
 Iyer, S. et al. (Eds.) (2022). Proceedings of the 30th International Conference on Computers in Education.
Asia-Pacific Society for Computers in Education

389

The ABC Workbook: Adapting online judge

systems for introductory programming classes

Aldrich Ellis ASUNCIONa*, Brian Christopher GUADALUPEb & Gerard Francis ORTEGAc
aDepartment of Mathematics, Ateneo de Manila University, Philippines

bDepartment of Information Systems and Computer Science, Ateneo de Manila University, Philippines
cScientific Committee, National Olympiad in Informatics – Philippines, Philippines

*aeasuncion@ateneo.edu

Abstract: The online judge is an established method of automatic assessment for programming

tasks. Recognizing the relative lack of problems and resources for introductory-level

programming classes, we present the ABC Workbook project, a workbook containing a

comparatively large selection of basic programming exercises, accompanied by an application

written to check the exercises in the workbook. The contents of the workbook, an overview of

the app, and strategies for integration in a class are discussed. The accessibility of the app for

use in remote and developing areas is emphasized. The project is expected to improve

introductory-level programming instruction, by facilitating immediate feedback and providing

access to a bank of curated problems. Future work involves application in classrooms, as well

as implementation of problem creation features.

Keywords: Computer science education, automated assessment, textbooks, introductory

programming.

1. Introduction

Introductory programming classes rely on the students' ability to receive feedback for their work. These

classes have two primary learning objectives: programming knowledge, via the syntax and semantics

of the course's chosen language; and problem-solving strategies (Malik and Coldwell-Neilson 2017).

These objectives are reinforced by assigning practice exercises to students, usually which require them

to write a simple program which can perform a desired task.

However, the effectiveness of these exercises relies on the ability of an external entity (e.g. a

teacher, a software program) to give feedback to the students. A novice programmer cannot just self-

evaluate that their code “seems correct.” Practice in algorithmic thinking requires stricter supervision

because correctness and efficiency may not be apparent to a beginner. For example, the student might

be overlooking an edge case, or their logic may contain a faulty argument that had gone unnoticed.

As a resource for such exercises, traditional textbooks are lacking in two regards. First,

traditional textbooks focus heavily on content delivery of programming knowledge, and not as much

on exercises and problem-solving skills (Demilie 2020). Second, even if a traditional textbook had

many exercises, it still could not be effectively self-studied, as an instructor is required in order to give

feedback. Even with an instructor, the workload of checking the code submissions of each student for

each exercise scales poorly to upwards of hundreds of students, which may lead to the instructor not

assigning too many programming exercises in their classes, which is also not ideal.

With the shift to e-learning, there is a clear need for a resource which is capable of giving

automated feedback to programming students. Fortunately, such a system already exists and has been

used by the competitive programming community for more than two decades now: the online judge.

Some well-known examples of online judges are: Codeforces, UVa Online Judge1, and CSES.

1.1 The Online Judge

1 Since the passing of the site's maintainer, Miguel Revilla, the site is now simply called Online

Judge, as it is no longer associated with the University of Valladolid.

390

The online judge is an automated assessment tool. They have been successfully used as an effective

assessment tool for data structures and algorithms courses (Enstrom et al. 2011; Garcia-Mateos and

Fernandez-Aleman 2009). CSES is itself used in facilitating an algorithmic programming course in the

University of Helsinki (Laaksonen and Talvitie 2020).

Each task on an online judge typically involves the creation of a program whose specifics are laid

out in the scenario given in a problem statement. As an example, in Figure 1, we show the problem

“Coin Piles” from the online judge CSES. The desired behavior of the program is stated using generic

parameters. In Figure 1, we see that the coin piles’ sizes are given by variables 𝑎 and 𝑏, and the number

of test cases is also some variable 𝑡. The contestant’s program is given, as input, particular values of

e.g. 𝑡 and each 𝑎 and 𝑏, representing some concrete instance of the input parameters. The program

should then output the correct answer for this instance of the problem.

