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Abstract: When undergraduate students engage with computational thinking (CT) activities that are 

authentic to them, it adds not only meaning to their problem-solving actions but also a variation to 

their strategies and mechanisms applied during problem-solving, termed here as learners’ embodied 

processes. Through the perspective of designing for embodied cognition, maintaining such 

possibilities for variation in solution pathways could be the key to making problem-solving authentic 

to the learners. Using the 4E cognition narratives of two undergraduate Arts learner’s pathways in 

solving computational tasks in an authentic setting, we speculate that such multiple solution 

pathways need to be evaluated in pilot studies for density of significant actions during 

problemsolving to prioritize the actions that show spaces which require the design of embodied 

scaffolds.  
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1. Introduction  

  

Initiating novice learners into the world of problem-solving using computational thinking (CT) is 

challenging because the factors of identity and meaningfulness of computation remain distant from the 

learners’ real-life context (Liesaputra, V, 2020). One of the major challenges in learning computational 

thinking is its associated abstractness of the concepts and procedures. Visual programming environments, 

such as scratch, NetLogo, Greenfoot, etc., attempted to reduce the abstractness by replacing the abstract 

syntax of the constructs with visual block-like elements. These visual programming environments have 

been proven to be significantly effective in training students' CT skills (Brennan & Resnick, 2012). A 

similar approach has been seen in using visual programming by Bers, Flannery, Kazakoff & Sullivan, 

(2014) for working with robots. Programmable robots-based learning activities reduce syntax's abstractness 

by employing visual programming environments similar to NetLogo and Scratch (Kim & Jeon, 2007) to 

program their robots. The fact that the robots are physical and tangible, and students can systematically 

manipulate them through coding, further bridges the gap between abstract CT constructs and reality. 

However, programmable robots have limitations in terms of the problem-solving contexts they offer, i.e., 

most programmable robots-based activities employ abstract and imaginary scenarios and lack authentic 

real-life problem contexts (Bers, Bers, Flannery, Kazakoff & Sullivan, 2014). Programming the robot itself 

when tested as a way of teaching CT, is designed through a technocentric lens (Sengupta, Dickes, & Farris, 

2018) where considerable time needs to be spent in the learning curve of the technology.   

This leads to some of the definitions of CT in CT education that focus on not only the skills applied 

in problem-solving, but also on the need to identify computational aspects and computational potential in 

the real world (Royal Society, 2012). Constructionist approach (Harel & Papert, (1991) and Situated 

learning (Lave & Wenger, 1991) based methods designed to overcome this challenge created a remarkable 

solution for engaging such learners with support towards connecting computational aspects in their context. 
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Learning while being situated in authentic real-life scenarios has been argued as a better learning practice 

by such literature in cognitive sciences.   

Traditionally, the processes of thinking and reasoning are predominantly understood using the lens 

of information processing theories of cognition (Pande & Chandrasekharan, 2017; Reynders et al., 2020). 

These approaches assert that a problem solver first engages in the extraction of information from the content 

embedded in the learning or task environment and then the learner performs thinking or reasoning about 

‘using’ this extracted information. However, the new approaches to cognition (e.g. 4E cognition; Menary, 

2010; Newen et al., 2018) and situated learning (Sentance & Humphreys, 2018)) insist that cognition and 

knowing cannot be separated from bodily actions and context. The embedded, embodied and enactive 

cognition approaches regard one's thinking and reasoning processes, actions, and the environmental 

elements being interacted with, as entangled together (Pande, 2021).   

In summary, we derive from our previous work that embodied narratives and analysis of actions in 

context intertwined with cognition would lead to the exploration of learners’ problem-solving processes  

(Satavlekar, et al., 2021). Extending the previous work, we now look into the question of ‘how’ such 

embodied narratives can be useful from the perspective of design. We hypothesize that such exploration 

would be useful in identifying sites where embodied scaffolds can be designed for the novice CT learner. 

The situated learning and embodied cognition desirable for acquiring CT skills would also make room for 

reflection spots leading towards discoveries and multiple real-time problem-solving pathways, which add 

to the knowledge of either the technology or the CT practices for the learners.   

In order to test this hypothesis, we conducted a pilot study with two undergraduate participants and 

provided them with IoT devices to engage in real-life computational problem-solving scenarios. Our broad 

research question for this study is ‘What can be the implications of novice adult learners’ problem-solving 

processes in embodied activity design rooted in real-life CT-based context?’ We propose the use of IoT 

devices and associated utility platforms to design learning activities that can help students practice CT 

constructs. Utility platforms such as IFTTT, Google Home, Alexa, etc. help configure the various IoT 

devices to work together and allow customizations based on the user's authentic problem-solving needs. 

Examples of possible student tasks are given below.   

