Shih, JL. et al. (Eds.) (2023). Proceedings of the 31% International Conference on Computers in
Education. Asia-Pacific Society for Computers in Education

Object Identification Training Support
System for Object-Oriented Design with
Cooking Recipes

Daiki Maeda®, Kota Kunori® & Tomoko Kojiri®
@ Graduate School of Science and Engineering, Kansai University, Japan
®Faculty of Engineering Science, Kansai University, Japan
*k554875@kansai-u.ac.jp

Abstract: In object-oriented programming (OOP), each process is accomplished by
the interaction of objects. In the first step of designing a system using OOP,
programmers need to decompose a given use case into smaller sub-processes and
identify objects. However, for novice programmers, it can be difficult to imagine things
that are not explicitly stated in the use case, and some may not understand that the
process is achieved by the interaction of objects. We have therefore developed a
training method that identifies objects by connecting them with things that novice
programmers can more easily imagine, such as recipes. Similar to use cases, recipes
are a set of processes whose subjects are not clearly mentioned. When we decompose
a recipe set into smaller sub-processes made up of kitchenware items, it is possible to
recognize these items when imagining the cooking scene. We also developed a system
that helps novice programmers to extract the appropriate kitchenware from recipes.
Through the experience of rewriting a recipe utilizing the process of cooking, novice
programmers are able to recognize that there are subjects hiding in a process
description whose subjects are not mentioned, which helps them understand how to
identify the hiding objects.

Keywords: object-oriented programming, extraction of objects, recipe, training support
system, drawing scene

1. Introduction

Object-oriented programming (OOP) is widely utilized in the software industry (Teif & Hazzan,
2006). In OOP, program behavior is implemented as an interaction between objects. When
designing software using OOP, the classes of objects need to be designed in accordance with
the requirement specifications (e.g., use case). To design a system so that the degree of
coupling between classes is low and the degree of condensation within classes is high, it is
necessary to identify functions that can be grouped together and to identify the things that can
carry those functions as objects. However, it can be difficult for novice programmers to identify
objects from the use case that are not explicitly mentioned, and some do not understand that
the process is accomplished by the interaction of objects. Therefore, in extreme cases, they
may design a system with a single object called “system” and assign all functions to it.

Many studies have been conducted to help programmers understand the object-
oriented concept (Lian, Varoy, & Giacama, 2022; Seng, Yatim, & Hoe, 2018; Dwarika & De
Villiers, 2015), some of which specifically focus on the behaviors of the objects (Abidin &
Zawai, 2020; Gestwicki & Jayaraman, 2005). Although these studies provide an understanding
of the object-oriented concept, they do not support the design process of OOP, which is
essentially to identify objects in accordance with the requirement specifications. In order to
identify objects, it is necessary to imagine the potential interactions of multiple objects from
the given requirement specification.

In the current study, we explore two key research questions:

1) What kind of thinking is necessary to derive adequate objects from the
process description in which subjects are not clearly mentioned?
2) What kind of training is appropriate to foster such thinking?
To derive the answers to these questions, we developed a training method and evaluated its
effectiveness.

114



The proposed training method identifies objects by connecting them with things that
novice programmers can more easily imagine, such as recipes. Similar to use cases recipes
are a set of actions whose subjects are not clearly mentioned. Our method circumvents this
difficulty by decomposing the set into smaller sub-processes of kitchenware. For example, “to
cook meat” can be rewritten as “a stove heats up a frying pan and the frying pan cooks the
meat.” We can recognize the kitchenware items when we imagine the cooking scene, so it is
easier to grasp that the recipes are essentially a series of kitchenware interactions and thereby
to imagine what kind of kitchenware is involved in the recipe. Our system basically encourages
novice programmers to identify kitchenware from the written recipe that they imagine from its
scene. The system asks the users to 1) extract the kitchenware from the recipe, 2) rewrite the
recipe in accordance with the extracted kitchenware, and 3) draw a picture using the identified
kitchenware. This process is repeated until they are able to accurately depict the cooking
scene that they imagine from the recipe. Through the experience of rewriting a recipe utilizing
the process of kitchenware, novice programmers are able to recognize that there are subjects
hiding in the process description whose subjects are not mentioned. In addition, by continuing
this activity until they draw the scene that they imagine, they begin to grasp that imagining the
scene is necessary for deriving adequate objects.

