
Wong, L.-H. et al. (Eds.) (2013). Proceedings of the 21st International Conference on Computers in
Education. Indonesia: Asia-Pacific Society for Computers in Education

339

Monitoring System for the Semi-Automatic
Evaluation of Programs Written During

Classroom Lectures

Satoru KOGUREa*, Riki NAKAMURAa, Kanae MAKINOb,
Koichi YAMASHITAc, Tatsuhiro KONISHIa & Yukihiro ITOHd

aGraduate School of Informatics, Shizuoka University, JAPAN
bFaculty of Informatics, Shizuoka University, JAPAN

cFaculty of Economics, Tokoha University, JAPAN
dShizuoka University, JAPAN
*kogure@inf.shizuoka.ac.jp

Abstract: In this study, we developed a programming practice monitoring system to facilitate
teachers’ giving appropriate instructions to students at the right time during classroom
lectures. To help teachers to provide appropriate instruction to learners, we identified
parameters that would be useful for teachers during programming practice in classroom
lecture. We constructed a programming practice monitoring system with five functions. The
system automatically acquired the programs written by students to evaluate their performance
using the five functions. We allowed four subjects to test our proposed monitoring system
during a simulation of a classroom lecture.

Keywords: Programming, practice monitoring system, semi-automatic programming
evaluation

1. Introduction

In the areas of programming and algorithm education, many studies have developed learning support
system with GUI (Fossati et al., 2008; Kogure et al., 2012; Malmi et al., 2004; Noguchi et al., 2010).
However, during programming courses for beginners in educational institutions such as universities,
the costs of grading the programs and reports submitted by students are very high. Thus, several
automated methods have been developed for the evaluation of student programs, such as LAURA
(Adam & Laurent, 1980) and PROUST (Johnson, 1990). We also developed a teacher support
environment that focused on supporting teachers during programming education (Kogure et al., 2010).
The environment made it easier for teachers to grade programs and text reports. However, the teacher
accessed the environment after the classroom lecture finished.
 In this study, we address the provision of appropriate instructions to students during
classroom lectures. Lectures mainly involve the provision of exercise by teachers. Teachers also give
individual instructions to students while walking around the class and checking what the students are
doing. The teacher also provides instructions to the whole class. Typically, the number of teachers is
extremely low relative to the high number of students. Therefore, it is very difficult for a teacher to
fully appreciate the status of all the students in the classroom. This means that it is necessary for a
teacher to obtain answers to questions from each individual student to understand their status fully.
Thus, a teacher needs to stop to conduct student exercises to obtain the necessary information. In
addition, teachers can only obtain poor quality information in real time. A method is available that
uses a clicker-based technique to address these problems (Kennedy & Cutts, 2005). In this method,
the teacher gives students a dedicated remote control in advance. When a teacher asks questions
during the class, the students answer the questions using a remote control. Thus, the teacher can see
the answers immediately. Suppose that a teacher asks students about their progress in a particular
exercise. The students can answer the question but the answers are based on their subjective
evaluation and therefore the answers do not necessarily reflect their actual progress. Thus, the teacher
cannot help students who do not correctly understand their progress. On the other hand, Spacco et al.
present AutoCVS (Spacco at al., 2004), which is Eclipse plug-in for collecting student's program.

340

Jadud also constructed a programming editor, called BlueJ (Jadud, 2006), for recording a student's
snap-shot on editing own program. Their systems, although, cannot deal with the possibility of
automatically judgment and analyzing of student's program.
 Therefore, we propose a method that allows teachers to conduct an objective assessment
based on clear criteria. During programming exercises, one of the indicators used as an objective
assessment is the program written by the students during the class. In this study, the teacher is
supported by the automatic collection of the programs written by the students where the environment
automatically analyzes the programs. Thus, a teacher can appreciate the progress of students in real
time.
 Our study aims to achieve the followings:
1. We summarize the information required by teachers during a lecture.
2. We develop a method for extracting the desired information from the programs, which are

collected automatically.
3. We build a server that automatically extracts the necessary information from the programs

collected.
4. We build a client that presents the extracted information to the teacher.

