
Wong, L.-H. et al. (Eds.) (2013). Proceedings of the 21st International Conference on Computers in
Education. Indonesia: Asia-Pacific Society for Computers in Education

418

Evaluation of an Algorithm and Programming
Learning Support Environment based on

Classroom Practices

Satoru KOGUREa*, Makoto OKAMOTOa, Koichi YAMASHITAb,
Yasuhiro NOGUCHIc, Tatsuhiro KONISHIa & Yukihiro ITOHd

aGraduate School of Infomatics, Shizuoka University, JAPAN
bFaculty of Economics, Tokoha University, JAPAN

cFaculty of Informatics, Shizuoka University, JAPAN
dShizuoka University, JAPAN
*kogure@inf.shizuoka.ac.jp

Abstract: In this paper, we describe an algorithm and programming learning environment by
illustrating the relationships among programs, target domains, and operations. Our proposed
learning environment supports software programming learners in understanding code that
includes nested loops by using a function that visualizes the differences in the target domain's
state before and after executing a sequence of operations. We evaluate this environment in the
classroom, and the results suggest that the proposed environment improves the understanding
of programming beginners.

Keywords: Learning support environment, nested loops, teaching algorithm and
programming

1. Introduction

Several research studies have focused on visualized programming learning environments (Butz et al.
(2006), Fossati et al. (2008), Gabor (2009), Malmi et al. (2004) and Noguchi et al. (2010)). However,
definitive educational methods have not yet been established for learning algorithms and
programming, because learning units in these areas are very large in scope (McCracken et. al. (2001)
and Bennedsen & Caspersen (2008)).
 Ideally, items to be learned are divided in smaller chunks, and learners learn each chunk in
three stages. The first stage is the algorithm-understanding phase (S1). Typically, learners attend a
lecture (S1-1) and then reproduce the behavior of the algorithm using the specified input data (S1-2).
Learners also produce operation sequences that represent the behavior of the algorithm. The second
stage is the code-understanding phase (S2). Learners learn to understand the operation sequences and
the state of the target domain (S2-1). They also understand the program code as a whole, based on the
operation sequences (S2-2). The third stage is the coding phase (S3). Learners write (S3-1) and test
(S3-2) their own program code.
 We have already constructed the algorithm learning environment for the S1-2 stage (Noguchi
et al. 2010), and we have also constructed the algorithm and programming learning environment for
the S2 stage (Kogure et al. 2012). In this study, we focus again on the S2 stage. As in the previous
study, we define three fields in programming: the programs field (PF), the target domain field (TDF),
and the operations field (OF). It is important to understand these three fields and the relationships
among them in order to understand programs and algorithms. PF stores the program code. OF stores
the operation sequences. TDF visualizes the state of the target domain when an operation sequence is
executed.
 In the previous study, we suggested that it is important for learners to understand the
relationship among PF, TDF, and OF on the S2 stage. Learners can understand the operation
sequences for specific input data and the state of the target domain corresponding to the operation
sequences with relative ease. However, they find it very difficult to understand the behavior of the

419

program code. One cause of the difficulty is the gap between the concrete fields (TDF and OF) and
the abstract field (PF). Therefore, we propose a new method for understanding program code in order
to bridge this gap for learners.
 The system helps the learner learn through the following procedure: First, learners create a set
of operation sequences to process specific input data. Then, learners label the set with its intended
purpose. By doing so, the system promotes the learners' understanding of the relationship between OF
and PF and between TDF and PF. However, it is difficult for programming beginners to understand
certain concepts, such as nested loops and recursive functions.
 The primary target of this paper is to focus on teaching multiple nested loops in programs,
and we evaluate our previous environment (Kogure et al. 2012) for promoting this understanding in
actual classroom in a university. We evaluate following three effects of adopting our proposed system
in the classroom. The first effect is that the learners would understand nested loops (E1). The second
effect is that the learners would be able to trace through a program that includes nested loops (E2).
The third effect is that the teacher would be able to measure the learners' level of understanding by
observing a learner’s behavior in the system (G3). We asked a teacher to use our proposed system in a
classroom setting, and the results suggested that all three effects were achieved.

2. Concept of Existing Algorithm and Programming Learning Environment

2.1 Three Fields of Programming

We believe that it is very important for learners to understand three important fields in programming
and the relationships among these three fields. As mentioned earlier, these three fields are the
programs field (PF), the target domains field (TDF), and the operations field (OF). PF manages the
program code. TDF presents the state of the target domain, before and after the system executes
certain operation sequences. OF manages the operation sequences. We explain the three fields in
more detail.

