
Wong, L.-H. et al. (Eds.) (2013). Proceedings of the 21st International Conference on Computers in 
Education. Indonesia: Asia-Pacific Society for Computers in Education 

319 
 

 

enPoly: Workbench for Understanding 
Polymorphism in Strong Typed Object-

Oriented Language 
 

Yoshiaki MATSUZAWAa*, Yukiko ISHIKAWAa & Sanshiro SAKAIa 
aFaculty of Informatics, Shizuoka University, Japan 

*matsuzawa@inf.shizuoka.ac.jp 
 

Abstract: Polymorphism is a crucial concept in creating programs using object-oriented 
languages. Although understanding polymorphism requires learners to capture dynamic 
(behavioral) aspects of objects, current tools provide only static (structural) aspects. To 
address this limitation, we developed a workbench tool called “enPoly” that is a redesign of 
the “Anchor Garden” proposed by Miura et al. (2009). Our tool has the following two key 
features: (1) it shows learners behavioral aspects of objects in an animated fashion and (2) it 
shows the distinction between the definition and implementation of methods through 
visualization, thereby promoting the understanding of the Interface concept in Java. An 
experimental study was conducted in which 12 students were divided into two six-student 
groups, one of which was the control group. All six students in the experimental group 
succeeded in solving the given programming task using polymorphism even though they did 
not succeed in their initial state. In contrast, the six students in the control group made no 
improvements. 

 
Keywords: Polymorphism, object-oriented programming, behavior, animation, tool, 
scaffolding 

 
 
1. Introduction 
 
Polymorphism is a fundamental concept underlying object-oriented (OO) programming languages. 
Understanding polymorphism is a strong foundation for computer science and engineering. 
Applications of polymorphism promote robust and extensible programs (Meyer, 1990). 

In this study, we use the term polymorphism to describe a system in which behavioral results 
of message passing can be changed by instances. We limit the application of our claim within the Java 
programming language, which is a strongly typed language. Therefore, we view polymorphism as the 
behavioral change using common interfaces and implementations. Figure 1 illustrates polymorphism 
in Java, which gives a comparison of the use of polymorphism to an equivalent if statement. The code 
in the right-hand box of the figure is an approach using an “if statement” in which the program first 
tests what type of instance has been encountered, and then selects an appropriate branch. The code in 
the left-hand box of the figure is a solution using polymorphism in which the program automatically 
selects an appropriate branch by simply calling the greeting() method. 
 

 
Figure 1. Illustrating polymorphism by comparing its implementation to that of an if statement. 

 



 

320 
 

Although polymorphism is useful to create quality object-oriented programs, it can be 
difficult to master the concept and properly apply it. Ross (2005) claimed that the information 
supporting polymorphism in textbooks is limited when compared to other OO concepts such as 
inheritance and encapsulation. Liberman (2011) reported that the concept of inheritance and 
polymorphism are misunderstood by teachers who are trained in non-object-oriented languages, 
primarily in teacher training education. Our experience has shown that students who have learned 
programming skills via C failed to apply polymorphism given the problem illustrated in Figure 1. All 
the students came up with the if statement approach rather than applying polymorphism even when 
we asked them to apply polymorphism and students had already learned the concept. 

In this study, we therefore present a tool to support the learning of polymorphism. Our 
software provides students a visualization tool for the world model based on the OO concept in which 
polymorphic aspects are highlighted via animation and clear representations of the interface. 
 
 
2. Related Work 
 
Miura et al. (2009) proposed a workbench tool to support students learning OO concepts in 
programming, especially type, objects, and pointers. They defined “workbench” as a means not only 
to visualize models representing the concepts to help students understand but also to provide a high-
level interactive user interface for learners such that they can directly touch the models. Miura et al. 
claimed that the users of Anchor Garden (AG) can actively learn via interactions between users and a 
workbench, in which trial and error leads students to discover how a visualized world can be changed 
by their operations. Our research builds upon this workbench model. As AG supported only static 
structural models, we expanded it to behavioral models in order to support learning the polymorphism 
concept. 

