Shih, JL. et al. (Eds.) (2023). Proceedings of the 31% International Conference on Computers in
Education. Asia-Pacific Society for Computers in Education

Applying cooperative learning with role
division to learn recursion

YungYu ZHUANG', Hong-Wei CHEN, Jen-Hang WANG & Gwo-Dong CHEN
Department of Computer Science and Information Engineering, National Central University,
Taoyuan City, Taiwan
*yungyu@ncu.edu.tw

Abstract: Nowadays, most programming languages support multiple programming
paradigms, enabling the choices between them for different application scenarios and
even using them together, for example, object-oriented programming for system
modeling, event-driven programming for graphical user interface, and functional
programming for wrapping actions. However, learning different programming
paradigms is quite difficult, especially when they are given as a whole. Recursion is a
typical example since it originated in functional programming but was also included in
most structured programming languages. As Dijkstra pointed out, learners who are
familiar with structured programming tend to think about the control flow of recursion
and get confused by how the recursion can be implemented. To address this issue, we
developed a methodology along with system software to help novices think of recursive
solutions from the definition rather than the implementation.

Keywords: Programming, programming paradigm, recursion, cooperative learning,
role division

1. Introduction

Learning programming is learning how to appropriately use programming paradigms to
implement software and organize program code (Floyd, 1979), for example, learning how to
use objects, events, and functions. For a specific application scenario, programmers need to
appropriately use the programming paradigms supported in the programming language they
are using to implement software features. In other words, programming paradigms are the
methodology to organize programs for specific application scenarios and the way to implement
parts of a software system, which enables programmers to express their ideas with concrete
program code. Without knowledge of programming paradigms, writing a good program to fit
the system requirement is impossible.

Programming paradigms can be supported with either language constructs or design
patterns. Language constructs are the essential elements in a programming language to form
a programming paradigm, basically supported by reserved keywords and language syntax.
For example, the “if-else” and “for” structured programming and “class” for object-oriented
programming; programmers can easily use them for desired functionalities. On the other hand,
design patterns are developed based on existing language constructs to achieve
functionalities that are not directly supported by the language. In other words, following the
developed patterns to write a piece of code to implement functionality such as “for” or
“class.” In languages that do not directly support event-driven programming, for example,
C++ and Java, programmers can implement events with the Observer pattern (Gamma et al.,
1993), while in a language like C#, programmers may simply use the language constructs
named events and delegates.

Modern programming languages tend to support multiple programming paradigms to
meet different programmers’ needs and even allow programmers to use several paradigms
together. For example, languages like C++ and Python support both procedural programming
and object-oriented programming and allow programming with functional flavor. Scala
supports object-oriented programming and functional programming. In fact, mainstream

730



languages in the industry, such as C language, also support functional-like things in addition
to procedural programming, for example, recursion. Supporting multiple programming
paradigms in a single programming language is a trend.

However, learning multiple programming paradigms at the same time is quite difficult.
Learners may get confused about what programming paradigms actually are, how they are
supported, and when they can be applied. We also found such a situation in classrooms where
students have difficulty switching between programming paradigms and using them correctly.
As Dijkstra mentioned, students usually struggle against learning recursion because they
consider recursion based on their understanding of structured programming rather than from
the viewpoint of definition (Dijkstra, 1999). Once students start trying to think and implement
recursion with structured programming, i.e., sequence, branch, and loop (Dahl, Dijkstra, &
Hoare, 1972; Nassi & Shneiderman, 1973), they will get confused about the execution of every
recursive step since recursion cannot be natively represented with structured programming
and flowcharts. Although it is possible to convert a recursive call into an iteration with
appropriate symbols and conditions, the representation will become iterative style---the
recursive call will be represented by repetitive steps rather than a comprehensive step.
Actually, students must recognize that recursion is a definition and use it without tracing each
step. Therefore, how to help novices learn how to use programming paradigms is an important
issue.

The observation led us to think about how to help students think and learn individual
programming paradigms. So far as we know, most research activities on improving
programming learning discuss programming as a whole or stay in discussing structured
programming. In this paper, we take the recursion in functional programming as an example
to point out how different programming paradigms and the problems learners may face when
learning programming. To address this issue, we developed a methodology to help novices
learn from the definition of recursion. We designed a system to let learners focus on the
definition and benefit from cooperative learning with role division.

