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Abstract: To investigate learning system elements and progressions that affect computational
thinking (CT) learning in block-based environments, we developed a Parsons Programming
Puzzle (PPP) module within Scratch with scaffolding customized via a novel Blockly grammar.
By varying the presentation and types of feedback encountered between- and within-subjects in
a study of 579 adults, we identified features and scaffolding strategies that yield manageable
cognitive load (CL), improved CT learning efficiency, and increased motivation, for a general
populace. Findings indicate: 1) PPPs with feedback induce lowest CL; 2) an isolated palette,
correctness feedback, and fading correctness feedback increase learning efficiency; 3) fading
scaffolding can increase CT motivation. We analyze 12 conditions to provide insight to those
developing block-based PPP systems with the aim to advance equitable CT education for all.
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1. Introduction

Increasingly, government and education leaders position computer science (CS) as a foundation useful
for learning other disciplines, for empowering active citizenship, and for addressing inequalities
(Blickstein, 2018). Computational thinking (CT) (Wing, 2006), whether characterized broadly as
inclusive of the material and social elements of participatory computational literacy, or narrowly as the
cognitive skills and knowledge necessary to reason effectively with a machine, has mobilized expanded
access to CS (Proctor et al., 2018). Internationally, many schools have introduced compulsory coding
(e.g. Whitehouse.gov, 2016; Hamilton-smith, 2016), and the CS exposure movement, inclusive of
Code.org's Hour of Code (Code.org, n.d.) and many more (e.g. Girls Who Code, n.d., Black Girls Code,
n.d.), reach students from schools that have not. This traction, while important, can limit focus on the
sustained activity necessary to learn CT effectively (Blickstein et al., 2019).

The emerging discipline of learning engineering, which combines theory with data-driven
analysis to develop educational methodologies that produce high-quality learning, offers the CS
community an architecture to investigate efficient CT learning (Baker et al., 2022). This field
encourages the instrumentation of learning environments, development of student learning models, and
rich personalization supportive of equity. It guides us to design human-computer systems that harness
and leverage the codependences between learning system, student, and teacher, to operationalize CT
learning for all. This harmony among roles is important during an era of generational interdependency
in which K-12 students and teachers alike are learning CT. In the U.S., 20% of CS teachers describe
themselves as overwhelmed and 30% as under-qualified (Schaffhauser, 2018). The limited CT
understanding can produce gaps in teacher pedagogical content knowledge, and testing-tuned curricula
constrain time afforded to CT study (Celepkolu et al., 2020). While opportunities exist to infuse CT
across curricula (c.f. Campos etal., 2017; Pollock et al., 2019), especially in STEM subjects (Cao et al.,
2020), efficient CT learning remains crucial for universal access initiatives to succeed.

Though learning CT and coding can be difficult for novices (Anderson, 1982; Pea, 1986;
Winslow, 1996), an approach offering efficiencies involves Parsons Programming Puzzles (PPPs),
which are program completion exercises that facilitate learners practicing CT by assembling into
correct order programming constructs that comprise examples of well-written code, typically focused
on a single concept (Parsons et al., 2006). While PPPs originated in text-based formats (Half-Baked
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Software, n.d.; Ihantola et al., 2010), researchers have introduced them to block-based environments,
like Looking Glass and Scratch (Harms et al., 2016; Bender et al., 2021). Scratch, independently, has
had success in attracting a community of over one million active users (MIT Media Lab, n.d.), but it is
often used as a minimally guided entry to CT, leaving learners with misconceptions regarding
sequences, Booleans, loops, and events (Franklin et al., 2020; Grover et al, 2015, 2017), and with
inconsistent capability to demonstrate increased skill over time (Scaffidi et al., 2012). By balancing the
agency Scratch offers learners, the integration of PPPs provides structure that can focus learning more
narrowly, but efficiently, on the cognitive skill and knowledge elements of CT (Bender et al., 2022).