We also reviewed other learning environments that could be considered a support to learning 
polymorphism. First, Squeak (Dan et al., 1997) has an object inspector with which users can not only 
watch variables within objects but also interact with objects by directly sending messages from the 
user interface; however, the system does not provide any visual models of message passing. Smalltalk 
is one of the weakly typed languages in which polymorphism would be implicitly and naturally 
implemented, and it may prevent students from explicitly learning polymorphism. Although the 
choice of languages to best teach students in programming education is controversial (e.g., the 
procedure-first or object-first controversy (Lister, 2004; Lister, et al., 2006)), we should at least help 
engineers and computer scientists who have mastered strongly typed languages (e.g., Java or C++) 
and are being driven by requirements from industry. 

Alkazemi et al. (2012) proposed a method to learn polymorphism using BlueJ, which is a 
developmental environment presented by Kolling (2003) designed for object-oriented programming 
education. The system provides functions to edit class diagrams and object models in support of 
writing source code in Java; however, the system supports only static structural models—i.e., 
behavioral models are not supported. Tarsem et al. (2006) proposed an approach to teach 
polymorphism in the game programming context. We agree that the theme is attractive and strongly 
motivates learners; however, the proposed environment does not provide any functions to directly 
support learning polymorphism. 
 Our research could easily be categorized as a visual debugging approach for novice-level 
OO programming education. Many tools have already been proposed in this field, including OOP-
Anim (Esteves, et al., 2003), ALICE (Cooper, et al., 2003), JGrasp (Hendrix, et al., 2004), Jeliot3 
(Moreno, et al., 2004), JIVE (Gestwicki, et al., 2005), and jList (Fossati, et al., 2009). OOP-Anim is 
designed to learn the concept of the class and instance relationship. ALICE is a scripting system to 
develop algorithm construction skills via the creation of three-dimensional animations. JGrasp and 
jList are both designed to scaffold the understanding of data structures and algorithms by visualizing 
models that represents those concepts. Although these tools are available for OO languages, the 
design of the tools is not for understanding OO concepts. JIVE has functions to support learning by 
visualizing the object system; the tool can visualize any user program written in Java by executing it 
with the Java Debugger Interface; however, visualization of the behavioral aspects is limited to static 
representations using Sequence Diagrams, which is considered less intuitive for novice learners. 
Jeliot3 provides a descriptive visualization of the program interpretation and execution; however, the 



 

321 
 

mechanism of calling methods is not visualized; therefore, it is limited for learning polymorphism. As 
Ben-Ari et al. (2011) summarized regarding visual debugging, a descriptive visualization approach is 
limited because learners cannot focus on their misunderstandings. Another problem with the visual 
debugging approach is that these tools do not allow learners to operate the models to further their 
understanding. In additional, as these visual debugger approaches require completed source code for 
visualization, it is not appropriate for the learner who cannot yet write any full programs. 
 
 
3. enPoly: Polymorphism Visualization System 
 
3.1 Purpose and Targets 
 
In this paper, we present a system called enPoly that allows users to more easily learn polymorphism. 
The origin of the name is that the system enables learners to understand Polymorphism. The target 
audiences of the system are as follows: (1) novice-level software designers and programmers who 
have basic programming skills in strongly typed languages, such as Java and C++; and (2) learners 
who have learned polymorphism at least at a basic level (e.g., via lecture or book) but who have 
limited practical understanding and cannot apply the concept successfully. 
 
3.2 Functions 
 
Our enPoly system was built based on AG (Miura et al., 2009), which provides fundamental functions 
to visualize a static object system. We expanded AG by adding new functions, as illustrated in Figure 
2. The left-hand image of the figure shows the original AG and the right-hand image shows enPoly. 
Both systems have basic functions with which users can create and operate an object system, 
including variables, although they are limited in the prepared class type. Our enPoly system has the 
following three additional features: (1) polymorphic animations; (2) interfaces and inheritance; and 
(3) anchor representation. Further descriptions of these features are included in the subsections below. 
 

 
Figure 2. Characteristics of enPoly in comparison with Anchor Garden. 

 
3.2.1 Polymorphic Animations 
 
As visualizations of message passing are considered crucial for understanding dynamic and 
polymorphic aspects of an object-oriented system, we propose an animated representation for message 
passing in enPoly. Our system uses a balloon representation, which is a popular message model in 
manga, for visualizing messages. A balloon flows on the link connected between a sender object and a 
receiver. For method calls, a balloon flows from a sender object to a receiver, and then flows in the 
opposite direction for a return value. For example, the left-hand image of Figure 3 shows calling 
method deposit() from the variable ban1 to a BankAccount object. Users can send messages by right-
clicking a variable and selecting the type of message to send. 