Based on the learning goals, the teacher selects an algorithm and a program code to illustrate
the algorithm. Then, the learners select the input data to use in order to check the behavior of the
sample program. The sample program is stored in PF, where a fragment of the sample program pi is
included in program set P = {p1, p2 ,... ,pi, ... ,pN}. The system automatically embeds a program
fragment p'i (typically a sprintf operation) to observe the behavior of a fragment pi in the original
program set P. The system compiles and executes the program set P' = {p1, p'1, p2, p'2,... ,pi , p'i , ...
,pN, p'N }, then it obtains the execution histories EH = {eh1, eh2, ..., ehj, ..., ehM}. If P includes nested
loops, the number of execution histories M is greater than the number of code fragments N. The
system converts the execution histories into operation sequences, which reproduce the operation for
the algorithm-understanding stage (S1-2); for example, an operation sequence could be "compare A
with B" or "swap A for B" for the sort algorithm. Therefore, the set of operation sequences OS = {os1,
os2, ..., osk, ..., osO} is in OF. The system can present the states of a target domain, stdk after the
system executes the operating sequence os1 to osk in order for the learner to analyze the effects of the
operating sequences. Therefore, the set of the target domain's state, STD = {std1, std2, ..., stdk, ..., stdO}
are in TDF.
 Our proposed algorithm and programming learning environment promotes the learner’s
understanding of the code by illustrating the relationships among the P in PF, the OS in OF, and the
STD in TDF, caused by the execution of EH.

2.2 Gap between the Abstract Field PF and the Concrete Fields TDF and OF

In the program P in PF, the teacher describes the algorithm at a high level. The OS in OF and STD in
TDF are concrete forms, because the system generates OS and STD from EH, whereas the system
executes P' for specific input data. Programming learners easily understand the behavior of OS and
STD; however, they have difficulty understanding the behavior of P.
 In this study, we use the following three processes to help learners understand a program that
includes nested loops. First, the system help learners to understand the purpose of osk, to observe stdk,

420

and to compare stdk with stdk-1. Second, the system teach learners how to insert an os (from osk to osk')
into a package posk, so that learners would be able to understand and describe posk and to compare
stdk' with stdk-1. A posk, which is described in a tag, corresponds to an inner loop in the sample
program. Third, the system teach learners how to insert a pos and/or an os into a package pos'k, so that
learners would understand and describe pos'k in order to space out each posk. This way, learners
understand the outer loop. Thus, the system helps learners to fill the knowledge gap between the
abstract field PF and the concrete fields TDF and OF.

2.3 Externalization to Illustrate the Learners’ Understanding

In a programming exercise, the teacher asks the learners to describe their own understanding of the
concepts. This task has two purposes. First, the learners are able to objectively reaffirm their own
understanding. Second, the teacher can check each learner’s level of understanding. Therefore, the
system must have at least two functions. One is a function where the learners verbalize the intent of a
set of operation sequences. Another is a function where the learners pack the operation sequences into
a package using a GUI interface in order to illustrate the coding/abstraction phase.

3. Overview of Existing Algorithm and Programming Learning Environment

Figure 1 shows the interface of our proposed learning environment. In Figure 1, (1) corresponds to
PF, (2) corresponds to TDF, and (3) corresponds to OF.

Figure 1. Interface overview.

 If learners push either the "PREV" button or the "NEXT" button, the system displays the
previous execution history ehj-1 or the next execution history ehj+1, respectively, and it highlights the
program fragment pi that corresponds to the execution history ehj on PF. The system also helps the
learner visualize the stdk that corresponds to the execution history ehj on TDF, and it highlights the
operation sequence osk that corresponds to the execution history ehj on OF. We believe that learners’
program tracing skills are improved by observing the state of target field synchronously with
executing step-by-step (E2 described in section 1).
 TDF consists of the constant area (Figure 1 (2-1)), the previous state area (Figure 1 (2-2)),
and the current state area (Figure 1 (2-3)). To compare the states before and after executing a certain
program fragment pi in PF or a certain operation sequence osk in OF, learners can use the state
storage function. If learners push the “STORE” button, the system copies the information of the
current state area to the previous state area. By observing the differences between the previous state
area and the current state area, learners learn the behavior of a specific statement or operation.