This approach does not offer the learner experience in the broader aspects of participatory
computational literacy, however. Like the strategy in (Brusilovsky et al., 2018), in which learners
extend their skills from code comprehension to construction by reading examples, viewing animations,
and addressing misconceptions before trying PPPs, we propose learners might benefit from PPP
practice in which scaffolding fades as CT concept familiarity develops. By decrementing supports
provided by puzzle presentation and feedback, we can offer learners direct instruction to start (Kim et.
al, 2005), then provide pathways toward open-ended CT via creation of personally meaningful artifacts,
in alignment with Scratch's roots in constructionism (Brennan, 2013; Garner et. al, 2019).

To investigate this approach, we ran an online study targeting adults who were randomly
selected into 1 of 12 conditions to learn the CT concept looping via 7 PPPs. Between conditions, we
varied the presentation of programming constructs, the feedback types, and for control conditions,
feedback activation or the CT concept. In 3 conditions, we faded scaffolding as learners progressed by
suppressing correctness feedback and/or by presenting additional palette and block options. We
investigate 3 research questions: after at most 56 minutes of puzzle solving, what are the effects of PPP
variation on adult learner: R1) cognitive load (CL)?; R2); learning efficiency?; R3) CT motivation?
Findings from 579 participants indicate F1) PPPs with feedback induce lowest CL; F2) an isolated
palette, correctness feedback, and fading correctness feedback increases learning efficiency; F3) fading
scaffolding can increase CT motivation. We first review related work and the software developed, then
the study purpose, summative evaluation, and results, before previewing future work.

2. Related Work

Since PPP emerged as a new form of program completion problem in 2006, (Ericson et al., 2018) has
assembled research results, (Du et al., 2020) has presented the variants in the literature, and (Bender et
al., 2021) has documented strengths and weaknesses. Generally, PPPs offer learning efficiency gains
because scaffolded support enables students to train in shorter time than via code writing exercises,
while performing similarly on transfer tasks using either approach. PPPs also have led to more learning
gain than alternative formats such as animations and annotated examples (Brusilovsky et al., 2018).
Our PPP integration with Scratch differs from previous PPP implementations by its embrace of
economical game-based learning (GBL) instructional design, the variability of the scaffolding
presented to the learner, and its embedding in a popular block-based environment. By leveraging game
thinking (Kim, 2018), a blend of game design (Salen et al, 2003) with design thinking (Plattner, 2013),
we facilitate the construction of engaging learning experiences with limited content development
investment compared to serious games, as recommended in (Dickey, 2006). Educators can design
motivating learning progressions that increase in difficulty while fading scaffolding and assessing
implicitly, as in stealth assessment (Shute et al., 2021), as the learner masters individual CT concepts.
Like most PPPs, our implementation provides feedback as the learner positions programming
constructs. We extend this with the configurability of per-construct points, a gameful scoring algorithm
inspired by the longest common subsequence strategy in (Karavirta et al., 2012), target minimal moves
needed to solve each puzzle alongside a move counter, and the inclusion of multiple feedback types. In
addition to correctness feedback, we enable the customization of messages and actions triggered when
certain puzzle solution conditions are (or are not) satisfied. This facilitates the design of intermediary
objectives within puzzles, similar to subgoal labeling shown to help students solve PPPs (Morrison et
al., 2016). The objectives constructed operate as test cases, like the execution-based approach described
in (Helminen et al., 2013) and the auto-grader methodology in (Haldeman et al., 2018), though we
perform static rather than dynamic analysis as the learner positions each construct, and provide dynamic
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execution feedback concurrently via auto-execution of gameful animations in the Scratch stage. Using
the feedback classification documented in (Raubenheimer et al., 2021), we view this feedback as
constructivist because it is problem- and instance-oriented, which is a category of assistance associated
with significantly lower student failure rates than alternatives, like solution- and theory-oriented.

