Study on The Development of
Computational Thinking Decomposition
Strategies for Senior Primary Students

Mengtao LI, Yaxin GUAN & Guang CHEN
Faculty of Education, Beijing Normal University, China
*guang@bnu.edu.cn

Abstract: As an important component of Computational Thinking, the decomposition
strategy has attracted the attention of researchers, but few studies have explored how
the decomposition strategy itself is formed and developed. In this study, we carry out
thematic-based programming teaching for senior primary school students. The research
is divided into four stages: pre-test, exercise, post-test, and migration. We use
Microgenetic Design to repeatedly and deeply observe students' programming learning
activities in four stages, and conduct interviews and records, so as to analyze the
development path and migration of students' decomposition strategies. The research
results show that the decomposition ability of senior primary school students can be
improved in programming learning, and the overall performance is that advanced
strategies gradually replace low-level strategies. However, this process varies from
person to person and is not a linear development, and there may be other influencing
factors that lead to the return of low-level strategies.

Keywords: Computational Thinking, decomposition strategies, programming, primary students

1. Introduction

In the 21st century, Computational Thinking (CT) has become a prerequisite skill for individuals
to cope with a wide range of new challenges and is influencing various fields related to the
natural and social sciences. CT has gained worldwide attention as a key literacy for sustaining
national competitiveness and has been adopted as a generic skill to be learned by all students
in many national initiatives, curricula, standards and other policy documents. Since the
introduction of CT, there has been a lot of focus on how to develop this skill (Hsu et al., 2018).
In terms of developmental approaches, Hromkovi¢ (2006)and Wing (2006) suggest
programming as the main strategy for developing CT in schools. Scherer et al.(2019) also found
through meta-analysis that programming is a primary method for developing students' CT.
Nevertheless, a large amount of research has focused on the strategies and effects of
developing CT, and there is a lack of research on students' strategy development and
behaviour during programming.

Based on the above background, this study explored the developmental patterns of
cognitive strategies during programming in upper primary school students. Focusing on
decomposition strategies, which are the most difficult to be mastered (Selby, 2015) and the
most fundamental (Rijke et al., 2018) in CT, we used a Microgeneration Design to describe the
developmental pathways and degree of transfer of students' decomposition strategies during
programming activities. On the one hand, we focus on the developmental process of
decomposition strategies in primary school children's CT; on the other hand, we provide
support for future insights into aspects of computational thinking and its internal structure.

2. Literature Review

278

2. 1 Computational Thinking

CT is a term first used by Papert (1980) to describe the thought process of formulating
problems and their solutions in a way that can be executed by a computer. He found that
learning with a programming language helped students to simulate the algorithmic logic of a
computer, which in turn influenced the way they thought (Papert, 1982).CT is considered to be
the psychological basis for problem-solving, designing systems, and understanding human
behaviour, and can help people simplify a difficult problem into multiple problems that we know
how to solve (Wing, 2006). This process not only prepares students for study in the field of
computer science but also provides them with the tools and skills to approach and solve
problems in different areas of knowledge (Werner et al., 2012).

2.2 Decomposition strategy

As one of the foundations of CT, decomposition strategies can deconstruct complex problems
into multiple easily solvable subproblems(J. Wing, 2008). Therefore, decomposition strategies
are crucial for solving complex and large real-world problems(Rijke et al., 2018).

Tsai et al. (2022) argue that decomposition and abstraction are two basic and critical

factors required for the development of CT, and suggested that decomposition and abstraction
are the starting point for teaching based on the developmental sequence of CT skills.
Decomposition is particularly important for the development of CT skills for beginning
programmers. Decomposition has always been emphasized as a part of CT as a whole, but few
studies have revealed specific details about decomposition itself(Rich et al., 2019). Although
researchers have defined four levels of strategies from 0-3 in terms of assessment criteria for
their development, with different conceptual and descriptive definitions(Avila et al., 2019), it
does not explain how students' Disaggregation strategies develop in the process of CT
development and lacks depth and guidance for practice.

