logs 

for analysis. For example, in the case of a certain 90-minute programming course in our university 

consisting of 87 students, the database includes 1,069 autosave logs and 245 execution logs. 

If we line up the programming logs in chronological order, we can obtain one time series set for 

each student. In this paper, we call these series’ elements “save-points” and use them to detect at-risk 

students. 

 
 

3. Detection of At-Risk Students 
 

3.1 Indicator for Detection 

 

We hypothesized that there are some situations that lead a student to be in an at-risk situation; one 

example situation is repeatedly getting errors when they run their code. In this case, the students could 

be in an at-risk situation. Another situation is when students get stuck while writing their code. For 

example, when a student is unsuccessfully trying to solve a task in a programming course, s/he may 

frequently stop writing code. In other words, s/he would be repeating the trial-and-error process. 

Next, we detected students in such situations based on their activity. Students who are 

repeatedly getting errors when running their code can be detected simply by checking the frequency of 

execution errors in their save-points. However, it is more difficult to detect students who are repeating 

trial-and-error processes. As mentioned in section 2, autosave happens when students stop typing a code 

for a short time. Therefore, we can say that autosave is a good candidate for the detection of trial and 

error. 

We then designed an indicator to detect at-risk students based on the idea that the frequencies of 

certain kinds of save-points have fruitful information. 
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3.2 Designing the Indicator 

 

We designed an indicator for detecting at-risk students by using students’ save-points. As mentioned in 

section 2, there are three kinds of save-points when students are coding on WEVL: run and success, run 

and fail, and autosave. Figure 2 shows example save-points of a certain student. 

 

Figure 2. An Example of a Student’s Save-points. 
 

In Figure 2, the white points represent autosaves, the green points represent run and success, 

and the red points represent run and fail. As noted in section 3.1, at-risk students can be found by 

checking the frequencies of failures and autosaves. When calculating these frequencies, we only take 

account of recent save-points. As shown in Figure 2, we set the time range T, which covers the past for 

a certain period to the present time. We calculated the frequencies of the number of save-points in this 

time range. When we set time range T to T minutes at the present time t, we defined the ratio of errors 

from time t-T to time t as “failure ratio” and the ratio of autosaves as “autosave ratio.” In the case of 

Figure 2, the number of the save-points in the time range T is 10. There are five autosaves and two 

failures in the time range T, so the autosave ratio is 50% and the failure ratio is 20%. In this research, we 

use these ratios as an indicator for detecting at-risk students and validate whether they can detect such 

students via a classification experiment. 

 

3.3 Identifying Coding Situations 

 

In this section, we identify students’ coding situations based on the ratio of failures and autosaves. Table 

1 shows four possible groups classified by the size of the students’ failure and autosave ratio. 

 

Table 1. Four Groups Classified by Failure and Autosave Ratio 
 

 

autosave ratio 
  high low 

failure ratio 
high Group A Group B 

low Group C Group D 

 

Group A consists of students who have a high failure and autosave ratio. As mentioned before, 

a high autosave ratio represents a high probability of repeating trial and error. Therefore, students in this 

group can be identified as those who are trying to run their code but not finding success. Thus, they can 

be at-risk students. 

Group B is a group of students who have a high failure ratio and a low autosave ratio. A low 

autosave ratio represents that the student can smoothly write a code. Given that such students have a 

high failure ratio, this group indicates students who are making several errors occur but are writing code 

to successfully solve them. 

In group C, students have a high autosave ratio and a low failure ratio. In other words, they are 

repeating trial-and-error without making frequent errors. In general, students with a low failure ratio are 

less likely to be at-risk. However, we hypothesized that high frequency of trial-and-error leads a student 

to be in an at-risk situation in section 3.1. Therefore, we cannot easily say that they are low-risk 

students. 

Finally, group D includes students with a low failure and autosave ratio. Naturally, this ratio 

represents a high frequency of success. Therefore, students in this group can be identified as those who 

run their code several times, typically successfully, which is a low-risk situation. 
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To sum up, group A includes at-risk students while group B and D does not. In group C, it 

seems difficult to say whether the students are at risk. For this reason, we conducted a classification 

experiment and validated the indicator. 

 

4. Validation of Indicator 
 

4.1 Dataset 

 

In this research, we conducted an experiment using the programming logs collected from the WEVL 

database. These logs were recorded in the database during a Python programming exercise course 

offered in our university in 2020, and we used the logs for three sessions of the course. 

In Figure 2, we calculated the failure and autosave ratio from save-points in the time range T. If 

this time range is long enough, a sufficient number of save-points can be collected. If it is too long, 

however, both the failure and autosave ratios are affected by past data, which may lead to missing 

students that are currently having troubles with programming. In this experiment, we set the time range 

T to 30 minutes. Whether this length of the range is appropriate may require discussion. The course was 

offered from 8:40 am to 10:10 am, and the latter part of the class was used for exercises. Thus, we 

collected students’ programming logs that were recorded from 9:30 am to10:00 am, obtaining 165 

pieces of time series data of save-point logs. These save-point logs comprise 6,647 programming logs 

(1,255 execution logs and 5,392 autosave logs). 

