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Abstract: In this paper, we describe an algorithm and programming learning environment by 
illustrating the relationships among programs, target domains, and operations. Our proposed 
learning environment supports software programming learners in understanding code that 
includes nested loops by using a function that visualizes the differences in the target domain's 
state before and after executing a sequence of operations. We evaluate this environment in the 
classroom, and the results suggest that the proposed environment improves the understanding 
of programming beginners. 
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1. Introduction 
 
Several research studies have focused on visualized programming learning environments (Butz et al. 
(2006), Fossati et al. (2008), Gabor (2009), Malmi et al. (2004) and Noguchi et al. (2010)). However, 
definitive educational methods have not yet been established for learning algorithms and 
programming, because learning units in these areas are very large in scope (McCracken et. al. (2001) 
and Bennedsen & Caspersen (2008)). 
 Ideally, items to be learned are divided in smaller chunks, and learners learn each chunk in 
three stages. The first stage is the algorithm-understanding phase (S1). Typically, learners attend a 
lecture (S1-1) and then reproduce the behavior of the algorithm using the specified input data (S1-2). 
Learners also produce operation sequences that represent the behavior of the algorithm. The second 
stage is the code-understanding phase (S2). Learners learn to understand the operation sequences and 
the state of the target domain (S2-1). They also understand the program code as a whole, based on the 
operation sequences (S2-2). The third stage is the coding phase (S3). Learners write (S3-1) and test 
(S3-2) their own program code. 
 We have already constructed the algorithm learning environment for the S1-2 stage (Noguchi 
et al. 2010), and we have also constructed the algorithm and programming learning environment for 
the S2 stage (Kogure et al. 2012). In this study, we focus again on the S2 stage. As in the previous 
study, we define three fields in programming: the programs field (PF), the target domain field (TDF), 
and the operations field (OF). It is important to understand these three fields and the relationships 
among them in order to understand programs and algorithms. PF stores the program code. OF stores 
the operation sequences. TDF visualizes the state of the target domain when an operation sequence is 
executed. 
 In the previous study, we suggested that it is important for learners to understand the 
relationship among PF, TDF, and OF on the S2 stage. Learners can understand the operation 
sequences for specific input data and the state of the target domain corresponding to the operation 
sequences with relative ease. However, they find it very difficult to understand the behavior of the 
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program code. One cause of the difficulty is the gap between the concrete fields (TDF and OF) and 
the abstract field (PF). Therefore, we propose a new method for understanding program code in order 
to bridge this gap for learners. 
 The system helps the learner learn through the following procedure: First, learners create a set 
of operation sequences to process specific input data. Then, learners label the set with its intended 
purpose. By doing so, the system promotes the learners' understanding of the relationship between OF 
and PF and between TDF and PF. However, it is difficult for programming beginners to understand 
certain concepts, such as nested loops and recursive functions. 
 The primary target of this paper is to focus on teaching multiple nested loops in programs, 
and we evaluate our previous environment (Kogure et al. 2012) for promoting this understanding in 
actual classroom in a university. We evaluate following three effects of adopting our proposed system 
in the classroom. The first effect is that the learners would understand nested loops (E1). The second 
effect is that the learners would be able to trace through a program that includes nested loops (E2). 
The third effect is that the teacher would be able to measure the learners' level of understanding by 
observing a learner’s behavior in the system (G3). We asked a teacher to use our proposed system in a 
classroom setting, and the results suggested that all three effects were achieved. 
 
 
2. Concept of Existing Algorithm and Programming Learning Environment 
 
2.1 Three Fields of Programming 
 
We believe that it is very important for learners to understand three important fields in programming 
and the relationships among these three fields. As mentioned earlier, these three fields are the 
programs field (PF), the target domains field (TDF), and the operations field (OF). PF manages the 
program code. TDF presents the state of the target domain, before and after the system executes 
certain operation sequences. OF manages the operation sequences. We explain the three fields in 
more detail. 