 The programming exercise monitoring system constructed in this study has two components.
First, it has an information extraction server that extracts useful information for the teacher. The
server collects the students' programs automatically and extracts the necessary information. Second, it
has an instruction support viewer that makes it easier to present the extracted information to the
teacher. We assess whether the system could extract the necessary information from the programs
collected during real classes. We also have four subjects use the instruction support viewer and we
perform a subjective evaluation by the subjects. A virtual classroom experimental environment is
simulated, which collects the programs produced in the real class. The results of our subjective
evaluation suggest that collecting the programs produced in classes by students in real time allows the
teachers to provide appropriate instructions to students.

2. Concept of the Proposed Exercise Monitoring System

2.1 Definitions of Lecture, Exercises, and Steps

We define lectures L, exercises E, and steps S. Typically, lectures in higher education institutions are
held 15 times or 10 times during a single course. First, we define Li as the i-th in the course. In each
lecture, a teacher will provide exercises to students. Next, we define Ej as the j-th exercise in all
lectures. Each exercise that occurs during a lecture may include several small exercises. We refer to
these small units as steps. Finally, we define Sj,k as the k-th steps of Ej. In addition, a teacher gives the
required steps and optional steps to students during the exercise. Thus, we define isRequired(Sj,k) as a
function that returns true if step Sj,k is required or false if step Sj,k is optional.

2.2 Definitions of the Step Progress and Exercise Progress of Students

In a class Li, some students will write a program Ej while other students may write a programs Ej' from
last week's lecture Li-1. In addition, some students will be working on the same exercise Ej but on
different steps. In addition, a teacher will want to know the progress of each student. We define
isStepFinished(s, j, k) as a function that returns true if student s has finished step Sj,k or false if he/she
has not. Thus, a teacher will know the steps a student has finished. Therefore, we define the step
progress sp(s, j) in an exercise Ej as the step that student s has finished.
 In other cases, a teacher may want to know the exercises a student has completed. Thus, we
define isExerciseFinished(s,j) as a function that returns true if student s has finished all of required Sj,k
or returns false if he/she has not finished them. We also define exercise progress ep(s) as an exercise
Ej that a student s is working on.

2.3 Definitions of the Student Program and Standard Algorithm

341

During the class, students will compile the same step in a program many times. The information
extraction server automatically collects a student program when a student compiles the program using
the wrapped compiler that a teacher gives to the student in advance. A student uses the wrapped
compiler when he/she compiles their own program, then the wrapped compiler compiles the student
program using the original compiler (e.g., gcc) and sends the program, the student information, and
the current time to the information extraction server using secure cp (e.g., scp). We define p(s,t) as a
program that student s compiles at time t.
 We may want to automatically assess the exercise and step that correspond to p(s,t). Thus, a
teacher prepares the correct program for each step in each exercise and translates each program into a
standard algorithm st(j,k) for step Sj,k in advance. The standard algorithm is represented using
Extended PAD (Konishi et al., 2007). Our evaluation system can convert a macro-operation into
various patterns of statements that implement the functions of the macro operation. It is relatively
easy to represent various programs as an algorithm with the same function. In addition, Extended
PAD can represent various types of arbitrariness. Thus, Extended PAD can use the two extended
expressions: “Non-ordering structure” and “Alternative structure.” Our proposed programming
exercise monitoring system applied an automatic evaluation module to the student program based on
comparing the standard algorithm with Extended PAD expressions derived from the student programs
(Konishi et al., 2007).
 In addition, if a teacher finds that a program has a distinctive difference from the standard
algorithm, he/she may want to search for the same distinctive point in other students’ programs.
Therefore, the monitoring system also applies an automatic classification module to student programs,
which detects differences from the standard algorithm (Kogure et al., 2010).