2. Literature review

In this section, we discuss existing research activities on programming paradigms, cooperative
learning, and recursion to clarify the research gap, i.e., the importance and difficulty of learning
recursion.

2.1 Programming paradigm

Programming paradigms are how to implement and organize program code, which often
determines whether programmers use a language (Floyd, 1979). There have been many
programming paradigms developed for resolving different application scenarios. For example,
structured programming was suggested to improve the structure of program code (Dahl,
Dijkstra, & Hoare, 1972). Procedural programming was discussed to divide program code into
numbers of procedures or subroutines. Functional programming was developed to make code
declarative and reduce side effects (Hughes, 1989). Object-oriented programming was
proposed to model a system with message sending protocol (Goldberg & Robson, 1983).
Aspect-oriented programming was developed to modularize crosscutting concerns (Kiczales
et al., 1997). Reactive programming follows the idea of data-flow programming to simplify
further the usage of events in programs (Zhuang, 2019). Programming paradigms play an
essential role in practicing the separation of concerns, which lets programmers focus on
implementing and modifying the code of a particular concern (Dijkstra, 1974). The support of
the programming paradigm is the most crucial feature in programming language design.

2.1.1 Structured programming and procedural programming
Structured programming is an early milestone in the history of programming languages. It is

to encourage programmers to represent their algorithms with the three types of decomposition:
concatenation (sequence), selection (branch), and repetition (loop) (Dahl, Dijkstra, & Hoare,

731



1972). Structured programming also encourages programmers to consider block and scope
and represent them in the form of flowcharts (Chapin, 1970; Nassi & Shneiderman, 1973).

Procedural programming suggests considering a program as a series of procedure
calls, which can be regarded as a further step toward modularization upon imperative
programming and structured programming. It emphasizes the usage of modular procedures
to express computational steps in the algorithm to implement. Nowadays, structured
programming and procedural programming are supported in most imperative programming
languages, such as C and C++.

2.1.2 Functional programming

Functional programming has its origin in lambda calculus and was introduced in early
programming languages for artificial intelligence, such as Lisp. It naturally supports recursion
without transferring it into repetition and can easily represent recursive ideas in computer
science. Although the mainstream languages in the industry nowadays are imperative,
functional programming elements like recursion and lambda are partially introduced, i.e.,
programmers can write imperative programs with “functional flavor.”

On the other hand, pure functional programming languages are continuously used in
academia and now going popular. Several functional programming languages, such as
Haskell and Scala, have a large community and are used in industry.

2.2 Cooperative learning and functional roles

Cooperative learning has shown its effectiveness in education (Roger & Johnson, 1994; Slavin,
1980), including programming learning (Chu & Hwang, 2010; Hwang et al., 2012). Those
research activities have reported cooperative learning can increase student achievement.
With different kinds of cooperative learning approaches, students’ learning performance may
be improved (Sharan, 1980). In cooperative learning, positive interdependence can be
considered a critical element (Roger & Johnson, 1994), which means students in a cooperative
lesson have to ensure not only themselves but also group members can learn the assigned
material well. In other words, for group success, all group members need to devote efforts and
make their contributions to the joint effort. In such group training and learning, compared with
classifying all group members as a single category, giving group members different functional
roles is more effective for group growth and production (Benne & Sheats, 1948; Benne &
Sheats, 2020).

2.3 Recursion

Recursion is not only an important thinking method but also a representative approach used
in computer science. Many important problems and algorithms in computer science are based
on recursion, for example, the traversal of trees and graphs. Although the concept of recursion
is quite natural, it is always a big challenge for novice programmers. One of the reasons might
be that recursion has its root in functional languages like Lisp. At the same time, it was
introduced in imperative languages like C. Dijkstra also observed that students who are
familiar with Fortran tend to have difficulty in learning recursion since Fortran does not support
recursion. Kahney concluded the problem of learning recursion comes from an incorrect
understanding of recursion (Kahney, 1983). As Rinderknecht mentioned, many recursion
teachings focus on control flow rather than definition (Rinderknecht, 2014).