  

Example: Students are given a task to configure a smart light bulb such that it automatically 

switches on at the start of the evening and switches off before a predefined bedtime.   

  

In the above example, the task of configuring the IoT devices, similar to the programming activities, 

will require students to apply CT skills to accomplish the needed behaviors from the IoT objects. In this 

paper, we propose to exploit such affordances of the IoT objects and the utility platforms to make novice 

CT learners practice various CT constructs by programming Real-life smart devices. These objects are 

slowly becoming ubiquitous in many parts of the world and society. Application of such platforms that are 

situated in the real-world context (Lave, J., & Wenger, E., 1991) and have an impact on everyday life 

activities makes them more powerful as tools to think with to nurture CT skills. This paper reports the 

various different pathways that were found to contain significant action-cognition sequences. While doing 

so, we also analyze the density of such sequences and the agent or the actors involved, to speculate the 

implications of designing embodied scaffolds in the future iteration.  

  

2. Methodology  

  

The study is an open-ended qualitative pilot investigation of novice learners’ actions and cognition while 

solving computational thinking tasks grounded in their real-life context. The participants were chosen using 

convenience sampling. There were two participants, one male, and one female, (age 20 and 19 years 

respectively). They were second and third-year language (Sanskrit) undergraduates having no prior 

exposure to Computer Science in academics. These participants were chosen in order to know how adult 

learners who are novices to the CT domain interact with the smart programmable computational objects in 

their daily life and what could be challenges they face. In-person sessions were conducted over a duration 

of approximately 3 hours. The session included a familiarization phase and an unguided problem-solving 
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phase as shown in figure 1. The tasks in both these phases were aligned according to the increasing order 

of complexity of the problem as described in the figure.  

 
Figure 1. Phases of activities in the study (Satavlekar, et al., 2021)  

Data collection and Analysis   

Semi-structured interviews were administered with the objective to make the participants retrospectively 

reflect on their problem-solving processes. The interviews attempted to be as non–leading as possible: with 

questions like “can you narrate one of the activities, how you went about solving the problem in your own 

words”. However, encouraging the students to be as detailed as possible about their experience (“Did you 

get bored or tired during the activities? Were there any instances which you felt interesting or could have 

been interesting?”) tended to open up more information. Retrospective interviews were conducted towards 

the end of the study. The researcher also asked questions between the two phases, to confirm the 

participant’s willingness to continue or abandon the next activity. In addition to the interview data, we also 

collected the video recording as observation data. Both the interview and video transcripts were analyzed 

to get a clearer picture of how the participants got familiar with the embodied environment and how they 

performed the given CT tasks. Using the observation and interview data from our two cases we tried to 

understand how the participant’s engagement with the tasks in the respective sessions may have triggered 

CT in the participants.  

  

Coding of the data  

We performed open and focused coding of the video transcripts and identified multiple significant roles 

and actions corresponding to those roles associated with learners’ problem-solving occurring in the 

unguided problem-solving phase of the session.  

As seen in table 1, the roles performing as actors or agents during the problem-solving are- (i) the 

mentor (M), (ii) the learner (L), and (iii) the systems or application interfaces communicating through voice 

and visuals (S) and the combinations of two or more actors among these three. For the corresponding 

combination of actors, we use an abbreviated symbol as a prefix to the respective action code. The actions 

are inferred from the actors’ problem-solving processes keeping in mind two things- (i) the list of CT skills 

and practices (CSTA, & ISTE., 2011) such as algorithmic thinking, logical thinking, testing, and debugging, 

and (ii) the response categories from the system such as showing the success of the problem being solved 

(RS) or expression of a constraint (C). For example, ML-DBUG specifies that the action DBUG is 

performed by both, the mentor and the learner, the mentor being the larger contributor. The contribution is 

categorized based on which actor performs as the driving anchor for that specific action. An example for 

clarification would be - if the learner attempts to solve a particular problem in a stepwise manner by taking 

  

  



489  

  

the smartphone in his/her hand, we term it as L-ALGO, whereas if a mentor suggests what the learner 

should do next and if the learner follows or discusses upon such suggestion, we would term it as MLALGO.  

  

Table 1. Codes generated in data analysis showing the actors and their cognitive actions  

 
Encoding  Code   Meaning  

 M  Mentor  

L  Learner  

  

 S  System  

Actors   

 LM  Learner-mentor verbal interaction  

 
ML  Mentor-learner verbal interaction  

LS  Learner and system verbal interaction  

Actions  

DSCS  Discussion  

DCMP  Problem formulation, decomposition  

XPLR  Exploring action  

ALGO  Algorithmic thinking  

LOG  Logical thinking and/ or decision making  

  

 DBUG  Debugging actions  

 
ABS  Abstraction  

C  System Constraint identified or reported  

RS  Success response  

RNS  Unsuccessful response  

  

