
Kashihara, A. et al. (Eds.) (2024). Proceedings of the 32nd International Conference on Computers in 

Education. Asia-Pacific Society for Computers in Education 

 

Enhancing Diversity in Difficulty-
Controllable Question Generation for 

Reading Comprehension via Extended T5 
 

Teruyoshi GOTO*, Yuto TOMIKAWA & Masaki UTO* 
The University of Electro-Communications, Japan 

*{goto, uto}@ai.lab.uec.ac.jp 
 

Abstract: Recently, automatic generation of reading comprehension questions with 
controllable difficulty levels has attracted growing interest for educational purposes. 
The latest method for difficulty-controllable question generation employs a two-stage 
mechanism utilizing two independent large language models. Specifically, given a 
reading passage and a difficulty level as inputs, it first produces a reference answer 
using BERT and then generates a corresponding question using GPT-2. However, this 
two-stage approach has the limitation that the questions generated depend strongly on 
the reference answers produced beforehand, restricting the diversity of questions. To 
overcome this limitation, we propose an end-to-end method that enables the 
simultaneous generation of questions and reference answers by extending T5, a large 
language model with an encoder mechanism equivalent to BERT and a decoder 
mechanism equivalent to GPT-2. In our method, T5 is extended to generate answers 
from its encoder and questions from its decoder, with the encoder's output vector 
passed to the decoder. Experiments using a benchmark dataset demonstrate that our 
method significantly improves the diversity of both questions and answers compared 
with the conventional method while maintaining difficulty controllability. 
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1. Introduction 
 
A typical method for developing reading comprehension skills involves having learners read a 
large volume of text and then answer various reading comprehension questions. However, 
manually creating such questions for various reading passages is costly and time-consuming. 
To address this issue, automatic question generation (QG) for reading comprehension has 
been gaining attention in recent years (Heilman & Smith, 2010; Labutov et al., 2015).  

To efficiently support learning through the use of automatic QG systems, it is desirable 
to be able to adjust the difficulty of generated questions according to the reading 
comprehension ability of learners. Accordingly, several difficulty-controllable QG methods 
have been proposed in recent years (Cheng et al., 2021; Gao et al., 2019; Uto et al., 2023). 
One of the recent methods (Uto et al., 2023) is designed to generate answers and questions 
in two steps. First, the answer is generated by inputting a reading passage and a desired 
difficulty value into the large language model (LLM) BERT (Bidirectional Encoder 
Representations from Transformers) (Devlin et al., 2019). Second, the reading passage, 
difficulty value, and generated answer are input into another LLM, GPT-2 (Generative Pre-
trained Transformer 2) (Radford et al., 2019), to generate a question corresponding to the 
answer. However, this two-stage approach is limited in that the generation of questions 
depends heavily on the reference answers produced beforehand. Furthermore, because the 
answers and questions are generated by distinct models, it is not possible to associate the 
difficulty value with the pair of questions and answers. These limitations can restrict the 
diversity of the generated questions and answers.  



To overcome this limitation, we propose an end-to-end difficulty-controllable QG 
method that can generate questions and answers simultaneously in a single deep neural 
model. Specifically, our method extends T5 (Text-to-Text Transfer Transformer) (Raffel et al., 
2020), a LLM that incorporates an encoder mechanism equivalent to BERT and a decoder 
mechanism equivalent to GPT-2. In our approach, T5 is extended to generate answers using 
its encoder and questions using its decoder, with the encoder’s output vector passed to the 
decoder. This method enables the simultaneous generation of questions and answers while 
considering the difficulty of each pair.  

In this study, we evaluate the effectiveness of the proposed method by conducting 
experiments using the SQuAD dataset (Rajpurkar et al., 2016), a benchmark dataset widely 
used for reading comprehension QG tasks. As a result, we confirmed that our method 
significantly improves the diversity of both questions and answers compared with the 
conventional method while maintaining difficulty controllability. 
 
 

2. Task Definition 
 
This study aims to generate pairs of reading comprehension questions and corresponding 
reference answers from a reading passage and an arbitrary difficulty value. Here, we assume 
that the answer to each question consists of a segment of text from the corresponding reading 
passage, as in typical answer-aware QG tasks. The detailed task definition is as follows. 

Let a given reading passage be a word sequence 𝒓 = {𝑟𝑜 |𝑜 ∈ { 1, … , 𝑂}}, where 𝑟𝑜 
represents the 𝑜-th word in the passage, and 𝑂 is the passage text length. Similarly, let a 

question text 𝒒 and an answer text 𝒂  be word sequences 𝒒 = {𝑞𝑣 |𝑣 ∈ { 1, … , 𝑉}} and 𝒂 =
{𝑎𝑘  |𝑘 ∈ { 1, … , 𝐾}}, respectively, where 𝑞𝑣 is the 𝑣-th word in the question text, 𝑎𝑘 is the 𝑘-th 
word in the answer text, 𝑉 is the question text length, and 𝐾 is the answer text length. Note 

that the answer text 𝒂 is a subset of the word sequence in the reading passage 𝒓, namely, 
𝒂 ⊂ 𝒓. Using this notation, our task is to generate a question text 𝒒 and an answer text 𝒂 given 

a reading passage 𝒓 and a target difficulty value 𝑏, where the difficulty value 𝑏 is assumed to 
be quantified based on item response theory (IRT).  