Based on the learning goals, the teacher selects an algorithm and a program code to illustrate 
the algorithm. Then, the learners select the input data to use in order to check the behavior of the 
sample program. The sample program is stored in PF, where a fragment of the sample program pi is 
included in program set P = {p1, p2 ,... ,pi, ... ,pN}. The system automatically embeds a program 
fragment p'i (typically a sprintf operation) to observe the behavior of a fragment pi in the original 
program set P. The system compiles and executes the program set P' = {p1, p'1, p2, p'2,... ,pi , p'i , ... 
,pN, p'N }, then it obtains the execution histories EH = {eh1, eh2, ..., ehj, ..., ehM}. If P includes nested 
loops, the number of execution histories M is greater than the number of code fragments N. The 
system converts the execution histories into operation sequences, which reproduce the operation for 
the algorithm-understanding stage (S1-2); for example, an operation sequence could be "compare A 
with B" or "swap A for B" for the sort algorithm. Therefore, the set of operation sequences OS = {os1, 
os2, ..., osk, ..., osO} is in OF. The system can present the states of a target domain, stdk after the 
system executes the operating sequence os1 to osk in order for the learner to analyze the effects of the 
operating sequences. Therefore, the set of the target domain's state, STD = {std1, std2, ..., stdk, ..., stdO} 
are in TDF. 
 Our proposed algorithm and programming learning environment promotes the learner’s 
understanding of the code by illustrating the relationships among the P in PF, the OS in OF, and the 
STD in TDF, caused by the execution of EH. 
 
2.2 Gap between the Abstract Field PF and the Concrete Fields TDF and OF 
 
In the program P in PF, the teacher describes the algorithm at a high level. The OS in OF and STD in 
TDF are concrete forms, because the system generates OS and STD from EH, whereas the system 
executes P' for specific input data. Programming learners easily understand the behavior of OS and 
STD; however, they have difficulty understanding the behavior of P.  
 In this study, we use the following three processes to help learners understand a program that 
includes nested loops. First, the system help learners to understand the purpose of osk, to observe stdk, 
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and to compare stdk with stdk-1. Second, the system teach learners how to insert an os (from osk to osk') 
into a package posk, so that learners would be able to understand and describe posk and to compare 
stdk' with stdk-1. A posk, which is described in a tag, corresponds to an inner loop in the sample 
program. Third, the system teach learners how to insert a pos and/or an os into a package pos'k, so that 
learners would understand and describe pos'k in order to space out each posk. This way, learners 
understand the outer loop. Thus, the system helps learners to fill the knowledge gap between the 
abstract field PF and the concrete fields TDF and OF. 
 
2.3 Externalization to Illustrate the Learners’ Understanding 
 
In a programming exercise, the teacher asks the learners to describe their own understanding of the 
concepts. This task has two purposes. First, the learners are able to objectively reaffirm their own 
understanding. Second, the teacher can check each learner’s level of understanding. Therefore, the 
system must have at least two functions. One is a function where the learners verbalize the intent of a 
set of operation sequences. Another is a function where the learners pack the operation sequences into 
a package using a GUI interface in order to illustrate the coding/abstraction phase. 
 
 
3. Overview of Existing Algorithm and Programming Learning Environment 
 
Figure 1 shows the interface of our proposed learning environment. In Figure 1, (1) corresponds to 
PF, (2) corresponds to TDF, and (3) corresponds to OF.  
 

 
Figure 1. Interface overview. 