2.3 Visual programming

Visualisation means expressing abstract content in an intuitive way(Rijke et al., 2018). Unlike
textual programming such as Python and Java, visual programming tools provide students with
the opportunity to learn computer programming concepts through visual feedback-based
learning, reducing the cognitive load placed on students by complex programming grammar
(Lye & Koh, 2014), and allowing students to focus on the logic and structure involved in
programming rather than worrying about the mechanics of writing programs(J. M. Wing, 2006).
Numerous studies have shown that it makes sense to develop decomposition strategies from
the elementary school level: on the one hand, programming develops CT(Buitrago Flérez et al.,
2017). On the other hand, children already have the cognitive level to understand basic
computer programming concepts by the age of four (Bers et al., 2014).

During programming, students are exposed to CT, using computer science concepts such
as abstraction, decomposition, and generalization to solve problems. Programming education
should focus on how students can break down and categorize complex problems to solve them
efficiently (Sadez-Lopez et al., 2016). The Block-coding programming tool used in this study is
the Discovery Education Coding Curriculum (DECC), which supports students in allocating
limited cognitive resources to the mobilization of problem-solving strategies for students who
are new to programming.

2.4 Research questions
Piaget believes that children's cognitive strategy development pattern has four stages from low
to high. In CT development, there is variability in the development of different elements in the

four stages. Even if they have been trained by teachers in advanced strategies for each
element, they will be in the no-strategy stage or the low-strategy stage and will not be able to

279

use advanced strategies comfortably due to the lack of cognitive resources. Focusing on CT
can help students be able to select and apply appropriate strategies and tools to better
conceptualize, analyze, and solve complex problems. However, most research has focused on
issues related to learning skills, concepts and practices (Ezeamuzie & Leung, 2022; Grover &
Pea, 2013), and the specific processes involved in the development of students' CT need to be
further explored. This study focuses on one of the most fundamental and critical starting points
in the development of CT: decomposition strategies. By implementing instructional activities
that facilitate the development of CT decomposition strategies in elementary classrooms and
tracking students' behaviors and characteristics in the process, this study proposes to address
the following questions:

RQ1: How well do senior primary students use decomposition strategies at different
stages?

RQ2: What are the developmental pathways of decomposition strategies for students in
senior primary grades at different stages of the same programming activity?

RQ3: To what extent do senior primary school students transfer different strategies within
the same programming activity?

3. Research Methodology

We explored the development of CT decomposition strategies and pathways in primary school
students: a micro-incidence design was used to collect and code relevant data through
classroom behavioural observations and post-classroom interviews.

3.1 Subjects of study

The subjects of the study were 5"-grade students in a primary school in Beijing. Through pre-
experimental observations, interviews and data analyses, 18 subjects were finally identified.
During the implementation of the activity, 4 students did not participate in the complete
experimental process for personal reasons, so 14 valid data were received after the teaching
activity. The sample of 14 consisted of 4 boys and 10 girls, all aged 9-11 years (M = 10.10, SD
=0.59).

3.2 Study design

Microgenetic Design is a research method to study the cognitive and behavioral development
process of children, which is widely used in the research of cognitive strategy development of
young children to high school students (Siegler & Crowley, 1991). Through iterative and in-
depth observation and analysis of changes in behavior throughout the process, Microgenetic
Design can provide detailed information about the sources, pathways, velocity, and extent of
cognitive changes, as well as the diversity of change patterns. There are several reasons:(1)
observations cover the entire interval from the onset of change to relative stability; (2) the
frequency of observations is highly consistent with the rate of change of the phenomenon; and
(3) the observed behavior is finely iteratively analyzed in iterative experiments to facilitate
speculation on the processes that produce qualitative and quantitative changes. In short, the
high density of fine-grained data provides a guarantee of the validity of this approach.

Traditional pre- and post-test experiments have a low density of observation of the process
of behavioural change throughout the study and do not allow for a sophisticated analysis of
strategy development behaviour during this process. This can be well avoided by using a
Microgenetic Design to observe students' behaviour and thinking in the classroom during the
course of the lesson. When episodic behaviours were more ambiguous or absent, a categorical
basis for strategy assessment was obtained by promptly asking students how they designed the
procedure.