Another feature for visualizing polymorphic behavior is the use of a balloon as a result of 
method execution. When a receiver object receives a message, the object puts a result balloon on the 
upper right-hand corner of the object. For example, the right-hand image of Figure 3 shows calling 
method greeting() from variables per1 and per2 to objects whose classes are inherited from the Person 



 

322 
 

class (i.e., Japanese and American). Given these visual cues, users learn polymorphism by observing 
the differences in behaviors when these users send the same message to two different types of objects. 
In the given example, a Japanese object says “Konnichiwa,” which is a greeting in Japanese, whereas 
an American object says “Hello.” 
 

d ep osit(1 0 0 0 )

           
Figure 3. Screenshots of enPoly: BankAccount example (left) and Greeting example (right). 

 
3.2.2 Interfaces and Inheritance 
 
To further promote the understanding of the Java interface and inheritance (including implementation 
of the interface in Java), we incorporated guides for these concepts into enPoly. First, we designed 
class and interface representations using different figures by which users can easily distinguish 
between them. More specifically, classes are represented as rectangles and interfaces are represented 
as ellipses. Because we cannot create objects from interfaces, the warning message “cannot generate 
any interface’s object” would be shown in the object field if users attempt to create an object. 

Second, the relationships of inheritance between classes are indicated in the Unified Modeling 
Language notation in our system. This therefore requires users to make a link from a variable typed as 
a super interface to an object whose class is a concrete implemented subclass of the interface. Third, 
when users try to link an object to a variable by dragging an anchor tab, enPoly guides the object that 
can be assigned to the variable by changing the color to red if possible; otherwise, blue is used. 

 
3.2.3 Anchor Representation 
 
In AG, the anchor tab is a draggable point that is associated with each variable. Miura et al. (2009) 
claimed that users can easily make a link connection by dragging an anchor tab from a variable to a 
target object; however, we redesigned this functionality so that our anchor is associated with an 
object. This design is important for learning polymorphism because not only can the system easily 
guide learners in the direction of message passing but it can also provide the type-checking function, 
as described in the previous subsection. 

Using enPoly’s pointer representation, a recursive object structure can certainly be modeled. 
For example, Figure 4 shows the object model of numerical formula expressions. The model in the 
figure represents “6 /(2 + 1),” which is written in infix order. The interface Expression is defined as a 
super-interface of InfixExpression and Number. InfixExpression has two expressions as left and right, 
which are defined as Expression variables. Therefore, the InfixExpression object “/” can have the “6” 
Number object and the “2 + 1” InfixExpression object. In this case, a message the parent “/” object 
received would be recursively passed to the child objects. 

 

 
Figure 4. A screenshot of enPoly illustrating a recursive example of a calculator. 

 



 

323 
 

4. Experimental Study 
 
We conducted an experimental study in which subjects were given programming tasks designed to 
assess the level of understanding of polymorphism. 
 
4.1 Task Description 
 
We designed the programming tasks to assess the level of understanding of polymorphism by 
ensuring that the task could not be solved without polymorphism. An example of the task is shown 
below. 

Task 3: The given program (Calculator.java) is a part of the calculation program. Students have 
to complete the program by adding some appropriate classes, but they cannot edit the given program. 
A part of the given program is shown in Figure 5, as well as the class diagram for the task, although 
the class diagram is not given to students. 
 

 
Figure 5. Task 3: An example task used in our experimental study. 

 
4.2 Hypothesis 
 
The hypothesis of the study is that “enPoly can guide students who cannot solve the programming 
tasks in their initial state to understand polymorphism and apply it to complete the task.” In the 
experimental (tool-assisted) group, students were given opportunities to use enPoly in their own way. 
The process we assumed the students would follow via enPoly is described as follows: 
(1) Create static object structure 
   (1-a) Students create variables in enPoly for all classes shown, as well as create instances 
   (1-b) Students create anchors by connecting objects and variables and examining what type of 
objects can be assigned in a variable 
(2) Observe dynamic object behaviors 
   (2-a) Students observe behaviors of the object system by calling methods (repeatedly) 
   (2-b) Students examine differences of behaviors by calling the same method for objects of different 
types (i.e., observing polymorphic behaviors) 
Hence, this experimental study examines whether the proposed functions described in Section 3 above 
are workable. 
 