3. Modules Used in Previous Studies

3.1 Overview of the Assessment Module for Student Programs

Previously, we developed an evaluation system that compared the PAD translated from a student
program (s-PAD) with the PAD of a standard algorithm prepared in advance by the teacher (t-PAD),
which classified student programs into four categories (Konishi et al., 2007). Our system calculated
two agreement rates to assess the student programs. First, it calculated the agreement rates for s-PAD
based on t-PAD. We defined sar(s, j, k) as the agreement rate so that a number of operations in the s-
PAD of student s during step Sj,k in exercise Ej corresponding to the operations in the t-PAD divided
by the number of all operation in the s-PAD. Second, it calculated the agreement rate for the t-PAD
based on the s-PAD. We also defined tar(s, j, k) as the agreement rate so that a number of operations
in the t-PAD during step Sj,k in exercise Ej corresponding to the operations in the s-PAD of student s
divided by the number of all operations in the t-PAD. Table 1 shows the classification types, which
were assessed automatically. The information extraction server used modules to calculate sar(s, j, k)
and tar(s, j, k). We decided classification thresholds shown in Table 1 by heuristic approach based on
maximizing classification rates of programs collected in past times from programming course in our
university.

Table 1: Classifications of student programs.

Classification type Condition required for classification
PERFECT sar(s,j,k) = 1 && tar(s,j,k) = 1
EXCESS sar(s,j,k) = 1 && tar(s,j,k) >= 0.7
PARTIAL sar(s,j,k) >= 0.75 && tar(s,j,k) >= 0.7

NOMATCH otherwise

3.2 Overview of a Module that Searched for Programs with a Particular Difference

During the evaluation of the reports and programs submitted by students, a teacher may find a
distinctive point (e.g., an error or an additional exercise) in a student's program. We define
positionDiffi(s,j,k) as the range from the previous operation at the beginning of i-th different position
in t-PAD to the next operation at the end of the i-th different position in the t-PAD for step Sj,k by

342

student s. We also define contentDiffi(s,j,k) as the s-PAD operations at positionDiffj(s,j,k). For
example, Figure 1 shows positionDiff() and contentDiff() examples. Thus, a teacher can find programs
with the same positionDiffj(s,j,k), or both the same positionDiffj(s,j,k) and the same contentDiffj(s,j,k)
using an existing module (Kogure et al., 2010).

s-op15
s-op16
s-op17
s-op18
s-op19
s-op20
s-op21
s-op22

…

…
…

pad(s,j,k)

t-op17
t-op18
s-op19
s-op20
s-op21
s-op22
s-op23

…
…

…
…

st(j,k) pad(s,j,k) is a pad translated by student s
program for step Sj,k

st(j,k) is a standard algorithm in step Sj,k

prepared by teacher in advance

First diff
positionDiff0(s,j,k) = {t-op17, t-op19}
contentDiff0(s,j,k) = {s-op16}

Second diff
positionDiff1(s,j,k) = {t-op19, s-op22}
contentDiff1(s,j,k) = {t-op18, t-op19, t-op20}

Diff0

Diff1

Figure 1. An example of a difference during automatic classification.

4. Overview of the Programming Exercise Monitoring Environment

Figure 2 shows the relationships among the modules and the database. The teacher prepared the
standard algorithm st(j,k) for step Sj,k during exercise Ej in advance. The teacher can create the
standard

instruction

teacher
students

Classification
module

Evaluation module

Module collecting
program

Evaluation
Database

Classification
Database

Student Program
Database

Extracted Info
Database

Comment
Database

Web form for
registering standard

algorithm

Web form for
registering

classification criteria

information extracting
module

Progress viewer for
each exercise or step

Program and Comment
viewer

Ex isting Modules

New Modules for this study

Annotation student
viewerAnnotation

Database
Information

Ex traction Server
Instruction Support

Viewer

Figure 2. The relationships among the modules and the database.

343

algorithm st(j,k) from the correct programs for step Sj,k or can modify st(j,k) using an existing PAD
editor.

4.1 Information Extraction Server

During a lecture, the information extraction server operates in the following steps.
1. A program p(s,t) is collected and stored in the database when the server receives the program.
2. The server executes the following operations during each step Sj,k.

2.1 In the k-th step Sj,k, the server calculates sar(s,j,k) from p(s,t) and st(j,k) using the existing
evaluation module.

2.2 The server stores information for p(s,t), which is obtained from the evaluation.
3. The server assesses step Sj,k', which corresponds to p(s,t), using the following equation.

