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Abstract: Measuring students’ mental states, such as their understand-
ing during class, helps improve learning efficiency. Automatic approaches
implement this idea without interrupting the class by sensing students’ reac-
tions through wearable sensors or cameras and applying machine learning
models to analyze the data. However, most of the previous works lack ade-
quate annotations of understanding based on students’ reactions compared
to the number of concepts conveyed during lessons. This paper proposes a
scalable framework for efficiently constructing and annotating datasets. Ad-
ditionally, we have collected a dataset consisting of posture, facial expres-
sion, and eye movement features, and benchmarked it for measuring under-
standing. The results show promising accuracy of 80% even in cases where
not all features are available, demonstrating the potential for widespread
adoption of the proposed framework.

Keywords: Video-based learning, measurement of understanding, ma-
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1. Introduction

Formative assessments provide frequent feedback on the learner through close observa-
tions (Black & Wiliam, 1998). They can be leveraged to identify the weaknesses of a learner or
pinpoint the concepts that require further clarification, bridging the gaps between the teaching
and the learning and improving the quality of both. Although effective assessment techniques
have been developed after years of research and experimentation (Angelo & Cross, 1993),
they often require significant effort and time to implement, such as human labor to make ob-
servations and analyses, preventing comprehensive and large-scale studies. In this paper, we
aim to develop automation tools to perform one of such assessments - the measurement of
understanding of a learner, and to break the constraint in a specific learning environment -
video-based learning (VBL).

VBL has become an important learning environment as many higher education institu-
tions developed their Massive Open Online Courses (MOOCs) and Open Coursewares (OCWs)
in the past decade. Moreover, the pandemic of COVID-19 has also forced many classes in
higher education that originally took place in the physical classroom to move online. One com-
mon practice is to have the lectures pre-recorded and placed in video streaming platforms, and
the learner sits in front of a computing device and watches the video to learn. Compared to
the physical classroom (Ahuja et al., 2019; Gao, Shao, Rahaman, & Salim, 2020), in such a
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VBL setting, the reactions of the learner, e.g., the facial expression (Friesen & Ekman, 1978),
the body posture, the gaze (Robal, Zhao, Lofi, & Hauff, 2018a; Zhao, Lofi, & Hauff, 2017), and
the control input to the video player, can be easily recorded using the webcam of the device.
If these reactions can be analyzed automatically, they can be used to understand the learning
process collectively in a large-scale setting or specific to an individual learner.

This work intends to design and implement a system to measure learners’ understand-
ing based on their reactions. This is different from many past works that focus on other metrics,
such as engagement, confusion, and attention level. We believe that resolving confusion, i.e.,
understanding, leads to engagement and prevents frustrations in cognitive processes (D’Mello,
Lehman, Pekrun, & Graesser, 2014). Itis therefore useful to directly estimate the learner’s level
of understanding.

In this paper, we took the following steps to realize this idea. First, we design a scalable
framework that allows multiple devices to record a learner’s reaction in video-based learning
environments. This framework should synchronize all recordings with the lecture video and
simplify the annotation process for convenience. Next, we constructed a data set with the pro-
posed framework, which includes subject recruitment. We have decided to collect eye gaze,
facial expressions, posture, and the annotation of understanding when watching lecture videos.
We established specific guidelines for annotators to follow and to annotate understanding. Fi-
nally, different machine learning-based model architectures are used against our dataset to
examine their effectiveness in measuring understanding in real-world situations. We tested the
models using different feature sets, and determine to what extent these models perform under
certain real-world limitations. These findings could demonstrate the potential for extending our
system to ubiquitous laptops and highlight the system’s effectiveness.

2. Related Work

In order to generate informative feedback from the learners, a variety of targets have been fo-
cused on, including their attention, engagement, and various aspects of interest levels. The pur-
pose is to detect undesired behavior to prompt student’s self-regulation and reflective learning,
to provide beneficial insights for educators to create the right learning climate for students (Gao
et al., 2020), and sometimes to predict learners’ performance as references for both learners
and instructors to enhance learning and teaching efficiency (Ramakrishnan, Zylich, Ottmar,
LoCasale-Crouch, & Whitehill, 2021).