IRT is a statistical method for analyzing the latent ability of examinees and the 
characteristics of questions (i.e., difficulty and discriminatory power) based on examinees' 
responses to test questions. IRT has been widely used in various educational and 
psychological tests because it offers many unique advantages over classical test theory for 
improving and analyzing various aspects of test properties, a simple and traditional framework 
based on basic statistics such as mean and variance. The conventional difficulty-controllable 
QG method (Uto et al., 2023) utilizes IRT to quantify question difficulty because the capability 
of IRT to model the relationship between question difficulty and learner ability helps in 
selecting a difficulty level appropriate for each learner’s ability. Specifically, the conventional 
method uses the Rasch model, the simplest IRT model, which represents the probability 𝑝 

that a test-taker with ability value 𝜃 answers a question with difficulty 𝑏 correctly as follows:  

𝑝 =
1

1 + 𝑒𝑥𝑝(−(𝜃 − 𝑏))
. (1) 

Following this, we also assume the use of the Rasch model to quantify question difficulty, 
although the proposed method is applicable to other difficulty quantification methods. 
 
 

3. Proposed Method 
 
As mentioned in the introduction, the conventional difficulty-controllable QG method (Uto et 
al., 2023) generates answers questions using BERT and GPT-2, respectively. Our objective 
is to combine these processes by extending the T5 model, which has encoder and decoder 
mechanisms equivalent to BERT GPT-2, respectively. Figure 1 shows the architecture of the 
proposed model. 

 



 
Figure 1. Architecture of the proposed model 

 
The proposed model receives a reading passage 𝒓 and a difficulty value 𝑏 in the form 

of 𝑏, 𝑟SEP, 𝑟1, … , 𝑟𝑂 as input to the encoder, where 𝑟SEP is a special token that represents the 
boundary between the difficulty and the reading passage. The encoder then outputs the start 
and end positions of the answer in the reading passage. Specifically, letting the BERT output 
vector corresponding to the 𝑜-th input word be 𝑻𝑜, and the output sequence of the encoder be 

𝑻 = (𝑻𝟏, 𝑻𝟐, … , 𝑻(𝑂+2)), the probability 𝑃𝑜
(𝑠)

(𝑏, 𝒓) that the 𝑜-th word of the reading passage 𝒓 

will be the start position of the answer is calculated as  

𝑃𝑜
(𝑠)

(𝑏, 𝒓) =
𝑒𝑥𝑝(𝑺 ⋅ 𝑻𝑜)

∑ 𝑒𝑥𝑝(𝑺 ⋅ 𝑻𝑜′)𝑂+2
𝑜′=1

, (2) 

where 𝑺 is the trainable parameter. Similarly, the probability 𝑃𝑜
(𝑒)

(𝑏, 𝒓) that the 𝑜-th word is the 

end position of the answer is defined by replacing 𝑺 with another trainable parameter 𝑬. 
Our model passes the information created by the encoder to the decoder to generate 

questions while considering answer information along with the reading passage and difficulty 
level. Specifically, using the matrix 𝑨 that reflects the answer position information and the 
encoder output sequence 𝑻, the input for the decoder is defined as  

𝒁 = 𝑻 + 𝑼 ⋅ 𝑨, (3) 

where 𝑼 ∈ ℝH×2  ( H = 768 is the dimension of the vector  𝑻𝑜 ) is a trainable parameter. 
Furthermore, 𝑨  is a matrix with two rows and (𝑂 + 2)  columns, whose components are 
defined as follows, given the start position 𝑜𝑠 and the end position 𝑜𝑒 of the answer: 

𝐴1𝑜 = {
1  (𝑜𝑠 ≤ 𝑜 ≤ 𝑜𝑒)
0  (otherwise)

 , 𝐴2𝑜 = {
0  (𝑜𝑠 ≤ 𝑜 ≤ 𝑜𝑒)
1  (otherwise)

. (4) 

Here, 𝐴𝑗𝑜 corresponds to the 𝑗-th row and 𝑜-th column of the matrix 𝑨.  

Calculating equation (3) produces the hidden vector sequence 𝒁, which embeds the 

information of the answer positions into the output sequence of the encoder 𝑻. The decoder 
of the proposed model generates a question text from the input 𝒁 in the same manner as the 
standard T5 decoder. 
 

