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Abstract: Self-regulated learning (SRL) processes for monitoring and modulating one’s own 

cognition, affect, metacognition, and motivation are essential for effective learning within 

intelligent tutoring systems (ITSs). As such, pedagogical agents are typically embedded within 

these environments to scaffold learners’ SRL via prompts to engage in these processes. 

However, current pedagogical agents follow pre-established, production rules based on 

temporal and frequency inputs from the learner which limits the ability for these agents to 

provide individualized scaffolding intelligently and adaptively. In this paper, we argue that this 

issue originates from an underdeveloped learner model that does not comprehensively track the 

dynamic nature of SRL. This paper introduces recurrence plots, which visualize system 

dynamics, as a novel method for enhancing learner models to provide pedagogical agents the 

information necessary to interpret the dynamics of learners’ enacted SRL processes captured 

using log files as they engaged with instructional materials during learning with an ITS. In 

merging recurrence plots and the field of SRL, learner models can be enhanced with information 

regarding learners’ dynamical use of SRL processes to augment the accuracy and sophistication 

of pedagogical agent scaffolding.  
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1. Introduction and Related Work on Pedagogical Agents and ITSs  

  

Proficient learners can autonomously engage with instructional materials by deploying self-regulated 

learning (SRL) processes such as defining tasks, using cognitive and metacognitive SRL strategies 

during the learning task, reflecting on their progress, identifying goals, setting plans to achieve those 

goals, and modifying goals, plans, and strategies (Poitras & Lajoie, 2014; Winne, 2018). SRL processes 

are essential for effective learning of complex topics and are especially critical for environments that 

are open-ended and do not provide instructional scaffolding (Azevedo et al., 2022). However, learners 

are typically unable to demonstrate accurate and effective deployment of SRL processes during 

learning, possibly due to lack of metacognitive knowledge, thereby resulting in increased cognitive load 

and decreased learning gains (Azevedo et al., 2018; Josephsen, 2017; Paans et al., 2019; Taub & 

Azevedo, 2019). Because of this, advanced learning environments, such as intelligent tutoring systems 

(ITSs), provide instructional scaffolds in the form of pedagogical agents to detect, track, and foster 

learners’ SRL processes. We argue that the accuracy and sophistication of pedagogical agents’ 

individualized scaffolding and feedback can be significantly enhanced through visualizing and 

quantifying recurrence based on individual learners’ enactment of SRL processes.  

In a systematic literature review by Martha and Santoso (2019), pedagogical agents within ITSs 

were touted as useful for increasing domain knowledge and changing learner behavior, including SRL 

strategies and affect, through hinting, prompting, and providing feedback to learners. However, most 

pedagogical agents integrated with ITSs are rigidly programmed to follow a linear set of production 

rules based on temporal and frequency inputs (Webber & Marwan, 2015). In consequence, pedagogical 

agents do not monitor the degree to which learners’ deployment of SRL strategies demonstrates a 

dynamical relationship and thus does not intervene to scaffold functional SRL processes. This paper 

sets a rationale for using a nonlinear dynamical systems theory tool to detect, quantify, and visualize 
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learners’ changes and transitions of SRL behavior. In proposing this novel technique, this paper provides 

groundwork for pedagogical agents as interpreters of complex learner visualizations to scaffold SRL 

during learning with an ITS.  

ITSs are computerized instructional systems containing multimodal materials (e.g., video, text, 

diagram) that provide real-time adaptive instruction to learners (Graesser et al., 2018). ITSs embed a 

level of intelligence dispersed between several models including a knowledge or expert model, learner 

model containing information about how the learner exhibits learning behaviors, pedagogical model 

containing the different strategies of tutoring or teaching, and interface or communication model 

(Sottilare et al., 2018). ITSs include a level of adaptivity which allows for information obtained from 

an evolving learner model to be compared against pre-determined desired behaviors for identification 

of discrepancies between learner and expert models (Mousavinasab et al., 2018). Learner models are 

comparable to the concept of physical DNA such that these models track and store qualitative and 

quantitative information representing learner characteristics and knowledge (Akkila et al., 2019). 