280

3.3 Research process

The experiment consisted of two parts, a pre-experiment and a formal experiment. All six
sessions were taught by the same researcher and lasted two and a half weeks, with each
session lasting 40 minutes. The six class periods were centred around six thematic activities
that were taught as CT activities: Movement, Simple Input, Different Kinds of Input, Buttons &
Commands, Sequence & Animation and Conditional Events. Each theme has three different
programming activities under it, and students need to complete these three programming
activities and perform a programming challenge in each lesson, which together constitute the
pre-test, practice, post-test, and migration phases of the experiment.

In the pre-experiment, Topic Activity 1 was used to screen students with zero foundation.
After completing each task, students were tested on their decomposition skills.

All 5 thematic activities in the formal experiment consist of 3 learning tasks, which are used
to assess students' CT strategy development in the pre-test, practice, and post-test phases. In
addition to this, students were required to undertake the completion of a programming project
as a migration test.

3.4 Data collection

Data were collected through classroom observations and interviews. Classroom observations
were conducted to track and record student behaviour and development in the classroom.
Interviews were conducted in the form of questions asked by the teacher and shared by the
students in the classroom and were used for further analysis and refinement. Interview outlines
were prepared by the researcher based on the literature and what was focused on in this study,
and the interviews included students' thoughts on programming as well as their feelings about
learning during the four phases.

Data were coded according to the decomposition strategy level coding table. Based on a
definition of decomposition strategy development levels proposed by Avila et al. (2019), we took
into account specific programming situations as well as theories related to cognitive strategies
and invited two researchers in the field of CT to classify students' decomposition strategies into

four levels. The Decomposition Strategy Hierarchy scale is shown in the appendix-

4. Research findings

The results of the study will depict the change routes and development of decomposition
strategies in senior primary school students during the completion of programming tasks in the
following three ways.

4.1 Students' overall use of decomposition strategies at different stages

As shown in Figure 1, the Roma numerals from small to large represent the four stages of pre-
test, practice, post-test, and migration. In the pre-test stage, students' main decomposition
strategy is the level O strategy, and they hardly use the advanced strategy; in the practice
stage, level 1 strategies are the students' main strategies, and level 3 strategies begin to
appear; in the post-test stage, level 2 and level 3 strategies become the main strategies, and
level O strategies have been completely replaced; in the migration stage, the use of level 3
strategies reaches 50%, and the use of level 2 strategies is as high as 45%.

281

90

80 - — Subjective judgement
70 - T Missing code
60 —
50 — Missing objects
40 i— . .
- = Object decomposition

° H
20 - - —— H Task decomposition
10 [] |

0 . — M Sub-task combinatio

T
Il [

Figure 1. The use of decomposition strategies at different stages.

4.2 Development of students' decomposition strategies in programming
activities Pathways

As shown in Figure 2, the line from light blue to dark blue represents the four-level
decomposition strategy from low to advanced (e.g. the lightest blue line represents the 0-level

decomposition strategy). The route analysis of the strategies adopted in four different stages of
the same programming activity shows that the development trend of different levels of
decomposition strategies in different thematic activities is basically the same, which is
manifested as the gradual replacement of low-level strategies by high-level strategies.

15 14 14
12 12

10 10 10

(SR]
R -

I 1l 11 v I 1l 1 v | 11 11 v
(a) Movement (b) Simple Input (c) Different Kinds of Input
12 i 12
10 10 10
8 8 g
6 & 5
a 4 a
& 2 2
0 o 0
| 1l 11 IV | Il 111 v | Il 111 v
(d) Buttons & Commands, (e) Sequence & Animation (f) Conditional Events

Figure 2. The overall line of development of the decomposition strategy under different
thematic activities.

4.3 Transfer of students' decomposition strategies in programming activities
extent

Figure 3 shows a roadmap for individuals to adopt strategies at different stages of programming

activity. @ represents the level, and the number on the horizontal line between the two levels
represents the number of people whose route changes between the two strategy levels. The

282

results show that before being taught programming, all students initially used only low-level
decomposition strategies, and the majority of students used zero-level strategies. In most
cases, the decomposition strategies used by students follow a continuous development from
low-level to high-level strategies, but there will be a brief regression from high-level strategies to
low-level strategies.