However, reaching a consensus on a clear definition for measuring mental states and
acquiring ground truth can be challenging, even when the underlying concepts are understood.
For example, different methods are applied to detect and measure attention loss. Zhao et al.
(2017) asked participants to press a key if they experienced mind-wandering, a form of attention
loss, in the past 30 seconds, and they kept ringing a bell to remind them to report feedback.
Robal et al. (2018a) implemented several alerting modules to raise the learner’s attention when
a loss of focus is detected, including pausing the video playback. Kar et al. (2020) use both test
scores and human perception scores to measure attention. Each test contains five questions
related to the content of the corresponding video, and the attention score measured this way
is correlated with the degree of comprehension. Scores from human perception were manually
evaluated by other participants, who took turns being observers of their peers.

Although these targets can be subjective and difficult to define, basic features are usu-
ally derived from clickstream data, data of the surrounding environment, background audio,
eye tracking data, facial expressions, postures, and physiological activities such as the electri-
cal activity of the brain, galvanic skin responses, and heart rates (Monkaresi et al., 2016; Gao
et al., 2020). These responses from learners are often collected through cameras, eye track-
ers, wearable devices, or physically clickable buttons. Some works focus on a single feature,
while others combine different features. For instance, Whitehill et al. (2014) draw attention to
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Figure 1. System Design

classifying engagement based on facial information in image frames and videos, while Robal
et al. (2018b) rely on facial and eye gaze information to track learners’ attention. The choice
of which features to use usually depends on the specific scenarios of applying the system and
the accessibility of the data.

Among these features, our work will mainly focus on the combination of eye move-
ment data, facial expressions, and postures. They are likely available in video-based learning
environments nowadays. Most works we refer to were conducted in video-based learning en-
vironments, where learners watch videos through mobile devices or computers (Whitehill et
al., 2014; Monkaresi et al., 2016; Zhao et al., 2017; Robal et al., 2018a; Kar et al., 2020). In
this case, learners are naturally in front of built-in cameras on the device, which minimizes the
impact on their reaction. On the other hand, some works that benefit from non-invasive sensing
devices and take place in instrumented physical classrooms (Gao et al., 2020; Ramakrishnan
et al., 2021). Although the learning environments may not be identical, we value the inspir-
ing ideas and methodologies for constructing a pipeline that automatically collects responses
through devices, estimates features of interest based on the recorded data, and analyzes tar-
gets representing learning efficiency.

There also exist publicly available datasets, including datasets annotated with affective
states such as DAISEE and Engagement in the Wild, or CLASS-coded datasets like Measures
of Effective Teaching (Pianta et al., 2008; Kane et al., 2013). DAISEE is a dataset created by
Gupta et al. (2016) that contains video snippets annotated with levels of affective states as a
multi-dimensional score. In these cases, the annotation process is time and labor-consuming,
highlighting the value of an efficient annotation tool, which this work aims to develop.

3. System Design

The system developed in this work consists of two parts, as shown in Fig. 1.

The first part involves a toolkit to collect a dataset capturing the reactions of a learner
while watching online lecture videos, annotated with the understanding level of the learner. The
objective is to create a dataset with fine granularity, multiple features, and accurate annotation.
These are essential for creating a machine learning model for estimating the understanding
level in the later stage. Most existing publicly available data sets do not satisfy these require-
ments. For example, some only specify the understanding level for a large section of the video
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or the entire video. With better granularity, the proposed system can pinpoint a video location
where the learner starts to fall behind.

The second part is to apply existing machine learning models to the constructed dataset
and examine their performance in measuring understanding. We consider this a supervised
classification task. The models being compared will include neural-network models and con-
ventional machine learning models, as well as time-series and non-time-series models.

3.1 Dataset creation toolkit and data collection

To construct the dataset, we recruited graduate and undergraduate students majoring in com-
puter science as participants to emulate learners taking online courses. We recorded their re-
actions while they watched lecture videos and asked them to annotate their understanding.

3.1.1 Video selections

Four lectures are selected from two different machine learning courses, covering high-level
ideas of algorithms and mathematical proofs. The topics covered in these lectures are self-
contained to provide participants with sufficient background knowledge, eliminating the need
for them to take any preliminary courses in advance. Moreover, the videos are manually split
into a number of clips, each covering a complete idea. This is similar to the setting commonly
seen in MOOCs. The duration of the video clips ranges between 5 and 12 minutes. The lecture
videos use slides in English but the lectures are conducted in Mandarin Chinese, the native
language of the participants.

3.1.2 Dataset creation toolkit

We developed two tools to facilitate the data collection process. The first functions as a video
player controlled by keyboards, while simultaneously recording reactions. The learner can seek
forward or backward by 5 seconds, pause, and resume playback. The playback speed is ad-
justable, ranging from 0.7x to 2.0x with increments of 0.25x. All keyboard events are logged,
representing changes in watching behavior.