2. Approach
2.1 Requirement Specification of System Development

A requirement specification is a document that summarizes the functions and characteristics
that a system to be developed should have. It consists of a base action series, exemplified
action series, and other conditions, and it is established in the requirements definition phase
of system development to form the policy for the subsequent development plan. An example
of a requirement specification is a use case description, which describes specific interactions
between an actor and a system in that scene, as well as related conditions (Technologic Arts
Inc., 2009). Since actors are the users of the system, the external hardware, the external
systems related to the target system, etc., the use case description is a summary of the
requirements from the user's point of view. Therefore, the configuration of the system (e.g.,
the objects) are not typically mentioned.

Figure 1 shows an example of the basic action series for the use case “withdrawing
money from an ATM”.

Select “cash withdrawal”

Enter your PIN

Enter the amount of money

Confirm the amount displayed on the screen and press the confirm button
Take out the amount of money you wish to withdraw from the ATM
withdrawal slot

Receive cash from the withdrawal slot

apRhwN=

o

Figure 1. Basic action series for cash withdrawal from an ATM.
2.2 Object Identification Method

Since the basic action series of a use case description does not always mention the subject
or target of each action, the programmer will need to derive objects that can be the subjects
or targets. If the scene in the use case can be imagined, the identified objects should be in the
imagination.

We propose a method for deriving adequate objects by having the programmers draw
a picture of the processing scene. Since the adequate objects are those described in the
picture, this method encourages programmers to derive subjects and targets from the use
case that are the same as what they imagine. By having them draw the picture, they become
aware that the objects they add to the image are the objects that they should identify.

115



2.3 Acquisition of Object Identification Methods Using Recipes

In order to acquire the thinking method that the objects in the scene of the use case
specification are the objects to be identified, it is desirable to train the thinking method by a
use case whose scene is easy to imagine. In this study, we utilize a cooking recipe as the
substitution for the use case.

A recipe is a sequence of actions to take when preparing a specific dish. In this context,
the subjects of the actions can be regarded as the kitchenware items, and some data (e.g.,
ingredients) can be viewed as objects being processed by the kitchenware. If we view an item
of kitchenware as a subjective object, the recipe can be viewed as the interaction of multiple
kitchenware items. However, in a typical recipe, the kitchenware is not described clearly, if at
all. In this respect, we believe that recipes are similar to use cases. If it becomes possible to
identify kitchenware from recipes, novice programmers can learn how to identify objects from
the use case and thereby successfully identify objects. This is why our method utilizes a recipe,
not a software use case, as the training target. We came up with the following steps to train
the thinking of object identification.
Step 1. Derive the objects (e.g., subject and target) corresponding to each action of the recipe.
Step 2. Rewrite the action with the derived objects.
Step 3. Draw a picture of each cooking action in the recipe using the identified objects.
Step 4. Check whether the picture in Step 3 satisfies the imagined scene. If not, identify the
missing objects and return to Step 2.

As an example of the steps, let’s focus on the cooking action “boil potatoes” in Figure
2. If we assume the subject of this process is a “person” and the target is a “potato” (Step 1),
the cooking action can be rewritten as “a person boils potatoes” (Step 2). If we draw a picture
like the one in Fig. 3 using the extracted objects (Step 3) and find that it is different from the
imagined scene, as shown in Fig. 4, we extract the missing objects by examining the
differences between the drawn picture (Fig. 3) and our imagination of the scene (Step 4), such
as “stove”, “fire”, “pot”, and “water”. We then return to Step 2 and rewrite the “boil potatoes”
action on the basis of these derived objects as “1. a person turns on a stove, 2. the stove turns
on the flame, 3. the flame heats a pot, 4. the pot heats the water, and 5. the (heated) water
boils the potatoes”. In Step 3, we draw the scenes from these objects and, if we satisfied with
the picture, the process ends, indicating that we have derived adequate objects. If not, we go
back to Step 4 and look for the missing objects again.

1. Boil potatoes
2. Mash potatoes
3. Cut onions m f & ..\ :
4. Cut carrots ';,' 3«49'?
5. Heat onions = ¥
6. Heat carrots L] : " x
7. Cut cucumbers b
8. Cut ham o
9. Mix mayonnaise —
; Figure 3. Figure 4.
Figure 2. Cooking scene drawn Imagined cooking
Potato salad recipe. in accordance with scene.

identified objects.
2.4 Overview of Object Identification Training System

The object identification training system is intended to provide a place where users can
experience how to identify objects by using recipes, thereby enabling them to acquire the
thinking necessary to identify objects from the process. A system configuration diagram is
shown in Fig. 5. The system consists of two interfaces and a feedback function, and it utilizes
recipes in a recipe database (DB) for the training.