4.3 Experimental Study Plan 
 
The experimental study was conducted with 12 master’s and undergraduate students who have 
programming skills in C and Java. They were assigned to one of the following two groups: (1) the 
experimental group in which students engaged in a task with enPoly and (2) the control group in 
which students did the same task without the tool. Although we tried to randomly assign students to 
each group, all three master’s students who were already skilled were included in the control group. 

We prepared three tasks at three levels, as summarized in Table 1. 
 

 



 

324 
 

Table 1: Tasks used in the experimental study. 

 Task 1 Task 2 Task 3 
Example Greeting 1 Operator 

Calculator 
Multi Operator 

 Calculator 
Including 

Components 
method call return value return value; 

recursion 
Estimated Time 15 min 20 min 30 min 

Estimated  
Lines of Code 

10 20 20 

 
The procedure of the experimental study for each subject is shown in Figure 6. All subjects 

were given three tasks in the same order from lower to higher level. First, a subject tried to solve the 
first task without a tool in both groups in order to evaluate the skills for the initial state. Students who 
successfully completed the task went to the next task, and those who failed the task retried the same 
task after learning it. The learning process is different for the two groups. The enPoly system was 
given to subjects in the experimental group, whereas a lecture by a teaching assistant was given to the 
control group. If the subject completed the task in retrial, the subject went to the next task; otherwise, 
the subject exited the experiment. 

 

 
Figure 6. Procedure of the experimental study for each subject. 

 
 
5. Results 

 
5.1 Results 
 
Results for the experimental group are summarized in Table 2; results for the control group are 
summarized in Table 3.Cells in the “Subject” column show the IDs of the subjects. The string below a 
student ID shows the grade of university student. For example, M1 means 1st grade master’s student 
and B4 means 4th grade bachelor’s student. 

Cells in the “Task” column show the results using the following notation: 
✓ - Student completed the task 
△ - Student failed the task, but completed creating the structure of the objects with enPoly 
×    - Student failed the task 
－ - Not applicable 

The “No Ast” column indicates that students were not given tool assistance, and “enPoly” 
indicates that students were assisted by enPoly. Numbers below the results show the time taken for the 
task in minutes, and numbers inside parentheses show the time taken to use enPoly. 

The “Level” column shows how each student’s understanding level changed. The left-hand 
number in the “Level” cell shows the level in the initial state for the student and the right-hand 
number shows the level after finishing. For example, “1 → 3” means that the student was at level 1 in 



 

325 
 

the initial state and changed to level 3 after learning and completing the tasks. Furthermore, the level 
of a student’s understanding was identified by which level of task the student completed. For 
example, the student who failed Task 1 was identified as level 0, and the student who completed Task 
2 but failed Task 3 was identified as level 2. 

 
Table 2: Results for the experimental group (with enPoly). 

Subject Task 1 Task 2 Task 3 Level 
No Ast enPoly No Ast enPoly No 

Ast 
enPoly 

A 
(B3) 

✓ 
15 

－ × 
20 

✓ 
25(10) 

－ ✓ 
35(10) 

1 → 3 

B 
(B3) 

× 
15 

✓ 
15(8) 

－ ✓ 
30(5) 

－ ✓ 
25(10) 

0 → 3 

C 
(B3) 

× 
15 

✓ 
5(2) 

－ ✓ 
20(7) 

－ ✓ 
25(6) 

0 → 3 

D 
(B3) 

× 
15 

✓ 
15(5) 

－ ✓ 
30(13) 

－ ✓ 
25(12) 

0 → 3 

E 
(B4) 

× 
15 

✓ 
15(6) 

－ ✓ 
30(8) 

－ ✓ 
25(13) 

0 → 3 

F 
(B4) 

× 
15 

✓ 
20(10) 

－ △ 
30(18) 

－ － 0 → 
1.5 

 

Table 3: Results for the control group (without enPoly). 
Subject Task 1 Task 2 Task 3 Level 

No Ast enPoly No Ast enPoly No 
Ast 

enPoly 

G 
(M2) 

✓ 
5 

－ － － ✓ 
35 

－ 3 → 3 

H 
(M2) 

✓ 
5 

－ － － ✓ 
30 

－ 3 → 3 

I 
(M2) 

✓ 
10 

－ － － ✓ 
75 

－ 3 → 3 

J 
(B4) 

× 
20 

－ － － × 
75 

－ 0 →0 

K 
(B4) 

× 
30 

－ × 
40 

－ × 
60 

－ 0 → 0 

L 
(B4) 

× 
20 

－ × 
35 

－ × 
75 

－ 0 → 0 

 
5.2 Qualitative Analysis of the Learning Process 
 
The screen that the subjects were operating was recorded via a screen capture application and was 
analyzed qualitatively to discover system usage patterns in performing the tasks. In this section, we 
present two narratives of the learning process involving enPoly, tagging the fragments of the 
processes with 1-a, 1-b, 2-a, and 2-b, as described in Section 4.2 above. 
 