We fortify the GBL features with those enabling the instructor to vary scaffolding, similar to
the text/example/bug modulation in the BOTS study in (Zhi et al., 2018). Like text-based PPPs, the
instructor can assemble constructs in an isolated palette for use during puzzle play. Alternatively, s/he
can design a PPP requiring navigation through existing Scratch palettes (e.g. Control, Operators). Since
the optionality might overwhelm, in a manner historically similar to sp/k (Holt et al., 1977) and more
recently like (Cazzola et al., 2015; Rose et al., 2018), the instructor can select which blocks to enable in
each palette, and further, which palettes to enable. This configurability facilitates the design of
progressions in which learners encounter an isolated palette before transitioning to increasing numbers
of palettes with increasing numbers of blocks enabled. This scaffolding fading can occur in the
feedback dimension separately or simultaneously, as the instructor can also vary the correctness and
objective feedback activation. As in (Dicheva et al., 2018), in which PPPs are used in exercises 1-2 and
code writing is used in 3-4, the scaffolding variability allows for the introduction of CT concepts with
constraints before relaxing those as learning proceeds to afford learners increasing agency.

Since the PPPs are in Scratch, learners who develop cognitive CT mastery as scaffolding fades
become familiarized with the Ul, enabling them to advance to epistemologically pluralistic elements of
the curriculum in which they can use CT for open-ended creation (Turkle et al., 1990). Results from a
related previous study indicated that the constraint of an isolated palette can increase learning efficiency
and motivation, and the inclusion of correctness feedback can increase motivation (Bender et al., 2022).
In the current study, we introduce new instructional design and feedback capabilities, and explore how
CL, performance, learning efficiency, and motivation are affected by scaffolding variation.

3. Software Development

To investigate R1-R3, we developed an instructional design module using Blockly (Google for
Education, 2018), and integrated the functionality with earlier modifications to Scratch that enable the
design, play, and assessment of PPPs. While previous work introduced block points, scoring, progress
bars, configurable blocks and palettes, and correctness feedback, the learning system could not fade
feedback. Though feedback increased motivation in earlier studies, some participants noted anxiety,
stress, worry, and anger when informed of mistakes move-by-move (Bender et al., 2022). To bridge the
gap between correctness feedback and none except the animation, we defined a novel grammar and an
objective editor for instructors to devise objectives with associated feedback messages and actions for
each puzzle. Grammar details are available in this article’s supplement site: https://bit.ly/3wdCowW.

Since teachers learn CT as they infuse it across subjects (Committee for the Workshops on CT,
2010), we designed the objective editor to be simple to use and include it in the concrete architecture in
(Sulaiman et al., 2019) as a module exposed only to instructors. We frame it as a tool situated within
teachers' practice intended to promote teacher learning, in the spirit of educative curriculum materials
(Ball et al., 1996). The teacher should use pedagogical content knowledge to design useful objectives,
such as the timely identification of repeating sequences and loop sentinels.

For example, consider a case in which a teacher introduces the CT concept looping to her
students, after they have mastered sequences. If the puzzle designed requires a sprite to move in a path
of a square, a student might begin by selecting a move-steps block, with the intention to later include
three additional move-steps blocks, and four turn-left blocks, as shown in Figure 1a. However, the
teacher can configure the puzzle to exclude the move-steps block initially, and use the objective editor
to author guidance for the student to identify a repeating pattern s/he could embed in a control construct.
Figure 1b presents an objective that might instead lead to the solution depicted in Figure 1c. First, the
objective in 1b specifies that until the student uses the repeat block, she will receive feedback guiding
her toward pattern identification; second, it records the feedback she will receive once she uses the
repeat block; third, it designates three actions that will occur once the repeat is used: the move-steps and
turn-left blocks will become enabled, and five points will be added to the student's objective score. An
example of objective feedback during puzzle play in this study is show in the top-right of Figure 1d.
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Figure 1. Examples of objective configuration and puzzle play experience.

4. Study Purpose

The software developed prepared us to investigate scaffolding variation. One study purpose was to
identify which scaffolding approaches produce the lowest CL and most efficient CT learning. Given the
limited skill increases over time and misconceptions developed by Scratchers discussed in section 1, the
argument regarding the difficulties with minimally guided instruction in (Kirschner et al., 2006)
appears applicable to CT learning in Scratch. By augmenting that learning experience with presentation
and feedback modifications and comparing the outcomes, we aimed to contribute insight into the types
of guidance that might help accelerate the proliferation of CT learning for the general populace.