In addition, we use the following sensors to collect data at the same time:

1. Eye tracker. We use Tobii eye tracker 5 to determine the gaze points at 33 Hz. Each
sample represents a coordinate on a plane that corresponds to the screen.
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2. Webcam. The webcam captures a learner’s facial expressions and partial upper body
poses while watching lecture video clips. Compared to eye trackers, webcams are more
accessible since most laptops have built-in webcams. The recording quality and sampling
rate in our setup are at least 1280 x 720 pixels at 30 frames per second, which most built-in
laptop webcams can collect.

3. Microphone. We collected the audio because the participants might leverage it to recall
their understanding during the annotation phase.

The second provides a computer program to facilitate the annotation process. This pro-
gram displays the video to be annotated and contains a progress bar allowing users to jump
onto a specific position. An understanding gauge indicating the label applied to each video
frame is aligned with the progress bar. The user can select a section of the video and assign
a single label to all frames within the section. Fig. 2 illustrates the graphical user interface of
our annotation program. The label is a boolean value, where 0 represents confusion and 1
represents the opposite, indicating fully understood at the moment.

3.2 Participants and conducting data collection

A total of 13 students are invited as participants, all of which are male. Out of the 13 students,
there are two first-year, three second-year, and one third-year undergraduate students, and
four first-year, three second-year master graduate students. The participants have experience
taking online courses but have not taken any courses covering the subjects in our selected
lecture videos. Before the experiment starts, details of how to calibrate the eye tracker, how to
use the programs to record and annotate, etc., are explained.

The participants utilized our tool to watch lecture video clips in a specific order. Each
participant watched two out of the four lectures. During each video playback, the participants
were asked to remain focused, indicating that they are not allowed to leave their seats or fall
asleep. The collection process for each video clip consists of two phases: the recording phase
and then the annotating phase. Only after completing both phases will a participant move on
to the next clip. We believe the short time span between the two phases and self-reported
annotations would result in higher quality and reliability of the labels of our dataset.

The collected dataset includes reactions collected from 13 participants who watched a
total of 4 lectures. It contains 748,198 samples with annotations, out of which 224,920 of them
are annotated as confused, accounting for approximately 30% of the dataset. The considered
reactions include eye movements, facial expressions, body and head poses, and watching
behaviors. Each data sample will be represented by a tuple of these elements, annotated with
a label indicating the understanding level at that moment. Screen recording is also collected as
an informative reference during annotation, although it will not be included in the dataset.

3.3 Machine learning model to estimate understanding level
3.3.1 Derived features

The following features are derived from the collected raw data and serve as input to the machine
learning model to estimate the understanding level (referred as the estimation model hereafter).

1. Eye movement. Past works (Salvucci & Goldberg, 2000) provided us foundation of what
parameters could contain useful information for measuring understanding. We use raw
gaze points, their velocities, and the accelerations as the features for the estimation
model. Note that these can either be obtained from the specialized eye tracker device
or estimated from the webcam images.
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2. Posture. Body poses and head poses are noticeable signs for human observers to per-
ceive the understanding of others. Psychological experiments also support the claim that
bodily states affect cognition and cognitive states can be expressed through body lan-
guage (Glenberg, Havas, Becker, & Rinck, 2005). We rely on OpenPose to extract pos-
ture features from webcam recordings. OpenPose is a real-time multi-person keypoint
detection library that estimates human faces and bodies frame by frame (Cao, Hidalgo,
Simon, Wei, & Sheikh, 2021). It provides 70 key points for the human face and 25 key
points for the human body. For the estimation model, the edges between key points are
used as features, resulting in 67 edges for the face and 24 edges for the body.

3. Facial expression. Here we wish to derive a vector representing the facial expression
captured by the webcam images. The main idea is to use pre-trained models for image
classification to extract facial features. We use Resnet-50 with pre-trained weights for
this task as it is frequently used as a feature extractor for facial expression recognition
tasks (Wang, Peng, Yang, Meng, & Qiao, 2020). The end result is a 1000-dimensional
vector representing the facial expression.