Figure 1. Sample task “Coin Piles” from the online judge CSES

The problem author prepares several test files. To test the correctness of the submitted code, it

is run with each of these test files as input, and a judge program automatically checks whether the

contestant's program produces the correct output for each one. The author writes a model solution to

the problem, and the judge checks that the output of the submission exactly matches the output of the

model solution. For tasks with multiple possible answers, the problem author may instead write a

custom checker program which verifies the correctness of the contestant's output. A time limit and

memory limit are also given in the problem statement, and if a submission consumes more time or

resources than is allotted to them, it is also marked incorrect.

Constraints are given which limit the kinds of values which may appear in the input. Strict

formats on input and output are imposed so that the feedback process can be automated by the online

judge. Assuming that the problem author's test data is robust in handling all the different cases and

detecting incorrect solutions, a student is able to automatically receive feedback on the correctness of

the programs they write through an online judge.

391

1.2 Issues with Online Judges

There are a handful of factors that limit the accessibility of existing online judges for use in introductory

programming classes. First, problems in existing online judges were not designed to be exercises for

introductory programming classes. Sites like Codeforces and UVa are archives of ACM ICPC-style

contest problems, and so even their “easy” problems may require finding mathematical insights that are

outside the scope of the class, or require concepts that would appear in a data structures and algorithms

course, not in an introductory programming course.

Second, it is not easy for an instructor to create and upload their own problems to many online

judges, if it is possible at all. There is a nontrivial technical barrier in authoring a problem using

Codeforces' problem-creation platform, and in giving students access to these custom problems.

Administrator access is required to upload problems to UVa and CSES.

Third, all of these online judges are dependent on the student having a stable and persistent

internet connection. This makes these platforms inaccessible to students in remote or developing areas

without a stable internet connection.

2. The ABC Workbook Project

The ABC Workbook project is intended to address the issues we have identified in applying online

judges to an introductory Python programming class. The project is comprised of two parts: the ABC

Workbook and AutoJudge++.

2.1 The ABC Workbook

The ABC Workbook is a problem bank for introductory Python programming, intended to supplement

an introductory programming or computer science course by providing a curated collection of exercises.

It is planned to contain exercises under the following topic areas: variables, data types, input and output,

conditionals, loops and nesting, built-in data structures, functions, recursion, classes, and basic design

patterns. These topic areas align with most of the topics in the Software Development Fundamentals

(SDF) knowledge area in the ACM/IEEE curriculum guidelines for computer science, which

characterize many introductory computer science sequences (ACM Computing Curricula Task Force

2013). As a result, the workbook does not assume any prior programming knowledge.

Each section of the workbook begins with a summary of Python syntax and constructs,

accompanied with examples (Figure 2). This discussion is largely adapted from the official Python

tutorials and language specification but with additional examples used to illustrate common usage

patterns of programming constructs. The discussion is short, as most of the book’s content is deferred

to the exercises.

Figure 2. Samples from the explanatory portions of the ABC Workbook.

The discussion is followed by a collection of practice exercises. While a handful of the exercises

are conceptual (Figure 3a), majority of the exercises are programming tasks, formatted similarly to

those found on online judges (Figure 3b). Each exercise is written so that answers may be easily checked

by the reader, either through an answer key, or using the accompanying AutoJudge++ application. This

ensures that the workbook is suitable for self-study and remote use.

392

Compared to a number of introductory programming textbooks, the ABC Workbook contains a

large quantity of problems. The book contains over 80 problems devoted to the use of basic data types,

variables, and conditionals, while over 140 problems are devoted to iteration and lists. The full book is

estimated to have at least 500 exercises. Table 1 provides a comparison with various introductory

programming books.