 
 If learners push either the "PREV" button or the "NEXT" button, the system displays the 
previous execution history ehj-1 or the next execution history ehj+1, respectively, and it highlights the 
program fragment pi that corresponds to the execution history ehj on PF. The system also helps the 
learner visualize the stdk that corresponds to the execution history ehj on TDF, and it highlights the 
operation sequence osk that corresponds to the execution history ehj on OF. We believe that learners’ 
program tracing skills are improved by observing the state of target field synchronously with 
executing step-by-step (E2 described in section 1). 
 TDF consists of the constant area (Figure 1 (2-1)), the previous state area (Figure 1 (2-2)), 
and the current state area (Figure 1 (2-3)). To compare the states before and after executing a certain 
program fragment pi in PF or a certain operation sequence osk in OF, learners can use the state 
storage function. If learners push the “STORE” button, the system copies the information of the 
current state area to the previous state area. By observing the differences between the previous state 
area and the current state area, learners learn the behavior of a specific statement or operation. 
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 In OF, to generalize the operation sequences osk, learners can pack any operation sequence as 
shown in Figures 1(3). Then, learners can label the group of operation sequences in Figures 1(3). 
Next, when learners click the vertically long cell for the package of operation sequences, the system 
shows the values of the variables before and after the execution of the operation sequences in the 
previous state area (Figure 1 (2-2)) and in the current state area (Figure 1 (2-3)), respectively. 
The learner generalizes operation sequences by selecting some of the operations, packing them into a 
package and tagging a meaning to the package. We believe that those generalizing activities lead the 
leaner to focus on the hierarchical structure of the whole operations and hence lead to more deep 
understanding of nested loops (E1 described in section 1). We also believe that the teacher can 
observe the learner’s understanding level based on the learner’s selecting, packing and tagging results 
which are visualized by our system (E3 described in section 1).  
 To ensure that the learner enters the correct tags, the system offers a selection of tags and asks 
the learners to select the tag that is most similar to meaning tagged by learner. It would be ideal for 
the system to automatically judge the correctness of learners’ tagging meaning by using semantic 
analysis; however, understanding a natural language sentence is difficult to achieve with high 
accuracy. 
 Next, the system helps learners to understand one step of the outer loop using the n-lap 
externalization function. For example, in Figure 2(1), learners grouped and labeled three operation 
sequences. In Figures 2(1) and (2), they created a group of operation sequences by clicking "five" for 
the fifth operation, "nine" for the ninth operation, and the "PACK OPERATIONS" button (shown in 
Figure 1(3)). If the learner clicks on the “N LAP ON” button (Figure 1(3)), the system displays three 
labels written by the learner and a new input field where the learner describes the general meaning of 
the n-lap descriptions. By performing this task, learners can clearly understand one step of the outer 
loop. 
 

(1) after learner finish tagging  on
1, 2 and 3 laps in inner loops.

(2) after packing a nested
package

(3) after learners push n laps button

 
Figure 2. Tagging n Laps. 

 
 
4. Testing the Learning Environment in a Classroom Setting 
 
4.1 Purpose and Conditions 
 
We evaluate our system to confirm three effects: E1, E2 and E3 described in section 1. This 
evaluation tests the following three hypotheses: 
 Hypothesis 1: Packing operation sequences into a package and tagging the package have a 

beneficial effect in understanding the processes of nested loops. (Hypo1) 
 Hypothesis 2: Illustrating the relationships among PF, TDF and OF has a beneficial effect on 

tracing a program that includes nested loops. (Hypo2) 
 Hypothesis 3: The learning environment can be an effective means for the teacher to judge each 

learner’s level of understanding. (Hypo3) 
 The subjects for the experiment were 30 art students (sophomores) from a university in Japan. 
Each of the subjects had less than a year of learning programming. 
 For the experiment, two consecutive lectures were given in the university. The first lecture 
about single loop and nested loops was given by a professor who regularly teaches programming 
courses. In the second lecture, we allowed the subjects to use the learning environment to understand 
nested loops. In both experiments, we recorded the activities on the PC's display in order to observe 
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and analyze the subjects' interactions with our learning environment and to determine the subjects' 
understanding of programs that include nested loops. We used BB FlashBack Express 3 for recording 
the screen video of subjects' interactions with the environment. 
 
4.2 Method of the Experiment 
 
We conducted a pre-test at the end of the first lecture to judge the subjects' understanding level of 
nested loops before using the learning environment. Then, we asked the subjects to learn two 
programs using the learning environment. The program for the first exercise, Ex1, includes nested 
loops and displays a pyramid shape using the asterisk character. In learning the first program, the 
teacher described how to use the learning environment, and we helped the subjects to use the 
environment. The program for the second exercise, Ex2, also includes nested loops and stores a 
triangle shape using the asterisk character into two-dimensional array. In learning the second program, 
neither the teacher nor we provided help to the subject in understanding the programs. The subjects 
were given 20 minutes to learn the second program. Then, we conducted a post-test at the end of the 
self-study (second program) to judge each subject’s level of understanding of nested loops after using 
this environment. Finally, the subjects filled out a questionnaire, which we used for a subjective 
assessment of the experiment. 
 The programs used in the pre-test and the post-test are different; however, the questions are 
almost the same. Questions 1-1 and 1-2 ask the roles of the first and the second inner loops, 
respectively. Question 1-3 ask the role of the outer loop. Questions 2-1 and 2-2 ask about the values 
of the control variables to judge the learner’s skill in program tracing. Question 3 asks the purpose of 
the program as a whole. 
 