),,(maxarg
'

',
,

kjssarS
kjS

kj =

4. The system stores the assessment information extracted from the database.

 The proposed environment had 11 tables in the database, as shown in Table 2. A teacher
prepared the first four data (1-4) in advance. The information extraction server updated the next four
data (5-8) in real time during the class. The teacher could register the last three data (9-11)
before/during/after the class.

Table 2: Database tables.

ID Table Name Content
1 Classes Information on courses
2 Students Information on students
3 Registrations Registration information for a course
4 Exercises Information on the exercises in a course
5 PersonalEvaluations Each students’ evaluation results
6 PersonalClassifications Each students’ classification results
7 ClassAchievements Summary of the evaluation results for the whole

class
8 ClassClassifications Summary of the classification results for the whole

class
9 Criteria Classification criteria

10 Comments Comments tagged by teachers in each programs
11 AttentionStudents Observable students tagged by a teacher

4.2 Instruction Support Viewer

The instruction support viewer has five functions, which help the teacher to provide appropriate
instructions to students. The five functions are described in sections 4.2.1 to 4.2.5.

4.2.1 Function that Displays the Exercise Progress of Students in Lectures

If a teacher wants to know the exercise progress of all the students, he/she can use a function that
displays the exercise progress ep(s) in a circle graph. The progress ep(s) is calculated using the
following equation.

),,(maxarg)(
'

kjssarsep
jE

=

 Thus, the teacher can provide appropriate instruction to the whole class because they can
appreciate the exercise progress of the class as a whole.

4.2.2 Function that Displays the Step Progress of Students in Exercises

344

If a teacher wants to know the step progress of all students in an exercise, he/she can use a function
that displays the step progress sp(s,j) as a bar graph. The progress sp(s,j), in an exercise Ej is
calculated using the following equation.

),,(maxarg),(
',

kjssarjssp
kjS

=

 The teacher can check the change of the step progress over time. Therefore, the teacher can
provide detailed instruction on a particular step that most students have been working on for a long
time and give initial instruction on the next step to all students.

4.2.3 Function that Displays the Classification Results for Student Programs in an Exercise

A teacher may want to know how many students made the same mistake in an exercise. If most
students make the same mistake, the teacher may well want to give instruction to the whole class. If a
small number of students make the same mistake, the teacher may well want to give specific
instruction only to those students.
 In this study, a teacher can check each student's positionDiff(s,j,k) and/or contentDiff(s,j,k). If
the teacher focuses on a particular positionDiff(s,j,k), the system finds the collection p(s,t) that
includes the same positionDiff(s,j,k) or both the same positionDiff(s,j,k) and contentDiff(s,j,k). The
instruction support viewer then shows the list of the students whose programs include the same
positionDiff(s,j,k) or both the same positionDiff(s,j,k) and contentDiff(s,j,k).

4.2.4 Function that Displays a Student List Tagged with Comments

A teacher can tag the student records with comments using the instruction support viewer if the
student has unique characteristics (e.g., a student has very high programming skills or his/her
attendance is poor). The teacher can then browse the list of students tagged with comments. If there
are several teachers or teaching assistants, it is also possible to share information on students using
tagged comments.
 The instruction support system can display the list of the comments tagged for a particular
exercise. The teacher can also read a student’s comments tagged for all exercises if the teacher wants
to focus on the student.

4.2.5 Function that Displays the Program

The teacher can examine students’ programs using the viewer if he/she wants to assess the
programming progress of those students. The viewer displays the student programs in different
windows so that the teacher can compare a student program with those of other students’.

4.2.6 Integration of the Five Functions

A teacher may want to assess the step progress during exercises using the function described in
section 4.2.2 while looking at the exercise progress using the function described in section 4.2.1. A
teacher may also want to tag comments using the function described in section 4.2.4 while looking at
a program produced by a student using the function described section 4.2.5. Therefore, the five
functions described above should be integrated seamlessly so that several functions can be used
together.

5. Evaluation Experiment

5.1 Evaluation of the Information Extraction Server

During the experimental evaluation of the information extraction server, we focused on two variables:
the accuracy of the automatic program evaluation module and the accuracy of step progress analysis
using the information extraction server.