5.2.1 Case I: Task 1 
 
In this case, we describe the learning process for subject E on Task 1. The subject was creating the 
object structure in enPoly. At first, the subject created three variables for Person, Japanese, and 
American (1-a). Then, the subject tried to create instances, but then realized that Person could not be 
instantiated because it is an interface (1-a). Subsequently, the subject created a Japanese instance and 
assigned it to the Japanese variable first (1-b). The subject tried to assign the instance to both Person 
and American variables, and then realized that the instance (of Japanese) can be assigned to the 
Person variable (1-b). The same examination was done for an American instance (1-b). Finally, the 
subject looked back to the program, which is given in the task, and found that the visualized structure 
is the same as what the task requires (1-b). The status of enPoly for the completion of these operations 
is shown in the left-hand image of Figure 7. 



 

326 
 

Subsequently, the student observed the behavioral aspects for the created object structure. At 
first, the subject examined the call methods for all variables (2-a). In that process, the same method 
was repeatedly called for more than two instances (2-a). Through this process, the subject realized 
differences in the object behaviors between the Japanese and American instances when he sent the 
same message to the two instances (2-b). As a result, the subject understood the location where the 
method should be implemented (2-b), which led to completing the task. 

We observed a similar process, as described above, for five of the six subjects. The final 
subject had almost the same process, although the process of (1-b) was omitted. 
 

        
Figure 7. Screenshots created by students in our experimental study for Task 1 (left) and Task 3 

(right). 
 
5.2.2 Case II: Task 3 
 
In this case, we describe the learning process for subject A on Task 3, although we omit the 
descriptions of the object-creation processes (1-a and 1-b) because the processes were quite similar to 
those of Task 1. The status of enPoly after the process is shown in the right-hand image of Figure 7. 

After creating the object structure, the student observed the behavioral aspects of the created 
object structure. The subject examined the call methods of getValue() twice from the variable of 
Expression (2-a). The subject examined calling the same method from an instance of InfixExpression 
as well (2-a). Next, the subject realized that the differences in the callable method set between 
Expression and InfixExpression (2-b). The subject then repeatedly examined the call method of 
getValue() by changing the value of the Number instance or the operator of the InfixExpression 
instance. As a result of this exploration, the student succeeded in completing the task. 

We observed a similar process, as described above, for four of the five subjects who 
attempted Task 3. The fifth subject had almost the same process, although the process of (1-b) was 
omitted. 
 
 
6. Discussion 

 
6.1 Evaluation of enPoly 
 
As shown in the results summarized in Tables 2 and 3 above, the understanding levels of the subjects 
in the experimental group changed from 1.67 to 2.75, on average, whereas in the control group, all 
subjects had no change in their level of understanding. We believe this difference is significant; that 
is, enPoly supported students in effectively learning polymorphism. 

This claim is reinforced by the results of the qualitative analysis of the learning process with 
enPoly, as described in section 5.2 above, in which we observed that students could use enPoly in our 
hypothesized procedure. We observed students exploring behavioral actions with enPoly by 
repeatedly calling methods (to trigger a message passing animation), and such actions were taken 
even though the teachers did not require or mention it. We think such autonomous student exploration 
promoted a clear understanding of the polymorphic system, leading to the result that almost all 
students succeeded in completing the task after using enPoly, which indicates that one of enPoly’s 
features, namely polymorphic animations, worked effectively. 

The results of our qualitative analysis showed that enPoly’s interfaces and inheritance features 
also effectively worked. Students who had no understanding of the interface concept could not 



 

327 
 

understand the fact that a subclass’ instance could be assigned to a variable defined as superclass. The 
enPoly system succeeded to scaffold such students by supporting their exploration of what types of 
instances could be assigned to the variable. Nonetheless, we did not assess whether this understanding 
rose to the full conceptual level of the interface, but we could at least provide students a successful 
case to form initial understandings of the concept. 