421

 In OF, to generalize the operation sequences osk, learners can pack any operation sequence as
shown in Figures 1(3). Then, learners can label the group of operation sequences in Figures 1(3).
Next, when learners click the vertically long cell for the package of operation sequences, the system
shows the values of the variables before and after the execution of the operation sequences in the
previous state area (Figure 1 (2-2)) and in the current state area (Figure 1 (2-3)), respectively.
The learner generalizes operation sequences by selecting some of the operations, packing them into a
package and tagging a meaning to the package. We believe that those generalizing activities lead the
leaner to focus on the hierarchical structure of the whole operations and hence lead to more deep
understanding of nested loops (E1 described in section 1). We also believe that the teacher can
observe the learner’s understanding level based on the learner’s selecting, packing and tagging results
which are visualized by our system (E3 described in section 1).
 To ensure that the learner enters the correct tags, the system offers a selection of tags and asks
the learners to select the tag that is most similar to meaning tagged by learner. It would be ideal for
the system to automatically judge the correctness of learners’ tagging meaning by using semantic
analysis; however, understanding a natural language sentence is difficult to achieve with high
accuracy.
 Next, the system helps learners to understand one step of the outer loop using the n-lap
externalization function. For example, in Figure 2(1), learners grouped and labeled three operation
sequences. In Figures 2(1) and (2), they created a group of operation sequences by clicking "five" for
the fifth operation, "nine" for the ninth operation, and the "PACK OPERATIONS" button (shown in
Figure 1(3)). If the learner clicks on the “N LAP ON” button (Figure 1(3)), the system displays three
labels written by the learner and a new input field where the learner describes the general meaning of
the n-lap descriptions. By performing this task, learners can clearly understand one step of the outer
loop.

(1) after learner finish tagging on
1, 2 and 3 laps in inner loops.

(2) after packing a nested
package

(3) after learners push n laps button

Figure 2. Tagging n Laps.

4. Testing the Learning Environment in a Classroom Setting

4.1 Purpose and Conditions

We evaluate our system to confirm three effects: E1, E2 and E3 described in section 1. This
evaluation tests the following three hypotheses:
 Hypothesis 1: Packing operation sequences into a package and tagging the package have a

beneficial effect in understanding the processes of nested loops. (Hypo1)
 Hypothesis 2: Illustrating the relationships among PF, TDF and OF has a beneficial effect on

tracing a program that includes nested loops. (Hypo2)
 Hypothesis 3: The learning environment can be an effective means for the teacher to judge each

learner’s level of understanding. (Hypo3)
 The subjects for the experiment were 30 art students (sophomores) from a university in Japan.
Each of the subjects had less than a year of learning programming.
 For the experiment, two consecutive lectures were given in the university. The first lecture
about single loop and nested loops was given by a professor who regularly teaches programming
courses. In the second lecture, we allowed the subjects to use the learning environment to understand
nested loops. In both experiments, we recorded the activities on the PC's display in order to observe

422

and analyze the subjects' interactions with our learning environment and to determine the subjects'
understanding of programs that include nested loops. We used BB FlashBack Express 3 for recording
the screen video of subjects' interactions with the environment.

4.2 Method of the Experiment

We conducted a pre-test at the end of the first lecture to judge the subjects' understanding level of
nested loops before using the learning environment. Then, we asked the subjects to learn two
programs using the learning environment. The program for the first exercise, Ex1, includes nested
loops and displays a pyramid shape using the asterisk character. In learning the first program, the
teacher described how to use the learning environment, and we helped the subjects to use the
environment. The program for the second exercise, Ex2, also includes nested loops and stores a
triangle shape using the asterisk character into two-dimensional array. In learning the second program,
neither the teacher nor we provided help to the subject in understanding the programs. The subjects
were given 20 minutes to learn the second program. Then, we conducted a post-test at the end of the
self-study (second program) to judge each subject’s level of understanding of nested loops after using
this environment. Finally, the subjects filled out a questionnaire, which we used for a subjective
assessment of the experiment.
 The programs used in the pre-test and the post-test are different; however, the questions are
almost the same. Questions 1-1 and 1-2 ask the roles of the first and the second inner loops,
respectively. Question 1-3 ask the role of the outer loop. Questions 2-1 and 2-2 ask about the values
of the control variables to judge the learner’s skill in program tracing. Question 3 asks the purpose of
the program as a whole.

4.3 Verifications of Hypotheses and Review of Results

To determine the effectiveness of our learning environment, we eliminated 6 subjects who had already
fully understood nested loops in the pre-test. Then, we eliminated 6 other subjects who failed to
record their own PC activities. Therefore, we analyzed 18 recordings.
 For Hypo1 and Hypo2, we checked whether the subjects performed the 14 actions when
subjects were learning the two programs. Then there are the 2 actions for Hypo2. For each action, we
categorized the 18 subjects into those who performed the action (positive group) and those who did
not perform the action (negative group).
 In some actions, the ratios of subjects in the positive group versus the negative group are
more than 2 or less than 0.5. In those cases, smaller groups had less than 6 members, and the
performance of an individual largely affected the performance of the whole group. Therefore, we
eliminated those cases from the evaluation. Thus we selected the 6 actions that we could examine in
detail, as follows:
 Act 1: The subject tries to pack the operation sequences into a package for the outer loop on Ex2
 Act 2: The subject tries to tag all packages on Ex2
 Act 3: The subject correctly tags all packages on Ex2
 Act 4: The subject tries to pack a nested package on Ex2
 Act 5: The subject correctly packs the nested package on Ex2
 Act 6:The subject fully confirms and observes all states of the target domain STD that