A second study purpose was to explore the motivational impact of CT learning. In an era in
which negative perceptions of CS persist (Schulte et al., 2005), self-directed learning in older adults is
rising (Morrison et al., 2019), and deficits in adult CS knowledge limit parental involvement in
children's CT learning (Bresnihan et al., 2019), insight into the attitudinal change provoked by a short
CT learning intervention could inform future outreach. (Wang et al., 2015) emphasizes the crucial role
family plays in encouraging women to participate in computing, (Ohland et al., 2019) offers arguments
for educating parents on how to support CT learning, and (Sepulveda-Diaz et al., 2020) offers guidance
for supporting parents homeschooling their children in CT. We extend this work by examining whether
the strategy of fading scaffolding leads to higher CT motivation. While a common approach,
high-to-low scaffolding has not always yielded optimal outcomes, particularly in research on
preparation for future learning (Chin et al., 2010). For example, (Blickstein et. al., 2018) found that
open-ended instruction followed by detailed guidance led to higher learner activation in subsequent
activities than the converse, indicating a carryover effect referred to as epistemological persistence.

We include 11 conditions on the CT concept looping, plus one concept control on sequences,
and analyze the variation of presentation and feedback in 7 puzzles, each time-boxed for 8 minutes, that
connect via a narrative with explicit goals related to playful animations. Based on the results in section
2, our hypotheses associated with R1-R3 were: H1) PPPs with feedback yield lowest CL; H2) an
isolated palette yields highest learning efficiency; H3) fading scaffolding yields highest CT motivation.

5. Summative Evaluation
5.1 Study Design

To test these hypotheses, we developed a quantitative experiment between-subjects, with some within-
subject measurements. A study of perceived preferences for game elements in learning environments
(Denden et al., 2018), as well as the review in (Santos et al., 2018) of the use of game elements for
learning programming, inspired us to conduct a similar review of PPP elements in the PPP literature.
However, we found limited research distinguishing which PPP elements prove most useful for learning
(c.f. Ericsonet.al, 2018, Bender et al., 2022). Consequently, we devised 12 study conditions detailed in
Table 1 to ensure we could granularly analyze the effect of various PPP elements on learning outcomes
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and help fill this gap in the literature. As documented in Table 2, participants followed a 10-step
protocol which in part required them to respond to a validated: 1) CS CL component survey (CS CLCS)
(Morrison et al., 2014); 2) intrinsic motivation Task Evaluation Questionnaire (TEQ) (SDT, 2022); 3)
Computing Attitudes Survey (CAS) (Bockmon et al., 2020) (details at https://bit.ly/3wdCowW).

Table 1. PPP scaffolding variation across 12 study conditions

Cond. CT Concept Presentation Feedback Fading Scaffolding

Cl Looping 1-palette Correctness No

Cc2 Looping Multi-palette Correctness No

C3 Looping 1-palette Correctness + Objectives No

C4 Looping Multi-palette Correctness + Objectives No

C5 Looping 1-palette Objectives No

C6 Looping Multi-palette Objectives No

c7 Looping 1-palette 3 Correctness, 2 Correctness  Correctness feedback faded
+ Objectives, 2 Objectives

C8 Looping Multi-palette 3 Correctness, 2 Correctness  Correctness feedback faded
+ Objectives, 2 Objectives

C9 Looping 4: 1-palette, 3: multi-palette 3 Correctness, 2 Correctness  Correctness feedback &
+ Objectives, 2 Objectives 1-palette faded

C10 Looping Multi-palette None No

Cl11 Looping Multi-palette + distractors None No

C12 Sequences 1-palette Correctness No

Table 2. Study protocol and data collected

Step  Activity Content Data Collected

1 Registration Credentials creation & condition assignment Username & password

2 Background info Demographic Demographic, programming attitude,

CAS, CT perceptions

3 Tutorial 8-minute video on the learning system & looping N/A

4 Pretest (isomorphic) 7 multiple-choice (4-choice) looping questions Pretest responses & score

5 CS CLCS 10 CL questions with 0-10 scaled responses Pretest CL & IL/EL/GL components

6 Puzzles 7 puzzles on looping in 11 of 12 conditions; Per-puzzle time spent, time-stamped
learning system behavior varies by condition; 7 block moves & score, correctness,
puzzles on sequences in the 12 condition (control)  feedback log, self-explanations