Consequentially, learner models must constantly self-update information due to the dynamic nature of 

learner behavior, i.e., changing over time, and interaction as learners’ new knowledge emerges, 

relationships between concepts are made, and SRL skills are developed. These learner models are the 

foundation for the adaptivity displayed within effective ITSs that can emulate and simulate human tutor 

behaviors in providing individualized tutoring in the form of prompts and feedback to a learner via 

pedagogical agents (Kim & Baylor, 2016; Johnson & Lester, 2018).  

Pedagogical agents are artificially intelligent virtual characters within ITSs that provide some 

level of instructional, cognitive, or affective support, simulating and mimicking physical tutor-learner 

interactions (Hooshyar et al., 2015; Johnson & Lester, 2018). Several ITSs throughout education 

literature have used pedagogical agents to provide information to the learner, prompt the learner to 

engage in learning or SRL processes, monitor learners’ interactions, and provide just-in-time feedback 

to scaffold learning with an ITS (Velestianos & Russell, 2014). One notable example of an ITS is 

MetaTutor, a hypermedia based ITS for improving knowledge about the human circulatory system (see 

Azevedo et al., 2022). This ITS contains several pedagogical agents that prompt learners to engage in 

different SRL processes. The way in which the pedagogical agents of MetaTutor interact and dialogue 

with learners is grounded in a series of production rules that are both time- and frequency-based. For 

example, if a learner has not deployed a content evaluation after a certain number of minutes, a 

pedagogical agent prompts the learner to engage in this strategy via dialogue. The logic behind the 

artificially intelligent decisions made by pedagogical agents throughout ITSs to intervene, foster, or 

prompt learners to engage in certain behaviors during learning most commonly use action-condition 

rule-based reasoning (Mousavinasab et al., 2018). However, a few limitations of pedagogical agents 

arise regarding: (1) the extent to which pedagogical agents can be considered beneficial for learning; 

and (2) the “intelligence” of the pedagogical agents in their adaptive capabilities.  

  
  

2. Limitations of Pedagogical Agents  

  

While the benefits of pedagogical agents have been extensively researched within educational literature 

for the support of learning and cognitive processes (Azevedo et al., 2016, 2018; Castro-Alonso et al., 

2021; Hidayah et al., 2019), studies have not conclusively identified the effectiveness of pedagogical 

agents. While some studies support the need for pedagogical agents as scaffolders of learning outcomes 

(Bouchet et al., 2016; Davis, 2018; Dever et al., 2022; Harley et al., 2017; Schroeder et al., 2013; 

Wiedbusch et al., 2021), other studies conclude that pedagogical agents do not significantly contribute 

to greater learning outcomes or increased use of SRL processes (Castro-Alonso et al., 2021; Schroeder 

et al., 2017; Yilmaz & Yilmaz, 2020). The current paper argues that the lack of cohesive findings 

regarding the usefulness of pedagogical agents as scaffolds for SRL stem from underdeveloped learner 

models used by pedagogical agents for detecting, tracking, analyzing, and responding to learners’ 

deployment of SRL strategies while learning with an ITS.  

While ITSs are intended to provide instructional tutoring and personalization as learners engage 

with materials throughout the environment and deploy SRL processes (Hooshyar et al., 2015), 

pedagogical agents currently do not demonstrate intelligent behaviors needed to provide effective, 

timely, and adaptive individualized scaffolding for significantly increasing learning outcomes 

(SchezSobrino et al., 2020). As learner behavior is dynamic, i.e., changing over time, developing an ITS 
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which intelligently and constantly updates learner models and provides adaptive instructional feedback 

is difficult to achieve (Bouchet et al., 2016; Holstein et al., 2018). The majority of ITSs employ 

pedagogical agents that interact with the learner model on a predetermined set of actions and rules which 

assumes that the conditions for a specific prompt are uniform across all learners regardless of SRL skills, 

metacognitive knowledge, domain understanding, motivation, demographics, etc. This limits the 

intelligence of systems and defies the dynamic, nonlinear nature of SRL.  