Table 1. Approximate Number of Exercises of Various Introductory Programming Books
Book Exercises (approximate)

Think Python, 2nd Edition (Downey 2016) 70

Introduction to Programming in Python (Sedgewick et al. 2015) 160

Python Programming: An Introduction to Computer Science, 3rd

Edition (Zelle 2017).

180

C How to Program, 8th Edition (P. J. Deitel and H. M. Deitel

2016)

200

Big Java: Early Objects, 7th Edition 250

While the volume of exercises in the ABC Workbook may seem large in comparison, this is not

unusual compared to many online judges. CSES has over 200 problems and is planned to contain 1000

problems (Laaksonen and Talvitie 2020). The ABC Workbook is comparable to a typical precalculus

or calculus textbook, which often contain a similarly large number of basic exercises.

(a) (b)

Figure 3. Sample exercises from the ABC Workbook

2.2 AutoJudge++

Accompanying the ABC Workbook is a desktop application, AutoJudge++. Like an online judge, it

allows for the automated checking of programs. The application is preloaded with most of the

programming problems listed in the ABC Workbook, allowing those using the workbook to check their

answers using the application. Unlike online judges, AutoJudge++ is built to function completely

offline, running on the user's computer instead of an online judge server. This allows those without a

stable persistent internet connection to use the app unimpeded.

393

Figure 4. The problem selection menu of AutoJudge++

Upon loading the application, the user is presented with a list of problems, corresponding to marked

problems in the ABC Workbook (Figure 4). Selecting a problem allows the user to then add Python file

submissions. Students using the app can add a Python file containing their solutions, while teachers

using the app can add a directory of Python files.

 Each problem in AutoJudge++ is set up with a number of test files, covering a variety of

possible inputs and edge cases depending on the problem. The app can then run the Python submissions

on each test input, and automatically check if the output of the submission exactly matches the expected

output. These results are summarized in a visual display (Figure 5). The user can inspect individual test

cases to view the execution time, the input for the test case, the expected output, and the submission's

output. Teachers using the app may also export a CSV summary of the verdicts for all submissions to a

problem, which they can then incorporate into their own workflow for checking assessments.

Figure 5. A submission for a problem, checked using AutoJudge++. The panel on the left shows all

submissions. The panel at the bottom displays details for each test case for the current submission.

2.3 Integration and use

As the ABC Workbook project is a resource which simply contains a problem bank and automatic

assessment tool, without any online dependence or defined submission workflow, it can be readily

adapted for use in existing assessment workflows. It is recommended to combine both automated and

manual assessment systems, with the automatic system providing ease-of-use and efficiency to the

394

assessment process (Ihantola et al. 2010). We present several ideas adapted from existing literature

here.

The AutoJudge++ application, like online judge systems used in education today, may be used

with test-driven education (Enstrom et al. 2011). Teachers assigning programming tasks can ask their

students to have their solutions checked by AutoJudge++ before presenting their solutions to the

teacher. In this approach, students are allowed to have their program checked by the app any number of

times, with the app serving as an adversary. This form of feedback encourages students to develop their

programs based on concrete tests. When students present their program to the teacher, the teacher can

focus on higher levels of assessment, by asking students to explain their understanding of their code, as

well how they addressed issues during program development.

The test-driven education approach lends itself well to approaches such as pair programming

(Waite and Sentance 2021). In pair programming, two people work simultaneously on a single project,

with one person actively using the computer, while the other reviews the work done by their collaborator

and offers suggestions. As students are able receive immediate, independent feedback through the

AutoJudge++ app, students are constantly confronted with problems mid-development as they try to

pass all test cases, sparking discussion and activity among the students. This is an integral part of the

teamwork involved in the competitive programming environments, and this can be adapted for use in

introductory programming education.

As we have established that existing introductory textbooks contain relatively few

programming exercises, the ABC Workbook project may be used as a problem bank for use in both

assignments and exams, with the AutoJudge++ app serving to manage the workload of assessing many

submissions for many exercises. Students may also use it as a self-study resource, due to the feedback

provided by the project and the lack of dependence on online connectivity. The ABC Workbook may

be distributed as a PDF file, while the AutoJudge++ app may be distributed as a zip file with no

installation required.