 
6.2 Limitations 
 
A critical problem in our experimental study was the difference of understanding levels between the 
experimental and control groups. Three master’s students who had more experience than the 
undergraduates were included in the control group; however, the deviation should be affected as 
negative bias. At the very least, we can find the difference of the results for the students initially at the 
same level between the two groups. Hence, our claims are still effective, though limited by a few 
subjects. 

The fundamental feature of our enPoly approach lies in its animated visualization of the 
dynamic aspects of the modeled system. Although we could show the effectiveness of this approach 
and its acceptability for learners, results do not indicate that our approach has an advantage over the 
static visualization approach for illustrating dynamic aspects, such as using sequence diagrams. It may 
be an advantage for learners to explore details at their own speed. 

Finally, the differences between the experimental group and control group have been assessed 
even if the experimental group subjects were scaffolded by enPoly. Our final goal should assess 
whether the experimental group students were able to complete the task without enPoly; however, we 
still believe enPoly provided the environment necessary to understand the polymorphism concept as 
the qualitative analysis of their learning process indicated. 

 
Acknowledgements 
A part of this work was supported by JSPS KAKENHI Grant Number 25730203. 
 
References 
Alkazemi, B. Y., & Grami, G.M. (2012). Utilizing BlueJ to Teach Polymorphism in an Advanced Object-

Oriented Programming Course, Journal of Information Technology Education, 11, 271-281. 
Ben-Ari, M., Bednarik, R., Levy, B. R., Ebel, G., Moreno, A., Myller, N., & Sutinen, E. (2011). A decade of 

research and development on program animation: The Jeliot experience, Journal of Visual Languages and 
Computing, 22(5), 375-384. 

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory computer science, ACM 
SIGCSE’03, 19-23. 

Esteves, M., & Mendes, A. (2003). OOP-Anim: a system to support learning of basic object oriented 
programming concepts, Proceedings of the 4th international conference conference on Computer systems 
and technologies e-Learning -CompSys-Tech’03, 573-579. 

Fossati, D., et al. (2009). Supporting Computer Science Curriculum: Exploring and Learning Linked Lists with 
iList, IEEE Transactions on Learning Technologies, 2(2), 107-120. 

Gestwicki, P., & Jayaraman, B. (2005). Methodology and architecture of JIVE, SoftVis '05 Proceedings of the 
2005 ACM symposium on Software visualization, 95-104. 

Hendrix, T., II, J. C., & Barowski, L. (2004). An extensible framework for providing dynamic data structure 
visualizations in a lightweight IDE, ACM SIGCSE Bulletin, 387-391. 

Ingalls, D., Kaehlei, T., Maloney, J., Wallance, S., & Kay, A. (1997). Back to the Future: The Story of Squeak, 
A Practical Smalltalk Written in Itself, OOPSLA '97, 318-326. 

Kolling, M., & Quig, B. (2003). The BlueJ system and its pedagogy, Computer Science Education, 13(4), 249-
268. 

Liberman, N., Beeri, C., & Ben-David Kolikant, Y. (2011). Difficulties in Learning Inheritance and 
Polymorphism, ACM Transactions on Computing Education, 11(1), 1-23. 

Lister, R. (2004). Teaching Java first: experiments with a pigs-early pedagogy, Proceedings of the Sixth 
Australasian Conference, 177-183. 

Lister, R., et al. (2006). Research perspectives on the objects-early debate, Working group reports on ITiCSE on 
Innovation and technology in computer science education - ITiCSE-WGR’06, 146-165. 

Meyer, B. (1997). Object-Oriented Software Construction 2nd Edition, Prentice Hall.  
Miura, M., Sugihara, T., & Kunifuji, S. (2009). Anchor Garden: An Interactive Workbench for Basic Data 

Concept Learning in Object Oriented Programming Languages, Proceedings of 14th ACMSIGCSE Annual 
Conference on Innovation and Technology in Computer Science Education (ITiCSE2009), Paris, 141-145. 



 

328 
 

Moreno, A., et al. (2004). Visualizing programs with Jeliot3, Proceedings of the working conference on 
Advanced visual interfaces - AVI’04, 373-376. 

Ross, J. M. (2005). Polymorphism in decline?, Journal of Computing Sciences in Colleges, 21(2), 328-334. 
Tarsem S., Purewal, Jr., & Bennett C. (2006). A framework for teaching polymorphism using game 

programming, Journal of Computing Sciences inf Colleges, 22(2), 154-161. 
 