To counteract these limitations of pedagogical agents, a new approach to informing and 

updating learner models that acknowledges the nonlinear dynamics of SRL processes and both 

qualitatively and quantitatively informs pedagogical agents embedded in ITSs is required (e.g., Li et. 

al., 2022). We outline and demonstrate a new statistical and visual technique in the field of SRL and 

ITSs that allows for the evaluation of dynamically changing SRL behaviors to be more accurately and 

comprehensively updated in learner models to improve how and when pedagogical agents prompt 

learners to engage in SRL processes during learning.  

  
  

3. Recurrence Plots as Visualizations of SRL Behavior  

  

Complexity science incorporates nonlinear dynamical systems theory (NDST) which states that small 

changes in behavior can have a large, nonlinear shift in future behavior (Amon et al., 2019). Recurrence 

Quantification Analysis (RQA) is an NDST analytical technique for measuring and visualizing the 

degree to which complex systems, or SRL behavior in our paper, demonstrate chaotic and stable patterns 

of behavior over time (Vrzakova et al., 2019). Recurrence plots are graphical visualizations of couplings 

between system components across all time points within each component’s time series that can reveal 

the changes and transitions in system dynamics (Webber & Marwan, 2015). In other words, a recurrence 

plot identifies each time at which a specific state recurs between two time-identical (i.e., auto-RQA) or 

time-different (i.e., cross-RQA, multidimensional-RQA) time series. Within this paper, we describe 

categorical auto-RQA (i.e., aRQA; see Dale & Spivey, 2005) recurrence and provide a preliminary 

example of how these visualizations can be used to describe SRL in ITSs.  

Recurrence plots are structured in a two-dimensional matrix format with the time series on both 

the X and Y axes. At the intersection of the X and Y axis within the matrix, a solid black dot is placed 

should the SRL behavior the learner engages in on the X axis recur with the SRL behavior on the Y axis 

whereas intersections where behaviors do not recur are kept white (Zou et al., 2019). The plot holds a 

solid black diagonal line from the bottom left of the plot to the top right called the line of identity. The 

line of identity represents the time at which the time series recurs with itself where Time 1 on the X axis 

is compared with Time 1 on the Y axis. While the researcher should be aware of this line, the recurrence 

of a state is not of interest when it recurs with itself as it does not reveal relationships across time 

(Webber & Marwan, 2015). It is important to note that a recurrence indicator at time intersection (i, j) 

does not contain information that can be generalized throughout the entire system across time; rather, it 

is the culmination of all recurrence points that produce interpretable structural patterns that should be 

considered to diagnose the dynamics of a system. The structure of recurrent points across the plot can 

indicate if the overall processes of a system are stationary, nonstationary, cyclic, deterministic (i.e., 

stable), or chaotic. For example, should there be several long diagonal lines that are parallel to the line 

of identity on a recurrence plot, the system can be described as more deterministic than a recurrence 

plot displaying several shorter diagonals (Webber & Marwan, 2015). Stationary systems are visualized 

by the equal dispersion of recurring patterns across a plot whereas nonstationary systems display fading 

or darkening areas within the recurrence plot (Webber & Marwan, 2015).  

While studies across various disciplines (e.g., Sujith & Unni, 2021; Vrzakova et al., 2019) have 

utilized recurrence plots to visualize complex systems, very few studies have examined how recurrence 

plots can visualize learner interactions with an ITS (see Allen et al., 2017; Li et al., 2022). Several 

advantages exist in utilizing recurrence plots to drive pedagogical agents’ instructional interventions as 

learners engage with materials throughout an ITS. First, several types of data can be applied to this 

statistical technique. This includes both categorical and continuous data that is outputted from data 

sources including log files, eye tracking, concurrent verbalizations, written answers, etc. As such, 

recurrence plots can be used across a variety of contexts and domains while adhering to restrictions that 

may occur in natural environments (e.g., log files collected in classrooms; Dale & Spivey, 2005). 