Although the difficulty of learning recursion is not a new issue, there were rarely
research activities on improving it from the viewpoint of definition. Recent research,
RecurTutor, emphasized the necessity of practice and showed convincing experimental
results (Hamouda et al., 2018). However, according to the findings in the above research
results, how to afford a better understanding of recursion from the viewpoint of definition
should be more critical. This observation motivated us to design a different learning method
for understanding recursive programming.

732



3. Methodology

To help novices learn the concepts in different programming paradigms, such as recursion,
we propose applying cooperative learning with role division to programming learning. We
developed a methodology along with a concrete system to let learners focus on the definition
of recursion without thinking about the elements in other programming paradigms.

3.1 The definition of recursion

The recursive solution to a problem is to consider and resolve a smaller instance of the same
problem (Roberts, 1986). In programming, recursion is performed by letting functions call
themselves with smaller data sizes, i.e., reducing the problem size to resolve. Once the
functions are called with the base cases that cannot be reduced anymore, the problem can be
easily resolved. Therefore, we can define a recursion solution to a given problem as the
following three elements: base case, reduction, and rewrite.

Here we use the example of calculating factorial numbers in mathematics to explain
the three elements. As a frequently used number in mathematics, the factorial of a non-
negative integer n is denoted by n!, which is the product of all positive integers less than or
equal to n. For example, factorial three can be calculated as follows:

31 =3 %2 *1
And actually, itis equalto 3 * (3-1)!:

31 = 3 * 21
For the problem of calculating the factorial number of a given n, we can consider the three
elements for the recursive solution based on its definition. According to the definition of
factorial numbers, the simplest case without any calculation is the case of zero, and the
factorial number of zero is one:

e! =1
Hence, we can set the base cases of our recursive solution to them, try to reduce the given n
to one or zero, and rewrite the rules to combine the calculation as shown in Table 1. Suppose
we use a function named fact(n) to represent the calculation of factorial n. The three steps
of thinking the recursive solution will be considering the following three questions in order:

1. How to handle the base case(s) for the given problem?

2. Can the problem be reduced to the same problem(s) with a smaller problem size?

3. How to rewrite the problem in the form of the same problem(s) with a smaller

problem size?

Table 1. The three elements in the recursion definition

Element Meaning Example
Base case find out the extreme cases of the problem o! =1
that can be simply calculated or got
Reduction move one step forward by reducing the (3 - 1)!
problem size
Rewrite rewrite the given problem statement with a 31 =3 % 21

combination of smaller ones

3.2 Division of roles

In order to let learners focus their attention on the recursion definition itself, the task of thinking
of a recursive solution is allotted to three roles: base case finder, problem size reducer, and
problem statement rewriter, as shown in Figure 1. By dividing the task of thinking of a recursive
solution into three parts, each learner can concentrate on only the assigned part without
considering the whole problem once. The role division can relieve the difficulty and help
learners start by thinking about a part of the problem.

733



The concept of recursion

Role division

‘ Base case Reduction Rewrite
Base case Problem size Problem statement
finder reducer rewriter

Figure 1. The role division is based on the three elements in the recursion definition.

3.3 Learning design

The learning design of our methodology is shown in Figure 2. Students in a classroom are first
grouped to learn a given problem, where three students per group. After the teaching activities
given by the lecturer, students start to think about a part of the problem based on the roles
assigned to them, i.e., base case finder, problem size reducer, and problem statement
rewriter. When students finish their work, our system will compose their thinking result to
compose the solution to the given problem. After completing the given problem, students need
to exchange their roles for the next problem to learn how to think about different parts of the
problem. Such a design is to help learners think of the solution according to the definition
without thinking about control flow.

Teaching activities

given by lecturer

Exchange roles for a Think the solution
new problem based on the roles

Compose a solution
to the problem

Figure 2. The learning design of our methodology.

3.4 System implementation

Based on our proposed learning design, we developed a learning system software to support
learners. The system is implemented in C# programming language with TCP/IP socket
connection. Each group member can launch a client on the computer individually and switch
to the mode for the assigned role. Node.js and WPF (Windows Presentation Foundation)
frameworks are used for the server and client user interface. The object language generated
by the system is Python, which will be shown on the client user interface to help learners verify
their thinking results.