116



The identification interface is
a screen for inputting the objects .
identified from each action of the |dentification interface Recipe
recipe. The user inputs the subject = lt ‘t DB
and target from the displayed recipe -
sentence and uses them to rewrite
the sentence. The confirmation
interface is a screen where the user draws a Figure 5. System configuration.
picture using the objects (subject and target)
input to the identification interface to confirm whether adequate objects have been input. After
the picture is drawn, the confirmation interface gives a comment to the user asking if there are
any lacking objects. If not, it finishes the process. If yes, it activates the identification interface
again. The identification interface asks the user to rewrite the recipe sentence using the
lacking objects. It then checks whether the written sentences represent the action of the
original process, and if not, it gives feedback to modify the sentences again.

Confirmation Feedback
interface function

3. Feedback Function

A sentence corresponding to an action in the recipe represents that the subject executes the
action and the target is manipulated by the action. If the sentence is rewritten by using several
sentences related to sub-actions, it is important that the first subject of the sub-actions, the
last target of the sub-actions, and the last action be the same as the original action. The
subjects and targets of other actions are intermediary; that is, instead of indicating a direct
manipulation of the target by the subject, it means that others are told to manipulate the target.
Figure 6 illustrates the relations between the original action and the sub-actions. Suppose that

Original cooking °4p° the original action P is a process
action from subject A to target B. If the

action is replaced by sub-
Suthdivided cooking a b ¢ P actions, the first subject needs to
actons

be A, the last target needs to be
B, and the last action must be P.
Oher actions (a, b, and c) and
other objects (X, Y, and Z) might
be placed at various positions

@ : Object
— : Action
Figure 6. Relations between original action and sub-

actions.

between them.

The feedback function checks whether the rewritten recipes satisfy such conditions. In
addition to the first subject, the last target, and the last action, it needs to check that there are
no omissions in the transfer of actions. The actions are connected when the target of the
former action and the subject of the latter action are the same. By considering these
conditions, the feedback function determines whether the rewritten recipe is the same as the
original one by the following steps:

Step 1. Determine the subject and the target of each sub-action in the rewritten recipe.

Step 2. If the previous target and the subsequent subject are the same, eliminate the
target/subject and previous action and combine them into one action.

Step 3. If the rewritten recipe is changed to one action, compare its subject, target, and action
to the original action.

Here, we show an example with the original recipe “a person boils potatoes” and the
rewritten recipe as “1. a person starts up a stove, 2. the stove turns on a flame, 3. the flame
heats a pot, and 4. the pot boils the potatoes”. Since the target of 1 and the subject of 2 are
the same (i.e., “a stove”), these actions are combined as “a person turns on the fire of a stove".
As a result, we have “1. a person turns on the flame, 2. the flame heats a pot, and 3. the pot
boils the potatoes”. Since the target of 1 and the subject of 2 are the same in the rewritten
recipe, they are combined to create “a person heats a pot”. As a result, "1. a person heats a
pot, and 2. a pot boils the potatoes” is created. In the same way, “1. a person boils the
potatoes” is generated. Since it is the same as the original recipe, the rewritten recipe is
regarded as the same action as the original one.

117



The feedback function provides feedback in accordance with the result. If the original
recipe and the rewritten one are the same, it gives “The re-written recipe is appropriate.” If not,
it points out the inappropriateness and suggests how to fix it. There are two possible causes
of inappropriateness. The first is that there is an omission in the transfer of processing. For
example, if the sub-actions are “1. a person starts up a stove, and 2. a pot boils the potatoes,”
some actions might be missing between the two actions, since the target of action 1 and the
subject of action 2 are different. In this case, the feedback function shows the user where the
cooking steps are not connected and gives a hint if the subject and target are different. The
second cause is that the combined action is different from the original one. In this case, the
system gives the comment “The action in the original recipe and the sub-actions in the
rewritten recipe are not the same”.

4. Prototype System

4.1 Identification Interface

Figure 7 shows an image of the identification interface screen. When a recipe name is
selected, the actions in the selected recipe are displayed in the recipe display area. The user
needs to input the subject, target, and action extracted from the recipe into the cooking action
input area. By selecting a row in the cooking action input area and clicking the “Add Row”
button, a new row is added under the selected row. By clicking on each cell of the row, the
subject, target, and process can be entered. To delete the row, click on the row to be deleted
and select the “Delete” button. The order of the input in the cooking action input area
represents the order of the cooking from start to finish. When the “Judgment” button is clicked,
the feedback function evaluates whether the input cooking actions are appropriate and
displays the result in a message box.

