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Abstract: Understanding students' coding behaviors is crucial for providing targeted
support in programming education. Automatic analysis of coding behaviors using
machines can address the limitations of manual monitoring. Previous studies focused
on coding behavior representations without considering differences relative to a model
answer. We propose embedding vectors that capture these differences, enabling the
distinction between simple and complex code solutions. Evaluating these vectors by
predicting assignment scores, we achieved over 15% higher accuracy compared to
conventional methods. This approach has the potential to enhance teachers'
understanding of students' coding behaviors and improve support in programming
education.
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1. Introduction

Understanding student coding behaviors in programming courses offers several advantages,
including identifying struggling students and pinpointing areas of difficulty. This enables
teachers to provide targeted support and effective feedback, enhancing students'
understanding of programming (Leinonen et al., 2019). However, directly monitoring all
students' programming activities is not feasible for teachers due to large class sizes and limited
resources. Therefore, the use of machine-based automatic analysis of student coding
behaviors becomes essential.

Previous studies have conducted the automation of programming log analysis (Mao et
al., 2021). However, many of them do not consider the difference between student codes and
a model answer when calculating coding behavior representations. By considering these
differences, it becomes feasible to distinguish between students who have correctly solved a
problem with simpler code closer to the model answer and those who have written more
complex code. To address this, we propose the generation of coding behavior representations
that consider the deviation from the model answer. Our objective is to utilize these
representations, derived from the coding activity logs of students during programming
assignments, to predict their performance accurately. By achieving accurate predictions of
assignment scores based on coding behavior representations, we demonstrate that these
representations effectively capture factors that affects their programming performances.

2. Proposal Method
To create embedding vectors that capture students' coding behaviors, including their ability to

write code successfully and smoothly, as well as their tendency to explore different
approaches through trial and error, we propose some embedding methods.
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First, we utilize the pre-trained CodeBERT model (Feng et al., 2020) without fine-tuning
to convert students code into embeddings. CodeBERT is a pre-trained bimodal model for PLP
with Transformer-based neural architecture. Next, to compute an embedding vector for each
student's coding behavior, we utilize the answer code provided for a given programming
assignment. By considering the answer code as a reference, we quantify the characteristics
of a student's coding behavior relative to this reference code. To accomplish this, we introduce
the concept of answer-directed vectors (ADVs), which are vectors pointing from each code
written by a student to the answer code.

After calculating the ADV for each student's code, we generate two vectors: the mean
of the ADVs (ADV Mean) and the sum of the ADVs (ADV Sum). We expect that struggling
students will have a larger ADV Sum due to their trial-and-error approach and significant code
differences. The ADV Sum can be calculated like below:

n
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Z (eAnswerCOde - eCode)’
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Whereas e ,qwercode indicates the embedding vector of the answer code, and el . indicates
the embedding vector of the i-th code written by a student to solve the assignment. Therefore,
we can calculate the ADV Mean by dividing ADV Sum by n.

In this study, we evaluate the ADV Mean and ADV Sum as representative vectors for
student coding behaviors, examining their effectiveness in capturing and representing the
nuances of students' approaches to programming assignments.

3. Experiment
3.1 Experiment Settings

To assess the effectiveness of the generated vectors in representing students' coding
behaviors, we conducted an experiment to predict students' programming assignment scores.
We utilized WEVL (Taniguchi et al., 2022), an online coding application used in programming
courses at our university, to analyze the programming logs collected during a Python
programming exercise course in 2020. Throughout the course, students received weekly
programming assignments to be completed within a week.

We categorized students into two groups based on their scores: "Comp." (students
who obtained full scores) and "Incomp." (students who did not). Then, we tested the
predictability of the vectors by predicting which students were in Incomp., using machine
learning. For binary classification, we employed a Random Forest with a maximum depth of
5. We then performed a k-fold cross-validation with k=3 and calculated the average scores of
the four types of prediction performance metrics: recall, precision, accuracy, and f-measure.

In this experiment, we examined the "concat" assignment given during the middle
stages of the course. The number of programming logs was 6,301, Among the 63 students
who engaged with the "concat" assignment, 32 students belonged to the Incomp. group, while
the remaining 31 students belonged to the Comp. group.

3.2 Results

Table 1 shows the prediction results of each vector in a programming assignment given in the
middle stage of the course. For comparison, we used edit distance and embedding distance
to calculate how the student code was different from the answer code. First, we can see that
the vector generated by summing up ADV exhibits the highest scores in all the performance
metrics. Second, we can see that the sum method outperforms the mean method in prediction
scores in almost all the metrics.
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Table 1. Results of prediction on the concat assignment. The highest values for each
performance metric are highlighted in bold. The chance rate of the prediction is 0.5079.

Recall Precision Accuracy F-measure
Edit Distance Mean 0.4453 0.5039 0.4762 0.4584
Sum 0.4913 0.5371 0.5397 0.5105
Embedding Distance Mean 0.5030 0.5571 0.5397 0.5204
Sum 0.5939 0.5563 0.5397 0.5643
ADV Mean 0.6212 0.6474 0.6349 0.6272
Sum 0.7698 0.7098 0.6984 0.7215

4. Discussion

Looking at the Table 1, we can see that the sum method consistently outperformed the mean
method across almost all methods. Considering the reason why this happened, a possible
explanation is that students who are less proficient in programming and struggle with coding
may require repeated trial and error to arrive at a solution. This increase in the number of
attempts results in a greater sum. If we consider distance or vector size as penalties, we can
accumulate them by employing the sum method, enabling the identification of students
struggling with coding. Indeed, both Edit Distance Sum and Embedding Distance Sum are
proportional to the number of attempts, but their scores did not increase as much as ADV
Sum. This indicates that the direction of the ADV, as well as its size, contributes to prediction.
In summary, our findings suggest that the ADV Sum represents factors that significantly affect
student performance.

5. Conclusions

This paper presented methods using CodeBERT to convert students' coding behaviors into
768-dimensional vectors. The ADV Sum method, incorporating differences between student
and answer code. CodeBERT-based representations outperformed edit distance, providing
valuable insights for educators to understand and support students' learning needs in
programming education. Enhanced feedback based on these insights can improve student
learning outcomes.
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