4. Conclusions and future work

We took recursion as an example to discuss the problem novices may face when they learn
various programming paradigms. A methodology using cooperative learning with role division
was developed along with a concrete system to help learners focus on the definition of
recursion. We have conducted an experiment based on our methodology and system interface
compared with learning in an integrated development environment. We are analyzing the
experimental results to give a detailed report in a journal paper. In the future, we plan to extend
our system to support more complicated recursive problems such as backtracking usage.
Currently, our system can only cover typical recursive problems due to the implementation of

734



our system. Showing the effectiveness of our methodology in learning other programming
paradigms is also included in our future work.

Acknowledgements

This work was supported by the National Science and Technology Council, Taiwan [Grant
No.: MOST 110-2511-H-008-003-MY?2].

References

Benne, K. D., & Sheats, P. (1948). Functional roles of group members. Journal of social issues, 4(2),
41-49. https://doi.org/10.1111/j.1540-4560.1948.tb01783.x

Benne, K. D., & Sheats, P. (2020). Functional roles of group members. In Shared Experiences in
Human Communication (pp. 155-163). Routledge.

Chapin, N. (1970). Flowcharting with the ANSI standard: A tutorial. Acm computing surveys (csur),
2(2), 119-146.

Chu, H.-C., & Hwang, G.-J. (2010). Development of a project-based cooperative learning environment
for computer programming courses. International Journal of Innovation and Learning, 8(3),
256-266. https://doi.org/10.1504/1JIL.2010.035029

Dahl, O.-J., Dijkstra, E. W., & Hoare, C. A. R. (1972). Structured programming. Academic Press Ltd.

Dijkstra, E. W. (1974). E.W. Dijkstra Archive: On the role of scientific thought (EWD447). Retrieved
Dec 23 from https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447 .html

Dijkstra, E. W. (1999). E.W. Dijkstra Archive: Computing Science: Achievements and Challenges
(EWD1284). Retrieved Dec 30 from
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD 1284 .html

Floyd, R. W. (1979). The paradigms of programming. Commun. ACM, 22(8), 455—-460.
https://doi.org/10.1145/359138.359140

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: Abstraction and reuse of
object-oriented design. European Conference on Object-Oriented Programming,

Goldberg, A., & Robson, D. (1983). Smalltalk-80: the language and its implementation. Addison-
Wesley Longman Publishing Co., Inc.

Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst, J. V., & Shaffer, C. A. (2018). RecurTutor: An
interactive tutorial for learning recursion. ACM Transactions on Computing Education (TOCE),
19(1), 1-25.

Hughes, J. (1989). Why Functional Programming Matters. The Computer Journal, 32(2), 98-107.
https://doi.org/10.1093/comjnl/32.2.98

Hwang, W.-Y., Shadiev, R., Wang, C.-Y., & Huang, Z.-H. (2012). A pilot study of cooperative
programming learning behavior and its relationship with students' learning performance.
Computers & Education, 58(4), 1267-1281.
https://doi.org/https://doi.org/10.1016/j.compedu.2011.12.009

Kahney, H. (1983). What do novice programmers know about recursion. Proceedings of the SIGCHI
conference on Human Factors in Computing Systems,

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., & Irwin, J. (1997).
Aspect-oriented programming. European conference on object-oriented programming,

Nassi, I., & Shneiderman, B. (1973). Flowchart techniques for structured programming. SIGPLAN
Not., 8(8), 12—26. https://doi.org/10.1145/953349.953350

Rinderknecht, C. (2014). A survey on teaching and learning recursive programming. Informatics in
Education-An International Journal, 13(1), 87-120.

Roberts, E. (1986). Thinking recursively. J. Wiley.

Roger, T., & Johnson, D. W. (1994). An overview of cooperative learning. Creativity and collaborative
learning, 1-21.

Sharan, S. (1980). Cooperative Learning in Small Groups: Recent Methods and Effects on
Achievement, Attitudes, and Ethnic Relations. Review of Educational Research, 50(2), 241-
271. https://doi.org/10.3102/00346543050002241

Slavin, R. E. (1980). Cooperative Learning. Review of Educational Research, 50(2), 315-342.
https://doi.org/10.3102/00346543050002315

Zhuang, Y. (2019). A lightweight push-pull mechanism for implicitly using signals in imperative
programming. Journal of Computer Languages, 54, 100903.
https://doi.org/https://doi.org/10.1016/j.cola.2019.100903

735