7 CS CLCS 10 CL questions with 0-10 scaled responses Puzzle CL & IL/EL/GL components

8 Posttest (isomorphic) 7 multiple-choice (4-choice) looping questions Posttest responses & score

9 CS CLCS 10 CL questions with 0-10 scaled responses Posttest CL & IL/EL/GL components

10 Concluding Motivation, programming attitude, learning system  TEQ, CAS, & programming attitude,

measurements feedback, CT perceptions CT perceptions

5.2 Participants

Using Prolific (Prolific, n.d.) we recruited 579 participants with varying degrees (57% high
school, 27% undergraduate, 16% graduate), and a variety of self-reported programming experience
(low: 50%; medium: 36%; high: 14%). 405 men, 167 women, and 2 non-binaries comprise the
population sourced from 28 countries led by Poland (21%), Portugal (14%), and the U.K. (14%). Since
the software development involved Scratch 2.0, which depends on Flash, a technology sunset at the start
of 2021, learners needed to download a virtual machine we equipped to bypass Flash disablement.
While necessary, this requirement introduced a risk to the external validity of the sample general
population, as participants included only those sufficiently capable of installing virtualization software.

5.3 Data Collection & Processing
We created 7 surveys and instrumented the learning system to: 1) record puzzle play duration; 2) trace
each block moved; 3) calculate score using an algorithm detailed in (Bender et al., 2021) that results in

higher scores as construction nears the solution. To quantify the effect on CT learning, we also recorded
self-reported CL. For learning to occur effectively, the CL of complex tasks should be reduced, though
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the reduction need not occur in all three dimensions of CL (Sweller, 2010). The total number of
interacting elements perceived by the learner determines intrinsic load (IL); the sometimes-impeding
presentation of the content determines extraneous load (EL); and the instructional features necessary for
schema construction determine germane load (GL). For example, conditions with an isolated palette
and with blocks that become enabled incrementally as puzzle play unfolds aim to reduce EL otherwise
required for interface navigation and block search to free learners' capacity to contend with GL.

To account for learners who compensate for an increase in CL by committing more mental
effort, resulting in constant performance while load varies, we calculate instructional and performance
efficiency (IE: learning process, PE: learning outcome) (van Gog et al., 2008). Previous studies have
found lower PE for PPPs with randomly distributed distractor blocks compared to PPPs (Harms et al.,
2016); higher IE for PPPs than for writing code (Bender et al., 2021); and higher IE for PPPs with 1
palette compared with multiple with distractors (Bender et al., 2022). We calculated IE and PE using
both time and CL during training and transfer tasks. Since the data did not exhibit Shapiro-Wilk
normality (p<.05), we used non-parametric statistics, like Kruskal-Wallis H and Mann-Whitney U
between-subjects, and Wilcoxon within-subjects. For effect sizes, we used values in (Fritz et al., 2012).

6. Analysis & Results
6.1 Cognitive Load

We did not find significant differences between conditions in self-reported CL during the
pre-test. Likewise, the posttest yielded no significant CL differences, suggestive of the acquisition of
cognitive structures of equivalent expertise (van Gog et al., 2008). However, we did find significant
differences between training conditions with moderate effect for GL (H(11)=26.08, p=.006, ?=.05).
Using a Bonferroni-adjusted alpha of .004 (.05/12), significant difference remained (p=.019) between
conditions C4 (M=4.90) vs. C11 (M=5.27). This indicates participants training with multiple palettes
and both correctness and objective feedback required less mental effort to contend with instructional
features necessary for schema construction than those who received no feedback while navigating
multiple palettes that included distractor blocks not part of the puzzle solution. To isolate the mediating
variables, we analyzed treatment condition sets grouped by scaffolding variation and found a significant
difference in GL with small effect between sets of conditions that did or did not receive objective
feedback (U(Nobjectives=359, Nno-objectives=200)=29,306.5, z=-3.60, p<.001, r=.15, Mobjectives=4.78,
Mno-objectives=D.66). We also found with small effect significant (GL) and moderate (overall CL)
differences between those who received any feedback and those who did not (U(Nfeedpack=461,
Nno-feedback=98)=18,537-5, z=-2.79, p=.005, r=.12, Myeedback=4.95, Mhno-feedback=5.78; U(Nfeedback=461,
Nno-feedback=98)=19,860.0, z=-1.88, p=.060, r=.08, Mreedback=4.65, Mno-feedback=4.97). These results offer
evidence that training with feedback limits the GL and CL experienced by the learner, supportive of H1.