3.1 Model Training and Inference 
 
The proposed model can be trained by minimizing the following loss function 𝐿 , which 
combines the loss functions of answer generation and question generation.  

𝐿 =
1

𝑛
∑ 𝐿ae

(𝑖)
+ 𝐿qg

(𝑖)

𝑛

𝑖=1

(5) 

Here, 𝑛 is the total number of training data. Furthermore, 𝐿ae
(𝑖)

 and 𝐿qg
(𝑖)

 are the loss functions for 

answer generation and question generation for the 𝑖-th training data defined as follows.  

𝐿ae
(𝑖)

= − ∑ 𝑠𝑜
(𝑖)

𝑂𝑖+2

𝑜=1

log 𝑃𝑜
(𝑠)

(𝑏(𝑖), 𝒓(𝑖)) − ∑ 𝑒𝑜
(𝑖)

𝑂𝑖+2

𝑜=1

log 𝑃𝑜
(𝑒)

(𝑏(𝑖), 𝒓(𝑖)) (6) 

      
 

       

     

 

 

 

 

 

       

    

    

 

 

       
                 

      
    

         

      
          
         

      
    

         



𝐿qg
(𝑖)

= − log 𝑃 (𝑞1
(𝑖)

, … , 𝑞𝑣−1
(𝑖)

, 𝑞EOS|𝐙𝑖) = − ∑ log 𝑃 (𝑞𝑣
(𝑖)

|𝐙𝑖, 𝒒<𝑣
(𝑖)

)

𝑉𝑖

𝑣=1

− log 𝑃 (𝑞EOS |𝐙𝑖, 𝑞1
(𝑖)

, … , 𝑞𝑉𝑖

(𝑖)
) (7) 

In equation (6), 𝑏(𝑖) and 𝒓(𝑖) are the difficulty value and reading passage corresponding to the 

𝑖-th training data. Furthermore, 𝑠𝑜
(𝑖)

 and 𝑒𝑜
(𝑖)

 are dummy variables that take 1 when the 𝑜-th 

word of the reading passage 𝒓(𝑖) is the start/end position of the answer and 0 otherwise. 𝑂𝑖 is 

the number of words in 𝒓(𝑖). In equation (7), 𝑞𝑣
(𝑖)

 is the 𝑣-th word of the question corresponding 

to the 𝑖-th training data, 𝒒<𝑣
(𝑖)

= (𝑞1
(𝑖)

, … , 𝑞𝑣−1
(𝑖)

), and 𝑞EOS is a special token that represents the 

end of the question. Furthermore, 𝑉𝑖 is the number of words in the question, and 𝐙𝑖 is the 

vector sequence calculated from equation (3) for the 𝑖-th training data. 
After the proposed model is trained, it can generate pairs of questions and answers, 

given an arbitrary difficulty value 𝑏 and a reading passage 𝒓, by extracting the answer span 

that maximizes 𝑃𝑜𝑠

(𝑠)
(𝑏, 𝒓) + 𝑃𝑜𝑒

(𝑒)
(𝑏, 𝒓) (𝑜𝑠 ≤ 𝑜𝑒) and generating the question words one by one 

based on the probability 𝑝(𝑞𝑣|𝒁, 𝒒<𝒗). 
 

3.2 Construction of Training Data Using IRT and Its Usage  
 
The conventional two-stage method utilized the SQuAD dataset, which consists of reading 
passages, questions, and answers, for QG model construction and evaluation. However, the 
SQuAD dataset does not include the difficulty level of questions, making it impossible to 
construct a difficulty-controllable generator directly. Therefore, the conventional method 
estimates the difficulty level of each question within SQuAD by using IRT and multiple 
question-answering (QA) systems with various performance levels. Specifically, this method 
involves administering each question in SQuAD to a variety of QA systems and collecting their 
correct and incorrect responses. From these data, the difficulty value for each question is 
estimated using the Rasch model, and these difficulty estimates are integrated into SQuAD. 
Following this strategy, we train the proposed model as follows:  
1. Train various QA systems on the SQuAD training data.  

2. Split the SQuAD test data into 90% denoted as 𝑫𝑏
(𝑡𝑟𝑎𝑖𝑛)

 and 10% denoted as 𝑫𝑏
(𝑒𝑣𝑎𝑙)

.  

3. Collect the responses from QA systems for the questions in 𝑫𝑏
(𝑡𝑟𝑎𝑖𝑛)

 and estimate their 

difficulty values, using the Rasch model from the response data.  
4. Train the proposed model, using the dataset integrating the difficulty values with questions 

in 𝑫𝑏
(𝑡𝑟𝑎𝑖𝑛)

.  