corresponds to all program fragments P on Ex2

 First, we analyzed the relationships between the pre-test score and these actions, and reaped
the result of no significant difference between the negative and positive on an independent t-test.
 We analyzed the elevated score from pre-test to post-test. As results, we reaped the following
conclusions regarding the effectiveness of the actions (if there is a significant difference between the
negative and positive with 5% significance level by performing an independent t-test, we put an
asterisk after the act number. And, if there is a significant difference between the negative and
positive with 1% significance level, we put two asterisks after the act number):
 Act 2* is effective in understanding a single loop in Q1-1.
 Acts 1**, 2*, 4** and 5* are effective in understanding the outer loop in Q1-3.

423

 Acts 1**, 2*, 4** and 5** are effective in understanding the program as a whole in Q3.
 Act 6* is effective in gaining the skill of program tracing in Q2-1.

 On the other hand, for Hypo3, we analyzed the relationship between the post-test score and
these actions. we reaped the following conclusions regarding the effectiveness of the actions:
 Acts 1**, 2*, 3* and 4* are effective in understanding a single loop in Q1-1.
 Acts 1**, 4** and 5* are effective in understanding the inner loop in Q1-2.
 Acts 1*, 2*, 4** and 5* are effective in understanding the outer loop in Q1-3.
 Acts 1**, 2*, 4** and 5* are effective in understanding the program as a whole in Q3.

 In all pairs of acts and questions (pairs of Acts 1, 2, 3, 4, 5 and Questions 1-1, 1-2, 1-3, 3, and
pairs of Act 6 and Question 2-1, 2-2), the positive group achieved higher post-test scores than the
negative group. In more than 68% of pairs, there are significant differences between the negative and
positive with less than 5% significance level. It means that an understanding level of a member of
positive groups tends to be better than of negative groups. Therefore, we suggest that teachers are able
to know each learner’s level of understanding by observing whether the learner performs actions of
Act1 to Act6.
 Finally, we summarized the questionnaire responses from 34 subjects (4 subjects did not join
the experiment and only used our environment). The first question in the questionnaire asked whether
the GUI interface is easy to view. The subject had four choices: "4 points: very easy to view", "3
points: easy to view", "2 points: difficult to view", "1 point: very difficult to view". 31 subjects gave
the environment 3 or more points. The second question asked whether the GUI interface is easy to use
and offered four similar choices. 29 subjects gave the environment 3 or more points. The third
question asked whether they gained a deep understanding of nested loops. 26 subjects gave the
environment 3 points. As those results, we suggest that the environment is useful for learning
algorithm and programs.

5. Conclusion

We adopt the existing algorithm and programming learning environment in actual classroom. The
environment allows the visualization of the relationships among the programs field (PF), the target
domain field (TDF), and the operations field (OF). This paper attempts to support programming
beginners in understanding program code that includes nested loops. We evaluated this environment
in a classroom setting. The results suggest that our proposed environment raises the understanding
level of programming beginners.

Acknowledgements

This study was supported by Japanese Grant-in-Aid for Scientific Research (B) 24300282.

References

Bennedsen, J., & Caspersen, M. E. (2008). Optimists have more fun, but do they learn better? On the influence

of emotional and social factors on learning introductory computer science. Computer Science Education,
18(1), 1-16.

Butz, C.J., Hua, S., & Maguire, R.B., (2006). A web-based bayesian intelligent tutoring system for computer
programming, Journal of Web Intelligence and Agent Systems, 4(1), 77-97.

Fossati, D., Eugenio, B. D., Brown, C., & Ohlsson, S. (2008). Learning linked lists: experiments with the iList
system, Proceedings of the 9th International Conference on Intelligent Tutoring Systems, 80-89.

Gabor, T., (2009). Algorithm visualization in programming education, . Journal of Applied Multimedia. 4(3),
68-80.

424

Kogure, S., Okamoto, M., Noguchi, Y., Konishi, T., & Itoh, Y. (2012). Adapting guidance and externalization
support features to program and algorithm learning support environment. Proc. of the 20th International
Conference of Computers in Education , 321-323.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppala, O. & Silvasti, P. (2004). Visual algorithm
simulation exercise system with automatic assessment: TRAKLA2, Informatics in Education, 3(2), 267-
288.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B. D., & Wilusz, T. (2001). A
multi-national, multi-institutional study of assessment of programming skills of first-year CS students.
ACM SIGCSE Bulletin, 33(4), 125-180.

Noguchi, Y., Nakahara, T., Kogure, S., Konishi, T., & Itoh, Y. (2010). Construction of a learning environment
for algorithm and programming where learners operate objects in a domain world’, International Journal
of Knowledge and Web Intelligence, 1(3), 273-288.