Second, recurrence plots can exist in parallel with noisy, unstructured environments that typically 
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contest the assumptions of typically powerful linear analytical tools (Vrzakova et al., 2019; Webber & 

Marwan, 2015). As SRL processes are complex systems, the method in which learners deploy SRL 

should be analyzed and interpreted as such. In using RQA and recurrence plots as visualizations of SRL 

processes researchers, and by extension pedagogical agents in ITSs, can methodologically and 

analytically respect the complexity of SRL. Finally, recurrence plots can be utilized to both qualitatively 

and quantitatively examine the characteristics of learners’ SRL. In addition to the qualitative 

topographies and patterns that can be extracted from recurrence plot visualizations to provide 

information as to the temporal dynamics of a system, quantitative statistical measures can be extracted 

from the organization and frequency of the black indicators of recurrent patterns. These metrics 

extracted from recurrence plots have the potential for describing learners’ SRL without diluting the rich 

data that can be extracted from their interactions with the ITS (Li et al., 2022). At the crux of these 

advantages exists the question of how recurrence plots can be used by ITSs to update the learner model 

to improve pedagogical agent scaffolding of SRL.  

For this paper, we extracted a representative participant from a sample of undergraduate 

students who learned about the human circulatory system with an ITS, MetaTutor, while receiving 

prompts from pedagogical agents to deploy SRL strategies. The participant extracted had a minimum 

of ten SRL events and demonstrated the lowest learning gains out of the entire sample of participants 

receiving scaffolding. This participant’s recurrence plot over time visually displays a noticeable shift in 

the recurrence of deployed SRL strategies. Specifically, the participant shifts from displaying functional 

SRL behaviors (Figure 1A.) to dysfunctional (Figure 1B.). While towards the end of their session the 

participant displays functional SRL behaviors (Figure 1C.), the participant was unable to recover as 

exhibited by their low learning gains. The method in which this participant’s data was extracted and 

visually examined serves as the first exploration into interpreting visualizations of the dynamics of 

learners’ SRL use to transform the traditional learner model and enhance pedagogical agent scaffolding.  

  

 
Figure 1. Recurrence plot changing over time as learners engage in SRL processes.  

  
  

4. Future Directions in Pedagogical Agent Research and Development  

  

The use of recurrence plots, specifically their interpretation, within SRL and ITS research will vary 

depending on the learning outcomes, measures, and processes of interest. Past studies have found mixed 

findings regarding what constitutes as “desirable” SRL behaviors exhibited by students. Dever et al. 

(2022) found that a recurrence plot with a homogeneous distribution of recurrent and nonrecurrent 

patterns of SRL behaviors scaffolded by pedagogical agents during learning about the human circulatory 

system are indicative of healthy deployment of SRL strategies. Meanwhile, more recurrent behaviors 

in the study by Li et al. (2022) described in the previous section are indicators of high performance 

while diagnosing a virtual patient. In consequence, future directions in research should research and 

understand the balance needed between chaotic and stable states to produce greater learning outcomes. 

From this, researchers will be better able to inform how and when pedagogical agents should intervene 

to provide scaffolding to learners while deploying SRL processes in an ITS.  
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Merging recurrence plots from RQA and the field of SRL will allow learner models to be 

updated with information regarding the functional use of SRL processes as learners engage with 

instructional materials within an ITS. By updating learner models with this type of information and data 

only accessible through RQA (and by extension recurrence plots) pedagogical agents would be able to 

identify a correct point in time in which to provide scaffolding to learners. As recurrence plots divulge 

information about the dynamics of a complex system, future pedagogical agents can provide scaffolding 

that is more geared towards fostering functional dynamics rather than depending on temporal and 

frequency data pervading learner models today.  
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