345

 The evaluation was conducted as a part of a programming class held in a humanities
department. We collected all of the programs compiled by the students in the exercises. The class
contained 25 university sophomore students. In this experiment, it was not possible to use the real-
time transfer program because of a security issue. Thus, we modified the compiler wrapper. The
compiler wrapper temporarily stored all of the programs on the student's PC when they compiled a
program. After the class, we manually collected all of the programs that were stored temporarily.

In the lecture, the teacher gave exercise ex7 to all the students. However, some students
worked on previous exercises during the lecture. There were seven possible exercises that students
worked on, as shown in Table 3.

Table 3: Exercises and steps in the exercises.

Exercises Steps
ex1 step 1, step 2, step 3, step 4 and step 5
ex2 step 1 and step 2
ex3 step 1 and step 2
ex4 step 1 and step 2
ex5 step 1 and step 2
ex6 step 1, step 2 and step 3
ex7 step 1, step 2 and step 3

5.1.1 Accuracy of Automatic Program Evaluation Module

Table 4 shows the evaluation results for the automatic evaluation module for each of 20 randomly
selected pairs of a student program and the corresponding standard algorithm. The most important
point in this experimental evaluation was the number of false alarms (the cases in which the system's
evaluation was “equal” and the teacher’s evaluation was “not equal”). This is because if there are false
alarms, the teacher might overlook mistakes in the student programs. Table 4 shows that the number
of false alarms was zero and the overall accuracy was 94.1% (i.e., (299+70)/392). The main reason for
the miss (the cases in which the system’s evaluation was “not equal” and the teacher’s evaluation was
“equal”) was that the standard algorithm did not cover all the possible alternatives.

Table 4. Evaluation results for the automatic evaluation module.

 System evaluation total Equal Not Equal
Teacher's
evaluation

Equal 299 (76.3%) 23 (5.8%) 322 (82.1%)
Not Equal 0 (0.0%) 70 (17.9%) 70 (17.9%)

Total 299 (76.3%) 93 (23.7%) 392 (100%)

5.1.2 Accuracy of the Step Progress Assessment Using the Information Extraction Server

To evaluate the step progress, we manually tagged the correct steps in all the programs. Next, we
compared the manually tagged steps with the automatically tagged steps, which were calculated from
maximizing sar(s,j,k) by p(s,t). Among the 507 programs collected, the system results and manual
results were both correct for 381 programs (case A). For 124 programs (case B), the system result was
wrong and the manual result was correct. For case A, the accuracy of the step progress assessment
was 75.1%. For case B, the step progress of 24.5% of the programs was undetectable using the
system. This problem occurred because the automatic evaluation module could translate none of the
124 programs into the correct sPAD due to syntax errors. Since the compiler wrapper stored the
student programs when the programs were compiled; hence, the system could not translate those
programs with syntax errors into well-formed sPAD. Thus, we constructed another method that
compared programs including syntax errors with the correct program. In this method, the system
executed the diff command in Unix (i.e., the command extracting the difference between files). One
student program was compared with each of the possible correct programs using the diff command.
The result with the minimum different lines was adopted as the target of the evaluation. Using this

346

simple method, the system tagged the correct steps in the 124 programs. For the remaining two cases
(case C), the students were working on irrelevant programs during a class, and the system correctly
judged that those programs involved none of the steps in Table 3.

5.2 Experimental Evaluation of the Instruction Support Viewer

To evaluate the instruction support viewer, we registered 25 students in the student database. We
performed the experimental evaluation using a virtual environment because our instruction support
viewer was a prototype and we did not want to disadvantage the real students. The virtual
environment was a lecture that involved exercise ex7 (as shown in Table 3). The lecture duration was
80 min. In the experimental evaluation, we simulated four situations: 20 min, 40 min, 60 min, and 80
min (the end of the lecture) after the beginning of the lecture. There were four subjects in the
evaluation. One was a teacher who performed the lecture documented in Table 3. The other three
subjects had experience as teaching assistants in a department of informatics. We asked the four
subjects to emulate the teacher's actions in these situations using the instruction support viewer. We
asked them to obtain the necessary information for answering those questions in Table 5 by using the
instruction support viewer.