3. Conclusion and Recommendations

In this paper, we presented the ABC Workbook project, a workbook and companion app for

introductory Python programming. We demonstrated how these online judges can be adapted for an

introductory resource. Through a brief survey of textbooks, we also established the need for larger

volumes of exercises, to give students more opportunities to learn by practicing programming directly.

Lastly, we presented methods by which these resources may be integrated in the classroom. We hope

that this paper inspires related resource creation for introductory programming classes and furthers

interest in designing accessible automatic assessment methods for programming assignments.

 The ABC Workbook project is currently still under development. We are currently designing

additional features for the AutoJudge++ application to facilitate easier problem creation. The goal is to

allow teachers to easily create problems which can be checked by AutoJudge++, even without prior

contest problem-setting experience. Further development can also focus on the security of the

application, to ensure submissions cannot maliciously affect the host computer (Ihantola et al. 2010).

Further work on this project may also involve a detailed examination of exercises in recent introductory

textbooks and workbooks, as well as an investigation into the effectiveness of applying the ABC

Workbook project in the classroom.

References

ACM Computing Curricula Task Force (Ed.). (2013). Computer Science Curricula 2013: Curriculum Guidelines

for Undergraduate Degree Programs in Computer Science. ACM, Inc. https://doi.org/10.1145/2534860

Deitel, P. J., & Deitel, H. M. (2016). C How to Program (8th ed.). Pearson.

Demilie, W. B. (2020). Why University Students Fail in Most Computer Programming Courses: The Case of

Wachemo University-Student-Teacher Perspective. Computer Engineering and Intelligent Systems.

https://doi.org/10.7176/CEIS/11-2-02

Downey, A. (2016). Think Python (2nd ed.). O’Reilly Media.

Enstrom, E., Kreitz, G., Niemela, F., Soderman, P., & Kann, V. (2011). Five years with Kattis – Using an

automated assessment system in teaching. 2011 Frontiers in Education Conference (FIE), T3J–1–T3J–6.

https://doi.org/10.1109/FIE.2011.6142931

395

Garcia-Mateos, G., & Fernandez-Aleman, J. L. (2009). A course on algorithms and data structures using on-line

judging. Proceedings of the 14th annual ACM SIGCSE conference on Innovation and technology in

computer science education - ITiCSE ’09, 45. https://doi.org/10.1145/1562877.1562897

Guttag, J. (2021). Introduction to Computation and Programming Using Python (3rd ed.). MIT Press.

Horstmann, C. S. (2018). Big Java: Early Objects (7th). John Wiley & Sons, Inc.

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010). Review of recent systems for automatic

assessment of programming assignments. Proceedings of the 10th Koli Calling International Conference on

Computing Education Research - Koli Calling ’10, 86–93. https://doi.org/10.1145/1930464.1930480

Laaksonen, A., & Talvitie, T. (2020). CSES – Yet Another Online Judge. Olympiads in Informatics, 105–111.

https://doi.org/10.15388/ioi.2020.08

Malik, S. I., & Coldwell-Neilson, J. (2017). A model for teaching an introductory programming course using

ADRI. Education and Information Technologies, 22(3), 1089–1120. https://doi.org/10.1007/s10639-016-

9474-0

Sedgewick, R., Wayne, K. D., & Dondero, R. (2015). Introduction to Programming in Python: An

Interdisciplinary Approach. Addison-Wesley.

Waite, J., & Sentance, S. (2021). Teaching programming in schools: A review of approaches and strategies (tech.

rep.). Raspberry Pi Foundation.

Zelle, J. M. (2017). Python Programming: An Introduction to Computer Science (3rd ed.). Franklin, Beedle &

Associates Inc.