3.3.2 Model architectures

We selected three commonly used machine learning model architectures for the study: Long
Short-Term Memory (LSTM) (Gers, Schmidhuber, & Cummins, 2000), self-attention (Vaswani et
al., 2017), and Support Vector Machine (SVM). The main objective is to understand how accu-
rate the models trained with our dataset can estimate the understanding level and compare their
accuracy in different settings. LSTM and self-attention models are both neural network-based
models, both take a sequence of instances as input and make use of the relations between in-
stances. On the other hand, SVM takes one instance as input and treats consecutive instances
as separated data. We adopted the L2-regularized L2-loss classification solver in LIBLINEAR,
which is an implementation of linear SVM classifiers (Fan, Chang, Hsieh, Wang, & Lin, 2008).
Linear classifers can perform as well as kernel classfiers when the dataset size is relatively
large compared to the dimension of the dataset, which is the case for our dataset. Moreover,
SVM is often used as a baseline model for comparison with more advanced architecture.

4. Evaluation Results

4.1 Dataset Partitioning

To evaluate the performance, we divide our dataset into a training set and a testing set. The
models are trained with data in the training set, and the evaluation results are produced with
the data testing set. On the other hand, we employ several partitioning methods according to
different scenarios. The first method is partitioning the participants, ensuring that the training
set and the testing set do not contain data from the same participant. The second method is
partitioning the viewed lectures so that the training set and the testing set do not share data
from the same lecture video. The last method combines participant and lecture partitioning,
resulting in the training set and the testing set having different participants watching different
lecture videos. If not specified, the first method is set as the default partitioning method in the
following sections. Fig. 3 illustrated the three methods. Once the partitions are established, we
apply a 3-fold cross-validation on the training set to make full use of the limited dataset. The
training setis divided into three subsets, and each subset takes turns to validate models trained
on the remaining subsets. Finally, we test the performance of all three models, using the testing
set, and calculate their arithmetic mean as the final result of accuracy.
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4.2 Results

Fig. 4 shows the overall accuracy with the error bar showing the standard deviation on the
testing set using different partition methods. As expected, all models perform better when train-
ing and testing sets share common participants or lecture videos, indicating the presence of
detectable patterns in the features. In real-world scenarios, these results imply the usefulness
of the proposed system: if the model is trained with data including a particular participant or
a particular course, then the model can be leveraged to produce more accurate results when
the same participant watches the video clips from other courses, or when a different participant
watches the same video clip. When both the participant and the video clip are different, the accu-
racy reduces by approximately 10%. The results also show that the latter case produces slightly
higher accuracy, suggesting similar learning behavior patterns could be captured in the model
for different learners watching the same video clip. Results also suggest that a self-attention
model should be leveraged due to its superior overall performance and relatively short training
time. SVM provides significantly shorter training time, trading off with slightly inferior accuracy.

Next, we aim to determine which feature contributes the most to measuring understand-
ing. Here we test the model with data from different participants. Fig. 5 shows that for SVM and
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LSTM models, there is no significant accuracy loss when excluding the eye movement features.
In most application scenarios, the devices do not have a specialized eye-tracking sensor; in
such cases, the system can still achieve good accuracy, regardless of the model architecture
applied. Moreover, as shown in Fig. 5, self-attention-based models can achieve 83% accuracy
regardless of which features are included in the training set. This implies that the eye move-
ment features contain sufficient information to estimate the understanding level with a strong
model. This is useful as in cases where the eye tracking sensor is available, the participant
might prefer its use since the webcam images could be considered as invading privacy.

5. Conclusion

In this work, we proposed a scalable framework for measuring a learner’s understanding of
lecture videos. The framework covers the process of constructing datasets from learners’ re-
actions, training machine learning models on the dataset and measuring understanding. We
have also evaluated the feasibility of our framework in real-world situations.

Evaluation results suggest that the best performance was achieved when training the
models using data from the same video clips with poses, facial expressions, and eye move-
ment features, achieving 82% accuracy. The case when using data from the same learner but
different video clips has a slightly lower accuracy of 78%. This shows that if the model can be
trained with data from either the same learner or the same video clip, the model can make use
of the behavior it learns from the data to better estimate the understanding level. Moreover,
with the strongest self-attention-based model, results also suggest that the information con-
tained in the eye movement, or the pose and facial expression features are both sufficient to
achieve approximately 82% accuracy. Using only a webcam (for facial expressions and poses)
can achieve large-scale deployment. Using only an eye tracker (for eye movement) could be
preferred for privacy-sensitive scenarios. Results show that both of these solutions are feasible
with good accuracy. We hope that the implications of these results demonstrate the feasibility
of using automated tools to measure understanding in a large-scale and comprehensive man-
ner, and the research community would produce similar open tools to facilitate related future
research.
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