Note that step 2 separates 𝑫𝑏
(𝑒𝑣𝑎𝑙)

 in order to evaluate the effectiveness of the proposed 

method in the subsequent experiments. 
For a variety of QA systems, we use 12 pre-trained transformer models from 

Huggingface: bert-base-uncased, bert-large-uncased, roberta-base, roberta-large, distilbert-
base-uncased, albert-base-v1, albert-base-v2, albert-large-v2, microsoft/deberta-base, 
microsoft/deberta-large, microsoft/deberta-v3-base, and microsoft/deberta-v3-large. The QA 
systems are configured to predict the start and end positions of the answer within the reading 
passage. The input for the models comprises the concatenation of a passage and a question 
text, separated by the special token [SEP]. We also train each QA system with varying 
amounts of data to generate QA systems. Specifically, we sample random subsets of the 
SQuAD training dataset with 3000, 2400, 1800, 1200, and 600 data points, respectively. These 
procedures result in 60 QA systems with various performance levels. 
 
 

4. Experiments 
 
We conducted an experiment to evaluate the quality of the generated questions and answers 
by specifying various difficulties for various reading passages, using the proposed method. 
 



4.1 Average Correct Answer Rate by Difficulty 
 
In our experiments, we first generated questions and answers, using the proposed model for 

each of the reading passages in 𝑫𝑏
(𝑒𝑣𝑎𝑙)

 while changing the specified difficulty levels ranging 

from −3.0 to 3.0 in increments of 0.1 for each of the reading passages. Subsequently, the 
generated questions were answered by the 60 developed QA systems and their 
correct/incorrect responses were collected. Using these response data, this subsection 
evaluates the difficulty-controllability of the proposed model.  

Figure 2 shows the average correct answer rate for each difficulty. The horizontal axis 
represents the specified difficulty value and the vertical axis represents the average correct 
answer rate for the proposed method (blue) and the conventional two-stage method (orange). 
The figure shows that the correct answer rate decreases as the difficulty value increases for 
both the proposed method and the conventional method. This indicates that the difficulty 
control in the proposed method is functioning as in the conventional method. Note that, 
although the overall correct answer rate is lower than that of the conventional method, this is 
attributed to the increased proportion of high-difficulty or low-quality questions generated by 
our method as a trade-off for enhancing question variety. A detailed analysis of this 
phenomenon will be addressed in future work. 

 

 
Figure 2. Average correct answer rate for each difficulty level. 

 

4.2 Diversity of Generated Questions and Answers 
 
This subsection evaluates the variety of questions and answers generated by the proposed 

model and the conventional method for each of the reading passages in 𝑫𝑏
(𝑒𝑣𝑎𝑙)

 while changing 

the specified difficulty levels ranging from −3.0 to 3.0 in increments of 0.1. Table 1 presents 
the number of patterns generated by the conventional and proposed methods. This table 
shows that the proposed method greatly increased the variety of both questions and answers.  

For further analysis, we investigated the percentage of generated questions in which 
the first word is an interrogative word: what, who, when, how, where, why, or which. The 
second and third columns of Table 2 show the results. Focusing on interrogative words other 
than “what,” the proportion of appearances in the proposed method is more uniform compared 
with the conventional method. To confirm this, we calculated the kurtosis of the appearance 
rate of the six interrogative words excluding “what,” with the results shown in the last row of 
Table 2. The kurtosis is significantly smaller for the proposed method than for the conventional 
method. Furthermore, we also confirmed the number of patterns of the second word following 
each interrogative word, with the results shown in the last two columns of Table 2. The results 
show that, for all interrogative words, the variety of second-word patterns is higher in the 
proposed method than in the conventional method. These results suggest that the proposed 
method increases the diversity of questions by generating a wider variety of questions. 

 
Table 1. Number of patterns of generated questions and answers 

 
Questions Answers 

Conventional 885 757 

Proposed 2464 941 



Table 2. The rate of interrogative words appearing as the first word and the number of 
patterns of the second word following each interrogative word 

 Rate of first words No. of second words  
Prop. Conv. Prop. Conv. 

what 62.89 56.93 110 93 

who 11.84 17.28 58 52 

when 9.09 7.02 7 3 

how 7.65 9.50 14 10 

where 3.82 1.54 8 6 

why 1.37 1.37 5 5 

which 0.54 2.18 23 13 

Kurtosis −1.806 0.788 - - 

 
 

5. Conclusions 
 
In this study, we proposed a new difficulty-controllable QG method that enhances the variety 
of generated answers and questions. The proposed method is designed as an extension of 
T5. The experimental results show that the proposed method significantly improves the 
diversity of both questions and answers compared with the conventional method while 
maintaining difficulty controllability. This study requires future work, such as comparing the 
performance details between the proposed method and previous QG methods, designing 
appropriate evaluation metrics for QG diversity, and discussing theoretically why the proposed 
method could improve diversity. Additionally, it is important to demonstrate how the proposed 
method can be applied to the field of education. 
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