1 / 1D
/’? =0 4
el @ D> ©)
@—2 @23 11 1
AT
""'13;)’ b 1 -7-3 @ = KI/ 1 2 = 2)
s T . TN
AD D=
4 - 2y
1 1 % i - = - 2 E e 2
i > > 5 >t e 1 e ' @ a D @ 3
[1] i v [1] 1 v [I] v
(a) Movement (b) Simple Input (c) Different Kinds of Input
31 (31 12
. 3) 3 D~ 1 2
>—2- 2@ e . . D@
2 == z @ 3 S DB DA
2 C)Ai et & p 2 e {8 / 2@
© 1 2 2 2 1.5 o1+
L gy Ly 2 o 2@ 3o L O
1 1 -) = LE o @
1 @—@ 2 A3 = 3 (i\—\/l @))/
1< @
2 1 1 i T
@ D @ 2 O—-F 1+ 23 @ @@
I 1 m v I 1l m v It mn v
(d) Buttons & Commands (e) Sequence & Animation (f) Conditional Events

Figure 3. The degree of individual migration of strategies in different activities.

5. Discussion and conclusions

The purpose of this study is to investigate the developmental pathways and strategy transfer of
CT decomposition strategies of students in the upper primary grades, and we can summarise

three main findings. Firstly, students' decomposition strategies can be developed through topic-

based programming learning, and programming instruction in the upper primary grades can be
an effective way to develop students' decomposition skills. This result reaffirms Bers et
al.(2014)and Rijke et al.(2018) that it is feasible and meaningful to develop students'
decomposition skills by teaching programming from the primary level. Secondly, students'
decomposition strategies are not linear but a dynamic process of development, and there may
be other factors that lead to the recurrence of low-level strategies. This result is similar to the
findings of Siegler & Stern(1998) on the development of mathematical strategies in second-
graders. In addition, students' decomposition strategy development is a complex process, and
students' own experiences, teachers' interventions, and differences in instructional content may
affect the developmental trends and the degree of transfer of students' decomposition
strategies. In the process of guiding students to learn programming, teachers need to provide
effective guidance to help students decompose problems and tasks. At the same time, through
the creation of specific problem situations and practice opportunities, teachers can transfer the
decomposition strategy teaching content to other disciplines and make effective adjustments to
the curriculum design, so as to improve students' decomposition strategies in multiple ways.

Preference
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and

tinkering: Exploration of an early childhood robotics curriculum. Computers & Education,
72, 145-157. https://doi.org/10.1016/j.compedu.2013.10.020

283

Buitrago Florez, F., Casallas, R., Hernandez, M., Reyes, A., Restrepo, S., & Danies, G. (2017).
Changing a Generation’s Way of Thinking: Teaching Computational Thinking Through
Programming. Review of Educational Research, 87(4), 834—860.
https://doi.org/10.3102/0034654317710096

Ezeamuzie, N. O., & Leung, J. S. C. (2022). Computational Thinking Through an Empirical
Lens: A Systematic Review of Literature. Journal of Educational Computing Research,
60(2), 481-511. https://doi.org/10.1177/07356331211033158

Grover, S., & Pea, R. (2013). Computational Thinking in K—12: A Review of the State of the
Field. Educational Researcher, 42(1), 38—43.
https://doi.org/10.3102/0013189X12463051

Hromkovi€, J. (2006). Contributing to General Education by Teaching Informatics. In R. T.
Mittermeir (Ed.), Informatics Education — The Bridge between Using and Understanding
Computers (Vol. 4226, pp. 25-37). Springer Berlin Heidelberg.
https://doi.org/10.1007/11915355 3

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach computational
thinking: Suggestions based on a review of the literature. Computers & Education, 126,
296-310. https://doi.org/10.1016/j.compedu.2018.07.004

Kafai, Y. B., & Proctor, C. (2022). A Revaluation of Computational Thinking in K—12 Education:
Moving Toward Computational Literacies. Educational Researcher, 51(2), 146—151.
https://doi.org/10.3102/0013189X211057904

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61.
https://doi.org/10.1016/j.chb.2014.09.012

Otero Avila, C., Foss, L., Bordini, A., Simone Debacco, M., & Da Costa Cavalheiro, S. A. (2019).
Evaluation Rubric for Computational Thinking Concepts. 2019 IEEE 19th International
Conference on Advanced Learning Technologies (ICALT), 279-281.
https://doi.org/10.1109/ICALT.2019.00089