Cooking action
LyEh ozt LTSN input area
Ly¥

1. CACAZYR \ N =
2. FTRVEYE SN A%z £59% Z.Tjj%

3. V%)%

4. R ZE < ¥ _
5. [CALAER D
6. FTRYEDHS
7. 50LENDS
8. B CARYOIB

o)

TOHIE fioEm ROBEN

Recipe display area Button group

Figure 7. Identification interface.

4.2 Confirmation Interface

The confirmation interface is a screen for creating a picture of the cooking scene for each
action using the objects identified in the identification interface. Figure 8 shows an example of
the confirmation interface screen. The user can select the action to be depicted in the cooking
action display list. When a target action is changed, a new canvas for the action appears in
the picture creation area, and the user can draw a picture representing the scene of the action.
The picture is drawn by placing the images displayed in the image display area onto the picture
creation area. The image display area displays images of objects stored in the system in
advance that may appear in the cooking scene. The user can also add their own images by
dragging and dropping image files. To draw the picture, a user selects an object from the list
of identified objects, clicks on the image representing the object, and then clicks on the “Match

118



String to Image” button to
display the corresponding
image. The user can also
move, delete, and change
the size of the image.
When the cooking scenes
of all actions are drawn
using the identified objects
and the “Finish Creation”
button is clicked, the
system presents a
message to consider 71

whether the drawn ( '

pictures represent the

user’s |mag|pat|on of th'e E—— S| prs) |y Il o
scene. The intent of this

message is to prompt the Button group

user to think about Figure 8. Confirmation Interface
whether there are any

missing objects. If there are, the system moves to the identification interface again and lets
the user subdivide the cooking action using the missing objects recognized in the confirmation
interface. If there are no missing objects, the operation terminates.

M |dentified object Cooking action
display list display list

Picture creation area

—

5. Conclusion

We have developed an OOP training system for identifying objects that are responsible for the
sub-actions of requirement specifications, such as use case descriptions. The training system
introduces a recipe instead of a use case as a training target, which makes it easier for novices
to imagine the objects and their interactions in the scene. Our system helps the user to identify
valid objects by having them draw a picture of the cooking scene with the identified objects. It
also provides a feedback function to check whether a rewritten recipe using the identified
objects represents the same actions as the original recipe.

The recipes handled by the system in this study were linearly connected, with only one
subject and one target per process. However, there are also actions that have multiple targets.
In such cases, some actions are performed in parallel and are therefore not connected linearly.
To cope with such recipes, the feedback function needs to be improved so as to check the
validity with not only simultaneous actions but also actions occurring separately.

References

Abidin, Z. Z., & Zawai, M. A. (2020). Oop-Ar:Learn Object Oriented Programming Using Augmented
Reality. International Journanl of Mulimedia and Recent Innovation, 2(1), 60-75.

Dwarika, J., & De Villiers, R. M. (2015). Use of Alice Visual Environment in Teaching and Learning
Object-Oriented Programming. In Proceedings of The 2015 Annual Research Conference on
South African Institute of Computer Scientists and Information Technologists, (pp. 1-10).

Gestwicki, P., & Jayaraman, B. (2005). Methodology and Architecture of JIVE. In Proceedings of The
2005 ACM Symposium on Software Visualization, (pp. 95-104).

Lian, V., Varoy, E., & Giacama, N. (2022). Learning Object-Oriented Programming Concepts Through
Visual Analogies. IEEE Transactions on Learning Technologies, 15(1), 78-92.

Seng, Y. W., Yatim, M. H., & Hoe, T. W. (2018). Learning Object-Oriented Programming Paradigm Via
Game-Based Learning Game — Pliot Study. The International Journal of Multimedia & lts
Applications, 10(6), 181-197.

Technologic Arts Inc. (2009). Teaching Yourself UML 4th Edition in Japanese.

Teif, M., & Hazzan, O. (2006). Partonomy and Taxonomy in Object-Oriented Thinking : Junior High
School Students"” Perceptions of Object-Oriented Basic Concepts". Working Group Reports on
ITIiCSE on Innovation and Technology in Computer Science Education.

119