Table 5. The questions provided to the subjects in each situation.

Situation Question

20 min
How many students worked on exercise ex7? How many
students worked on each step in exercise ex7?
Who worked on ex1 or ex2?

40 min

Who worked the fastest on the exercise? Check the student
program and tag the student.
Who had poor programming skills? You may use the search
function in the student annotation database.

60 min

Who was the student who needed special attention? What
was the step progress of the student?
How many students worked on step1 in ex5? Assess
whether you needed to provide instruction to all of the
students or specific students.

80 min
How many students finished exercise ex7? Assess whether
there is a need to teach a catch-up class. If so, what would
be the exercise in the catch-up class?

 All the four subjects had no trouble in using the instruction support viewer. The subjects also
gave appropriate answers to those questions in Table 5 by using the viewer. We also conducted a
subjective evaluation about merits/demerits of using the viewer through a questionnaire. We received
positive evaluations for each of the five functions and some comments for further improvements.

6. Conclusion

We developed a programming exercise monitoring system to facilitate teachers’ giving appropriate
instructions to students at the right time during classroom lectures. Our programming exercise
monitoring system has five functions. The system collects the programs written by students
automatically. Teachers can assess the collected programs using the integrated five functions. We
collected 507 programs during an actual programming exercise in a classroom lecture. We asked four
subjects to use our proposed monitoring system in a simulated classroom lecture. The evaluation
revealed that the system had high accuracy in evaluating student programs and that the five functions
were useful in real classroom settings.

347

Acknowledgements

This study was supported by Japanese Grant-in-Aid for Scientific Research (B) 24300282.

References

Adam, A., & Laurent, J. P. (1980). LAURA, a system to debug student programs. Artificial Intelligence, 15(1),

75-122.
Fossati, D., Eugenio, B. D., Brown, C., & Ohlsson, S. (2008). Learning Linked Lists: Experiments with the iList

System. Proc. of the 9th International Conference on Intelligent Tutoring Systems, 80-89.
Jadud, M. C. (2006). Methods and tools for exploring novice compilation behaviour. Proc. of the second

international workshop on Computing education research, 73-84.
Johnson, W. L. (1990). Understanding and debugging novice programs. Artificial Intelligence, 42(1), 51-97.
Kennedy, G. E., & Cutts, Q. I. (2005). The association between students' use of an electronic voting system and

their learning outcomes. Journal of Computer Assisted Learning, 21(4), 260-268.
Kogure, S., Takatsu, H., Konishi, T., & Itoh, Y. (2010). Development and Evaluation of Learning Support

System Based on Automatic Classification of Students' Programs According to Difference from Standard
Algorithm. Proc. of International Conference of Advanced Learning Technologies, 227-228.

Kogure, S., Okamoto, M., Noguchi, Y., Konishi, T., & Itoh, Y. (2012). Adapting Guidance and Externalization
Support Features to Program and Algorithm Learning Support Environment. Proc. of the 20th
International Conference of Computers in Education, 321-323.

Konishi, T., Suzuki, H., Haraikawa, T., & Itoh, Y. (2007). Three Phase Self-Reviewing System. In Knowledge
Management for Educational Innovation (pp. 203-210). Springer US.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppala, O. & Silvasti, P. (2004). Visual Algorithm
Simulation Exercise System with Automatic Assessment: TRAKLA2 Informatics in Education, 3(2), 267-
288.

Nakahara, T., Konishi, T., Kogure, S., Noguchi, Y., & Itoh, Y. (2009). Learning Environment for Algorithm and
Programming where Learners Operate Objects in a Domain World using GUI. Proc. of the 17th
International Conference on Computers in Education, 59-66.

Noguchi, Y., Nakahara, T., Konishi, T., Kogure, S. & Itoh, Y. (2010). Construction of a learning environment
for algorithm and programming where learners operate objects in a domain world. International Journal of
Knowledge and Web Intelligence, 1(3), 273-288.

Spacco, J., Hovemeyer, D., & Pugh, W. (2004). An Eclipse-based course project snapshot and submission
system. Proc. of the 2004 OOPSLA workshop on eclipse technology eXchange, 52-56.