6.2 Performance

During the transfer phase, the treatment population solved significantly more posttest than
pretest questions correctly with small effect (z=3.4, p<.001, r=.14, Mpretest=6.0, Mposttest=6.25). Like in
(Harms et al., 2016; Ericson et al., 2018; Bender et al. 2021, 2022), we did not find transfer performance
disparity between PPP conditions. During training, however, we found significant differences between
conditions in the time spent solving with relatively strong effect (H(11)=39.29, p<.001, 2=.20), and
with moderate effect, block moves made (H(11)=113.8, p<.001, €2=.07) and puzzles solved (H(11)
=74.46, p<.001, 52=.13). Notable time-saving conditions, both with an isolated palette and feedback, are
C1 (M=21.6) and C7 (M=20.8), which required significantly less time than C10 (M=26.7, C7 vs C10:
p=.033) and C11 (M=29.0, C1 vs C11: p<.001) with multiple palettes and no feedback. Examining
conditions sets led to significant differences with small effect between sets with an isolated palette and
multiple palettes (U(Ni-paete=211, Nmuti-patete=348)=28,926, z=-4.21, p<.001, r=.18, Mipaiee=23.0,
Mmutii-palee=2.2), With and without correctness feedback (U(Ncorrectness=359, Nno-correctness=200)=29,188,
z=-3.67, p<.001, r=.16, Mcorectness=24.0, Mho-correctness=26.7), and with and without fading scaffolding
(U(Nfading=155, Nno-fading=404)=27,032, z=-2.50, p=.012, r=.11, Msading=23.5, Mno-fading=25.5). This
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indicates an isolated palette, correctness feedback, and fading scaffolding lead to less training time.

Condition sets with the lowest number of block moves were those with an isolated palette and
with objective feedback (U(Ni-patette=211, Nmuiti-patette=348)=31,653, z=-2.73, p=.006, r=.12, M1patete=78,
Mmulti—palette=84; U(Nobjectives=359, Nno—obectiveszzoo)zzo,825, Z=‘8-24, p<-001, l'=.35, Mobjectives=74,
Mo-objectives=95). Those without objectives solved significantly more puzzles correctly with small effect,
as did those with correctness feedback and fading scaffolding (U(Nobjectives=359, Nno-obectives=200)
=28,819, z=-3.91, p<-001, r=.17, Mobjectives:2-6, Mno-objectives:3-3; U(Ncorrectness:359, Nno-correctnesszzoo)
=42,220, z=3.49, p<.001, r=.15, Mcorrectness=3.1, Mno-correctness=2.5; U(Nrading=155, Nno-fading=404)=37,576,
2=3.70, p<.001, r=.16, Mtading=3.4, Mno-tading=2.7). These results indicate that objective feedback leads to
the fewest puzzles solved and correctness feedback and fading scaffolding lead to the most.