Papert, S. (1982). Mindstorms: Children, computers, and powerful ideas (Reprint). Harvester
Press.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas.
https://cn.bing.com/academic/profile?id=d041c558229147ac04a3b561314ae782&encod
ed=0&v=paper_preview&mkt=zh-cn

Rich, P. J., Egan, G., & Ellsworth, J. (2019). A Framework for Decomposition in Computational
Thinking. Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education, 416—421. https://doi.org/10.1145/3304221.3319793

Rijke, W. J., Bollen, L., Eysink, T. H. S., & Tolboom, J. L. J. (2018). Computational Thinking in
Primary School: An Examination of Abstraction and Decomposition in Different Age
Groups. Informatics in Education, 17(1), 77-92. https://doi.org/10.15388/infedu.2018.05

Saez-Lépez, J.-M., Roman-Gonzélez, M., & Vazquez-Cano, E. (2016). Visual programming
languages integrated across the curriculum in elementary school: A two year case study
using “Scratch” in five schools. Computers & Education, 97, 129-141.
https://doi.org/10.1016/j.compedu.2016.03.003

Scherer, R., Siddiq, F., & Sanchez Viveros, B. (2019). The cognitive benefits of learning
computer programming: A meta-analysis of transfer effects. Journal of Educational
Psychology, 111(5), 764—792. https://doi.org/10.1037/edu0000314

Selby, C. C. (2015). Relationships: Computational thinking, pedagogy of programming, and
Bloom’s Taxonomy. Proceedings of the Workshop in Primary and Secondary Computing
Education, 80-87. https://doi.org/10.1145/2818314.2818315

Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A
microgenetic analysis. Journal of Experimental Psychology: General, 127(4), 377-397.
https://doi.org/10.1037/0096-3445.127.4.377

Tsai, M.-J., Liang, J.-C., Lee, S. W.-Y., & Hsu, C.-Y. (2022). Structural Validation for the
Developmental Model of Computational Thinking. Journal of Educational Computing
Research, 60(1), 56—73. https://doi.org/10.1177/07356331211017794

284

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance

assessment: Measuring computational thinking in middle school. Proceedings of the

43rd ACM Technical Symposium on Computer Science Education, 215-220.
https://doi.org/10.1145/2157136.2157200

Wing, J. (2008). Computational thinking and thinking about computing. 2008 IEEE International

Symposium on Parallel and Distributed Processing, 1-1.
https://doi.org/10.1109/IPDPS.2008.4536091

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Appendix

Table 1. Decomposition Strategy Hierarchy

Grade Definition Specific description
Level O During the analysis of the Subjective judgement: the process of identifying the
Strategy = programming task, programming task problem and thus completing the programming by
relies on subjective judgement virtue of an autonomous understanding of the
and may not achieve the programming task, in which errors may occur.
programming objectives. Missing objects: Objects needed in the programming
are not added to the scene. Resulting in missing code.
Missing code: Missing code in the programming
process due to a lack of systematic decomposition of
programming tasks.
Level 1 Objective decomposition of Task decomposition: the ability to decompose the
Strategies programming tasks based on main subtasks of a programming task.
subjective judgement, using Object decomposition: the ability to program action
combinations of existing code codes for each object based on the objects that appear
to complete programming in the programming.
tasks.
Level 2 Be able to completely analyse Sub-task combination: the ability to break down the
Strategies the objectives of a task in overall goal of a programming task into several task
programming, analyse the blocks and combine them using existing code to
relationships between sub- complete the programming.
problems and use combinations Sequential decomposition: problem decomposition in
of previously learned code the order of .the problems that can be programmed for
blocks to complete a programming task. -
programming tasks Condltlon_al decomp05|t|9n: the ab|I_|ty to degomp_ose
programming tasks according to the different situations
of the programming problem.
Level 3 The process of decomposing Autonomous decomposition: the ability to
Strategies task objectives enables a autonomously identify the main problems in a
systematic breakdown of programming task of their own design and the
programming objectives into relationships between the various sub-problems.
smaller problems in a Optimal sub-problem combination: The ability to

combination of process and form an optimal combination of sub-problems in
programming into an efficient solution to the entire

content, which are effectively X
programming task.

combined to complete the
programming task.

285