4.3 Verifications of Hypotheses and Review of Results 
 
To determine the effectiveness of our learning environment, we eliminated 6 subjects who had already 
fully understood nested loops in the pre-test. Then, we eliminated 6 other subjects who failed to 
record their own PC activities. Therefore, we analyzed 18 recordings. 
 For Hypo1 and Hypo2, we checked whether the subjects performed the 14 actions when 
subjects were learning the two programs. Then there are the 2 actions for Hypo2. For each action, we 
categorized the 18 subjects into those who performed the action (positive group) and those who did 
not perform the action (negative group). 
 In some actions, the ratios of subjects in the positive group versus the negative group are 
more than 2 or less than 0.5. In those cases, smaller groups had less than 6 members, and the 
performance of an individual largely affected the performance of the whole group. Therefore, we 
eliminated those cases from the evaluation. Thus we selected the 6 actions that we could examine in 
detail, as follows: 
 Act 1: The subject tries to pack the operation sequences into a package for the outer loop on Ex2 
 Act 2: The subject tries to tag all packages on Ex2 
 Act 3: The subject correctly tags all packages on Ex2 
 Act 4: The subject tries to pack a nested package on Ex2 
 Act 5: The subject correctly packs the nested package on Ex2 
 Act 6:The subject fully confirms and observes all states of the target domain STD that 

corresponds to all program fragments P on Ex2 
 
 First, we analyzed the relationships between the pre-test score and these actions, and reaped 
the result of no significant difference between the negative and positive on an independent t-test. 
 We analyzed the elevated score from pre-test to post-test. As results, we reaped the following 
conclusions regarding the effectiveness of the actions (if there is a significant difference between the 
negative and positive with 5% significance level by performing an independent t-test, we put an 
asterisk after the act number. And, if there is a significant difference between the negative and 
positive with 1% significance level, we put two asterisks after the act number):  
 Act 2* is effective in understanding a single loop in Q1-1. 
 Acts 1**, 2*, 4** and 5* are effective in understanding the outer loop in Q1-3. 
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 Acts 1**, 2*, 4** and 5** are effective in understanding the program as a whole in Q3. 
 Act 6* is effective in gaining the skill of program tracing in Q2-1. 

 
 On the other hand, for Hypo3, we analyzed the relationship between the post-test score and 
these actions. we reaped the following conclusions regarding the effectiveness of the actions: 
 Acts 1**, 2*, 3* and 4* are effective in understanding a single loop in Q1-1. 
 Acts 1**, 4** and 5* are effective in understanding the inner loop in Q1-2. 
 Acts 1*, 2*, 4** and 5* are effective in understanding the outer loop in Q1-3. 
 Acts 1**, 2*, 4** and 5* are effective in understanding the program as a whole in Q3. 

 
 In all pairs of acts and questions (pairs of Acts 1, 2, 3, 4, 5 and Questions 1-1, 1-2, 1-3, 3, and 
pairs of Act 6 and Question 2-1, 2-2), the positive group achieved higher post-test scores than the 
negative group. In more than 68% of pairs, there are significant differences between the negative and 
positive with less than 5% significance level. It means that an understanding level of a member of 
positive groups tends to be better than of negative groups. Therefore, we suggest that teachers are able 
to know each learner’s level of understanding by observing whether the learner performs actions of 
Act1 to Act6. 
 Finally, we summarized the questionnaire responses from 34 subjects (4 subjects did not join 
the experiment and only used our environment). The first question in the questionnaire asked whether 
the GUI interface is easy to view. The subject had four choices: "4 points: very easy to view", "3 
points: easy to view", "2 points: difficult to view", "1 point: very difficult to view". 31 subjects gave 
the environment 3 or more points. The second question asked whether the GUI interface is easy to use 
and offered four similar choices. 29 subjects gave the environment 3 or more points. The third 
question asked whether they gained a deep understanding of nested loops. 26 subjects gave the 
environment 3 points. As those results, we suggest that the environment is useful for learning 
algorithm and programs. 
 
 
5. Conclusion 
 
We adopt the existing algorithm and programming learning environment in actual classroom. The 
environment allows the visualization of the relationships among the programs field (PF), the target 
domain field (TDF), and the operations field (OF). This paper attempts to support programming 
beginners in understanding program code that includes nested loops. We evaluated this environment 
in a classroom setting. The results suggest that our proposed environment raises the understanding 
level of programming beginners. 
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