6.3 Efficiency

While we did not find significant PE differences between treatment conditions, when using
time spent as an estimate of mental effort, we found significant IE differences with moderate effect
(H(10)=27.73, p=.002, ¢2=.05), with condition pairs C1 vs. C11 (p=.034) and C7 vs. C11 (p=.002)
remaining significant after Bonferroni adjustment. This indicates that training with an isolated palette
with correctness feedback (Mc1=.29) and more so with an isolated palette with correctness feedback
fading (Mc7=.46) leads to more efficient CT learning than with multiple palettes without feedback and
with distractors (Mc11=-.34). When grouping condition sets by number of palettes, inclusion of
correctness feedback, and fading scaffolding, we identified with a small effect significant differences
for the first two and a moderate difference for the third (U(Ni-paete=211, Nmuiti-patlete=348)=41,474.0,
2=2.57, p=-010, r=.11, Ml—palette=-15, Mmulti—palettez-og; U(Ncorrectness:359, Nno—correctnesszzoo):40,025-0,
2=2.25, p=.024, r=.10, Mcorrectness=-06, Mno-correctness=-11; U(Nrading=155, Nno-fading=404)=34,279.0, z=1.74,
p=.082, r=06, Mrading=-11, Mno-faging=.04). These results support H2 and reveal additional learning
efficiency opportunities via the use and fading of correctness feedback in addition to an isolated palette.

6.4 Motivation
6.4.1 Quantitative Results

To analyze motivation quantitatively, we scored the TEQ, and calculated the within-subject
change in CAS scores, programming attitude, and CT perception, from study start to end. Condition sets
with significant findings with small effect included those that varied by objective feedback for the
interest/enjoyment subscale (U(Nobjectives=359, Nno-objectives=200)=94,948.0, z=-3.13, p=.002, r=.13,
Mobjectives=3.73, Mro-objectives=4.2) and by objective and correctness feedback for the perceived
competence subscale  (U(Nobjectives=359,  Nno-objectives=200)=32,801.5, z=-1.79, p=.074, r=.08,
Mobjectives=2.80, Mio-ovjectives=3.15; U(Ncorrectness=359, Ncorrectness=200)=40,229.0, z=2.30, p=0.21,
r=.10, Mocorrectness=3.06, Mno-correctness=2.70).  Though narrowly missing significance, the objective
feedback condition sets also showed noteworthy differences in the pressure/tension subscale
(U(Nobjectives=359, Nno-objectives=200)=39,638-5, z=1.94, p:-052, r=.08, Mobjectives:3-74, Mno-objectives:3-46)-
These results indicate correctness feedback increases perceived competence, while objective feedback
reduces interest/enjoyment, lowers perceived competence, and increases pressure/tension.

From the CAS scoring, we found significant within-subject change for the factors of: 3)
importance, 4) problem solving — strategies, and 6) personal interest for the treatment population (3:
z=-5.3, p<.001, r=.22, Mswa=3.94, Meng=3.76; 4. z=5.62, p<.001, r=.24, Mswur=3.44, Mens=3.56; 6:
2=4.28, p<.001, r=.18, Msa=3.42, Meng=3.61). This decrease in importance and increase in problem
solving strategies and personal interest largely held across conditions. For the gender equity (2) and
gender bias factors (5), however, only the conditions with fading scaffolding yielded significant
differences (2: z=2.35, p=.019, r=.10, Ms@=4.47, Meng=4.53; 5: z=-1.97, p=.049, r=.08., Msu=2.01,
Meng= 1.93), indicating an attitudinal improvement in gender equity and reduction in gender bias.

Additionally, we found many significant programming attitude and CT perception
improvements from study start to end per condition set; selected results are presented in Table 3.
Overall, the quantitative motivation results provide partial support for H3, as fading scaffolding led to
improved programming attitude and CT perception scores, but the lack of longitudinal data represents a
threat to internal validity, since we cannot confirm the change measured at study conclusion persists.
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Table 3. Within-subject attitude and CT perception changes. *p<0.05, **p<0.01

-- Progrmaming is... -- 1-palette Correctness Feedback  Fading Scaffolding
fun M=.71** M=.65** M=.64**

enjoyable M=.82** M=.69** M=.,53*

easy to start M=.94** M=.67** M=.73**

-- CT Perception -- - - --

I would recommend children in my family no significant M=.35** M=.42*

attend a CT camp or after-school program change

I would ask an employer for CT training M=.31* M=.39** M=.71**

6.4.2 Qualitative Results

We studied motivation qualitatively by requiring that participants describe their attitude toward
programming at study-end, as well as their perspectives on presentation and feedback scaffolding.
Those with low self-reported prior programming experience often reflected surprise: 1) "It is perhaps
easier than | thought once you get to grips with how it works and the different ideas and ways of doing
it, and it is more accessible to the average person than | thought."; 2) "Starting it is much easier than |
thought... it can be more fun after this practice | feel more motivated to find some time and finally give
it a proper try." Those with higher prior experience advised on use cases: "this format is good for
younger people to learn and get introduced to it. | think is needed to be a class in school about it."