The purpose of this research is to find at-risk students. However, we cannot know whether a 

given student had trouble in a class period based solely on the logs in the database. Therefore, we used 

the assignment’s scores to evaluate the classified students. This assignment was imposed every week in 

the programming course, and a full score is 5. We conducted an experiment based on the idea that this 

score is related to the performance in the course. 

 

4.2 Setting the Thresholds 

 

In section 3.3, we created a table divided by whether the ratio was high or low. To do so, a threshold is 

required for both the failure and autosave ratios. 

First, we set the thresholds of failure and autosave ratio at 50%. We then calculated the average 

score of the assignments for each group. Finally, we maximized the differences between groups A and 

C, which consist of students with a high autosave ratio, and groups B and D, which consist of students 

with a low autosave ratio. 

Figure 3 shows how the differences of the average score changes according to the thresholds. 

The vertical axis represents the threshold of the autosave ratio, and the horizontal axis shows the 

threshold of the failure ratio; the gradation represents the magnitude of the difference. The greater the 

difference, the brighter the color of the point. According to this figure, the ratios that maximize the 

differences of the scores are 20% for the autosave ratio and 70% for the failure ratio. Thus, we set these 

as the thresholds. 

 

4.3 Results of the Experiment 

 

After setting the thresholds, we classified the students into four groups. Table 2 shows the statistics of 

each group’s assignment score; 5 represents the highest score. In this section, we verify how the failure 

and autosave ratio are effective to detect at-risk students by examining the relationship between the 

identified situation and the weekly assignment score. 
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Figure 3. The Differences of the Average Assignment Score. 
 

Table 2. The Statistics of Each Group’s Assignment Score 
 

 Group A Group B Group C Group D all 

number of data 11 25 114 15 165 

average 3.38 3.88 3.92 4.38 3.92 

std. 0.83 0.92 1.13 1.10 1.09 

 

Students in group A have high failure and autosave ratios, which suggests that they try to run 

their code successfully but it does not work well. Table 2 shows that this group’s average score is the 

lowest of the four groups’ scores. Therefore, we can say that they are likely to be at-risk students. 

In group B, students have a high failure ratio and a low autosave ratio. They are identified as 

getting several coding errors, but being able to solve them smoothly. Although they have as high a 

failure ratio as group A, Table 2 shows that they received scores that were not so low compared to the 

average across the groups. 

It seemed difficult to judge whether the students in group C are successful in coding. Table 2 

shows that students in this group scored almost the same as the average of all the students, and about 

70% of the data points were classified into this group. 

Finally, students in group D exhibited low failure and autosave ratios, suggesting that they are 

coding successfully without getting errors. This group’s average score is the highest of the four. 

Therefore, we can say that they are not likely to be at risk. 

 

4.4 Discussion 

 

Students frequently getting coding errors seem to be at risk in general. However, our results shows that 

a high error frequency does not always lead to a poor grade. If we classify the students only by failure 

ratio, groups A and B are classified together. That group’s average assignment score is 3.73 out of 5, 

which does not differ much from the overall average score. Therefore, we can say that failure ratio is not 

sufficient to classify students as having a poor grade, and we can extract at-risk students from those who 

have a high failure ratio by using the autosave ratio. Thus, the autosave ratio is an important value for 

detecting at-risk students. The same applies to groups C and D, as those groups’ joint average 

assignment score is 3.97. From the above, we can also say that the autosave ratio is useful for detecting 

low-risk students. 

The results for Group C show that they received a similar assignment score as the overall 

average, and many more students were classified into Group C than any other group; both successful 

and unsuccessful students were included in this group. Thus, more details should be used to classify this 

group. 
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5. Conclusion 
 

In this paper, we proposed an indicator to detect at-risk students in programming courses to help 

teachers comprehend students’ programming activities and detect those who are at risk. By making 

good use of WEVL, which can record students’ codes even if they are not executed, we can analyze 

many more programming logs and capture students’ activities while they are coding. We then designed 

an indicator calculating the frequencies of execution errors and autosaves. We classified students into 

four groups and validated how important the ratios are to detect at-risk students. The results showed that 

in addition to failure ratio, autosave ratio, or the amount of trial and error in coding, is valuable for 

detection. Group A, which had high failure and autosave ratios, are at-risk students. However, about 

70% of all students were classified into group C, and the score distribution is similar to the overall 

average. Thus, this group should be classified in more detail. In this research, we used only two 

parameters, autosave ratio and failure ratio, to classify students. Therefore, we are conducting further 

experiments using other parameters such as the length of the code. We are conducting further research 

to improve detection accuracy and hope that it will be of great help for teachers in the field of 

programming education. 
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