After the encoding, we analyze the action sequences in terms of pivotal points in problem-solving - such as 

the problem assignment, problem decomposition, first solution, difficulty scenario faced or constraint 

identification, a revision (or multiple revisions) of the solution, successful final completion of the solution, 

and the conclusion. We identify the time spent to reach such pivot points and compare the significant actions 

occurring during this timespan to calculate the density of significant actions per minute. We compare the 

two learners’ problem-solving processes in terms of the density and the learner’s involvement as an actor 

between the particular pivot points.  
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3. Results  

  

3.1 Revision and Reflection  

  

Figure 2 shows the significant actions in context along with the learners’ cognition of CT and the system 

in two stages: the upper part describes unguided activity 1 where the learners have to save the smartphone 

battery by switching off applications such as Bluetooth or reducing the smartphone brightness, etc. The 

first learner L1 begins with initial unguided activity and quickly designs the solution. When the mentor 

confirms the solution and asks the questions, “how will you test this activity, can we check this right now” 

and “is this going to achieve what was expected in the problem statement”, the learner faces a 

REFLECTION SPOT, pivotal to the debugging actions ahead carried out with system application to revise 

the initial solution and make it more cohesive to the given problem statement. This also leads to learning 

about the application interfaces used for problem-solving (Satavlekar, et al., 2021) which may be useful for 

the learner in solving more complex problems. On the other hand. Learner 2 is motivated to ask clarification 

questions to come up with problem decomposition at the initial stage of problem-solving. Thus, the intrinsic 

motivation towards decomposing problem leads to quick revisions of own solution.  

 

 

Figure 2. Learner 1 and 2’s multiple pathways and density of significant actions in embodied problem 

solving processes of two unguided activities  
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3.2 Detailed Narratives: Learner 1 and 2  

  

Analysis of a more complex activity is seen in unguided activity 2 part of figure 2, where the learner is 

trying to connect a motion sensor to one of the voice agents in order to program it to send an email alert 

when any motion is detected nearby. The learner L1 first begins with an exploration of the various 

smartphone applications associated with the motion sensor operation and takes approval from the mentor 

to try out the different applications available in the smartphone from time to time. Figuring out the 

proprietary application’s functionality to operate the Motion sensor is relatively easy for the learner but the 

learner is concerned about how to integrate it with an application to set up the required routine. The second 

learner L2, on the other hand, begins with proactively asking clarification questions to decompose the 

problem and articulate the solution.  

Here onwards, the learner L1 seeks a mentor’s support, and together, they engage in multiple 

attempts to figure out which application would be suitable for the purpose, but the system shows an issue 

with connecting the two applications. The learner checks the manual of the motion sensor and finds Amazon 

Alexa can be integrated. Although the application is identified now, the learner struggles with connecting 

the two applications multiple times. During this entire process of thinking, following the stepwise procedure 

as per the procedure manual and Alexa exploration, the learner is the prominent actor operating the system 

application and proactively communicating with the mentor. However, as it does not yield the desirable 

outcome, the mentor attempts to solve the connection issue more prominently than the learner by taking 

control of the system application for more instances than before. Eventually, they figure out the issue and 

connect the two applications and the mentor shows the learner how to test and confirm that the two 

applications are communicating with each other and are able to detect the motion sensor. For the second 

learner, this link between Amazon Alexa and the Motion sensor has been established by the mentor. This 

allows the learner L2 to figure things out on their own without the mentor’s intervention. As we can observe 

from the figure 2, the learner 2 spends considerably less time struggling and asking for the mentor’s help 

in the first ten minutes. Learner 2 also stumbles upon a solution thread to the previous activity in figuring 

out this interface on her own, which is an important cognitive indicator.  

  From around 10 minutes in solving the activity, we see that the mentor is acting as the prominent 

support for the learner L1 in every action such as debugging, forming the revised solution by applying 

logical and algorithmic thinking, and helping the learner actively with the testing tasks. Whereas, for learner 

L2, the mentor only interferes with giving scaffolds but does not takeover the charge of the system at any 

point. The system application Alexa gives out a notification of motion detection sensed from the motion 

sensor, but the task of triggering an email remains unsolved at first for both the learners at different instances 

in time. The mentor assists the learners now with debugging and they finally get closer to the desired 

outcome. In concluding the activities, the mentor creates REFLECTION SPOTS for the learners which 

leads to a reflective evaluation of the solution designed by the learners as compared to the requirement of 

the initial problem and a discussion about the limitations of the system application. Time spent on this 

reflective discussion is similar (1-2 minutes) for both the learners.  

  

Learner experience report from interview transcript excerpts  

Q1. Interviewer: “what was your experience and can you tell me say, any thing interesting you may 

have learnt today?”   