Those who received correctness feedback reported the utility: "It helped me know when | was
straying from course and re-evaluate my decisions. Very important and useful." Those receiving only
objective feedback also perceived value: "The feedback was very motivating for me and each "correct
answer" was giving me a lot of joy. I found this very helpful to know if | was heading in the right
direction or missing out anything important, and the dynamically enabled blocks helped me make sure |
was doing things in the right order." A C1 participant, with an isolated palette and correctness feedback,
perceived challenge decreasing as s/he solved puzzles: "At the beginning of the task, | was preoccupied
with how to navigate the system, but when I was familiar... I could easily solve the looping puzzles."

Many responses support H3, as they indicate fading scaffolding provides motivating challenge
across puzzles, while increasing agency. Several participants in C9, in which both presentation and
feedback scaffolding faded, reflected inspiration: 1) "When you start by having a lot of support and then
it gets reduced, you need to rely on your skills and understanding to keep learning, and when you see
that the program is working fine, it is more rewarding."; 2) "the ones with the same palette help at a very
early stage to familiarize with the concepts, the ones with a different palette broke this familiarity and
helps further by making you think more; 3) "The single palette made it easier to focus on how to
organize the blocks, instead of wasting time looking for them. Having them easily accessible at first
made it easier to find them and use them in the later tasks when the blocks were spread across multiple
palettes." Some with fading feedback, however, noted difficulties: "I found the lack of feedback later on
really hard to overcome. It helped me immensely at the beginning. Even though | was more familiar
with the concepts and blocks etc, the complexity of puzzles was also increasing so | really struggled.”
One participant in C8, with multiple palettes and feedback fading, recommended offering learner-
configurability: "Create a settings where you can turn on or turn off the feedback for the puzzle. This
way, if the student wants to try solve the puzzle without help, they can turn off the feedback. However,
if they find it too difficult and needs help, then they can turn on the feedback for guidance."

7. Conclusion & Future Work

To illuminate how learning system elements and progressions affect CT learning in block-based
environments, we developed Blockly-scaffolded, configurable PPP functionality within Scratch that
enables variation of presentation and feedback types. In a between- and within-subjects study of 579
adults, we enumerated several features and scaffolding strategies suitable for a general populace. PPPs
with feedback yield lowest CL; an isolated palette, correctness feedback, and fading correctness
feedback results in the highest learning efficiency; and fading scaffolding can increase CT motivation.
The analysis offers PPP developers and instructors insight to advance efficient CT education for all.
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While these results expose opportunities to advance CT learning via augmentations to popular
block-based environments, we caution that developing effective technical interfaces between these
systems is non-trivial given current implementation stratification. To echo and apply the call for
standardization to advance progress in learning engineering in (Baker et al., 2022), we advocate for CT
education data standards supportive of scaling consistent, quality data capture using extendable data
models facilitating customization but rooted in commonality. Such anchoring could accelerate efforts to
extend functionality in future work, for example by simplifying the way the Blockly objective editor
could be integrated with the Scratch PPP evaluation engine to drive execution-based feedback like the
js-parsons method described in (Helminen et al., 2013). It could also lead to data-driven generation of
concept inventories and misconception maps, an approach proposed by EvoParsons developers in (Bari
et al., 2019), that could better equip educators with the operational learning definitions necessary to
infuse CT across curricula. With continued study, we aim to identify paths toward reliably efficient,
effective, and equitable CT learning that builds bridges between cognitive, situated, and critical CT.
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