L1: “Like.. exploring the apps for the first time.. Then, learning the interface or learning the 

features of the app.. Then third is the operating those.. With help, with guidance.. Fourth will be 

discovering some new operations for  that. Like we did for the the motion sensor and stuff. We.. 

have to discover how we should link it to to Alexa.. first one. I think it would be comprehension. 

Like how much I would be able to comprehend with future.. This will be first test..”  

L2: “I had to find everything, right.. So it was interesting. The previous alarm and all were known 

like regular alarms.. These new things were completely unknown.. [Contd.] And I found one thing 

after another.. So it was interesting.“  

Q2. Interviewer: if everything would have been already connected, do you think it would have been 

better to complete the tasks faster?”  



492  

  

L1: “Uhh.. for the time, when we were doing the amazon part in first half. That time I thought that 

ready thing would have been better.. because we have to sensor two or more times.. so that was 

time-consuming. But at the time we connect the motion sensor, that was new part. I mean, we have 

to link it through three parts.. [Contd.] So, that was just interesting part.”  

Q3. Interviewer: “Now we spent 3 hrs today. Did you feel bored? Or did you feel like 3 hrs period was 

appropriate?”  

L1:  “No.. I mean, first of all, this computer related stuff is interesting to me. I mean, I could perform 

all these tasks. So I was not bored as such. But considering time period, if we had not spent some 

time in the middle, we could have done more activities.”  

  

4. Discussion  

  

Presentation of learners’ embodied processes in the context of CT-based problem-solving help us 

understand that it is a time-consuming process that does not follow a single straight path. The multiple 

pathways and struggles of the learner’s cognitive processes may have been frustrating for the learner, but 

the answer to the interview questions Q1 and Q2 inform us that the learner was engaging in the activities 

with retained interest.   

 

Takeaways from narrative  

1. The prominent actors or combinations of actors vary across the whole computational thinkingbased 

problem-solving process. In the current analysis, this prominence is only attributed to the proactive 

actor in verbal communications, cognition, and actions among the three (learner, mentor, and 

system). No other measurement to quantify the contribution of the actors is applied here.  

2. A single problem given in this context does not have a single solution, and every solution designed 

by the learners may not always be accurate. REFLECTION SPOTS created by the mentor for the 

learners play an important role in initiating the evaluation of the designed solution, attempts of 

identifying the limitations of the system, and also optimizing the current solution.  

3. There is a need to design mentor protocol and scaffolds in such embodied problem-solving 

approaches involving multiple pathways and iterations such that, the learners do not become 

dependent upon the mentor to solve the problem. The ultimate goal of the problem-solving 

exercises may not be to achieve the best solution but to engage with activities that require cognitive 

experiences leading toward the practice of CT skills during the process. Even so, the learner’s 

autonomy and in turn, authentic engagement may be hampered in absence of the protocol.  

 

Speculating a takeaway from the density of significant actions  

The analysis of the density of significant actions could be an important aspect while designing embodied 

problem-solving activities. We base this speculation on the analysis that shows how the learner L1 and the 

mentor had to spend significant time on activities that involved less number of computational thinking-

oriented tasks in the majority part of the complex unguided activity 2 of problem-solving. We can support 

this speculation with the learner’s answer in the first half of the Q2, that it may have been better to exclude 

the connection in the initial task. The learner may not desire to spend a significant amount of time on actions 

that are not cognitively productive for the learner. The learner may also want to reserve this time for solving 

more such cognitively intense tasks, as he expressed in the answer to Q3. In case of L2, having offloaded 

the task of connection allowed the learner to practice more productive activity of problem solving which 

we plan to confirm with a larger number of students in future studies.  

The presented analysis of cognitive processes can also be effective in informing WHO is the 

prominent actor while dense (more significant cognitive actions in less time) are being performed. This will 

be useful in designing scaffolds and mentor protocol as a scaffold, such that the problem-solving activities 

remain authentic to the learner and the learner does not become dependent upon the mentor, as stated earlier.  

We end this discussion with the issue that in this study we have only analyzed two learners’ actions through 

embodied narrative and we do not intend to make any claims about the design or learner experience because 

of the small sample. Our analysis of the second learner shows that the pathways followed are even more 
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different in terms of actions of problem-solving, cognitive processes, the time taken to uncover each point 

of success, limitations, and revision. However, both the learners completed the activities with enthusiasm 

and expressed interest in solving more such complex computational problems in their semistructured 

interviews. Presenting an experience report and starting the discussion about a novel angle of analysis with 

importance to the density of significant actions in these multiple pathways is our sole intention. We need 

to iterate this analysis over our next study participants to provide strong support to the speculated embodied 

design implication. An analysis similar to or inspired by the one presented in this paper, exploring the 

multiple pathways of learners’ embodied problem-solving processes in a real-life CTbased context may be 

a rich source of information to tap into to design more embodied activities for the future.  
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