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Abstract: This paper proposed a system interface based on a novel progressive code 
generation framework to produce verified programming codes using natural language 
for mathematics learning. With the latest advancement of large language models such 
as GPT-4, people can ask GPTs to generate programming code using natural 
language. However, the codes generated may not be directly executable or aligned 
with the user’s desired goal or purpose. Furthermore, different people may express 
their goals and purpose in different ways. Hence, there are many possible ways to map 
natural languages and code. Many of the code evaluation frameworks such as pass-
ratio@n, BLEU and CodeBLEU evaluate large language models (LLMs) code 
generation ability based on their actual execution results on the first prompt without 
giving feedback of the code execution error. With this in mind, a framework that allows 
code generated from any large language model to progressively improve was 
proposed. The idea is to re-prompt the LLMs with the error feedback to generate codes 
until the code is executable and achieve the user’s desire goal or purpose with a 
predefined number of iterations. If a certain number of iterations has been reached and 
the code is still not executable or cannot achieve users' intended goals or desire, the 
prompt would be useful to include in the training dataset for fine-tuning for that large 
language model. In this study, the application of the proposed framework to enhance 
the accuracy of mathematical problem-solving problems was tested and reported. This 
framework may be useful to improve any LLM code generating ability continuously. 
Discussions were made. 
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1. Introduction 
 
The Large Language Models (LLMs), such as OpenAI's GPT (Generative Pre-trained 
Transformer) series, have revolutionized the capabilities of Natural Language Processing 
(NLP) by enabling the processing of vast amounts of text data (Yang et al., 2024). NLP is a 
branch of artificial intelligence (AI) that aims to enable computers to understand and process 
language similarly to humans. For instance, natural language descriptions or instructions can 
be used to direct the focus of a model during training and let it learn specific types of biases 
or patterns (Liu et al., 2023). The studies on using LLMs like GPT to generate human-like 
language in education have been widely explored. A number of studies have shown that LLMs 
can be used to generate step-by-step explanations for solving mathematical problems though 
lacking a skill of calculating and cannot effectively correct misconceptions (Wardat et al., 2023; 
Matzakos et al., 2023). Fundamentally speaking, the transformer model (Vaswani et al., 2017) 



 

 

is not specifically designed to perform arithmetic operations (such as multiplications, square 
roots, modulus or division); rather, it is designed to perform associations. 

On the other hand, LLMs have showed promise in comprehending and generating 
programming code (Dehaerne et al., 2022). Employing LLMs to generate source code implies 
utilizing advanced machine-learning models to assist in implementing code for specific tasks 
or functions (Kazemitabaar et al., 2024; Yeo et al., 2024). By providing a natural language 
description, LLMs generate the corresponding code (Kong et al., in press). However, the 
generation of executable programming code from natural language descriptions is a 
challenging yet crucial area in AI. The produced codes may either fail to execute or not meet 
the users' goals due to misinterpretations or incomplete translations of the intent. Many 
existing code evaluation frameworks, such as pass-ratio@n (Yeo et al., 2024), BLEU 
(Papineni et al., 2020), and CodeBLEU (Ren et al., 2020), assess the code generation ability 
of LLMs based on the actual execution results of the first prompt, without providing feedback 
on code execution errors. 

In this study, we proposed a LLMs-driven system based on human-AI a novel 
progressive code generation framework to assist mathematics learning. In many mathematics 
learning contexts, the goal is not just to find the correct answer, but also to have students 
demonstrate their understanding by evaluating the correctness of the solution derivation. 
Conversely, by having the LLM generate code, the newly proposed framework can use human 
feedback to iteratively improve the model’s code generation capabilities and enhance 
accuracy. All in all, it is hoped that the system will help instructional designers or teachers 
develop learning materials. 
 
 

2. Literature Review 
 
The prevalent LLMs, such as GPT and BERT, are primarily built on the transformer 
architecture (Vaswani et al., 2017), which are able to generate text based on pre-trained 
associations rather than logical reasoning or computational accuracy. This can lead to what 
are termed “hallucinations” in generated content, particularly noticeable in tasks requiring 
precise calculations, such as mathematics (Sun et al., 2024). When using natural language 
as guidance, these models can adeptly handle text generation but often falter with tasks 
requiring deep domain knowledge or exact computational outputs. The performance 
limitations of GPT in mathematical contexts can largely be attributed to this inherent design 
focus on associative rather than computational capabilities. 

LLM generated code evaluation framework (Papineni et al., 2020; Ren et al., 2020; Yeo 
et al., 2024) has been discussed recently. Usually, the evaluation framework starts with 
extracting coding problems from various coding platforms to gather relevant coding problems 
that can be used for further processing by the LLM. Then, using transformer and self-attention 
mechanisms, the LLM generates code based on the extracted problems. Finally, the LLMs 
generate code and the evaluation framework analyze and evaluate the quality of the generated 
code. This is a linear evaluation process starts from preparing the coding problem, through 
LLM inference, to the final evaluation of the generated code. However, this framework does 
not let humans in the loop. Using natural language to instruct LLMs is possible and can be 
integrated into the traditional evaluation framework to help educators to adjust the generated 
content.  

Figure 1 shows the process of integrating prompts in a traditional LLM code generator. 
First, the user can write prompts at different levels —from simple problem descriptions to more 
complex instructions with constraints and execution examples (Yeo et al., 2024). These 
prompts are fed into the LLM code generator, which produces the initial code. This generated 
code is then subjected to a two-step evaluation process: first, it is tested against predefined 
test cases, and second, the results are analyzed using specific metrics (Yeo et al., 2024). 

 



 

 

Figure 1. General framework for code evaluation procedure 
 

To sum up, existing evaluation metrics, including pass-ratio@n (Yeo et al., 2024), BLEU 
(Papineni et al., 2020), and CodeBLEU (Ren et al., 2020), predominantly assess code based 
on the initial correctness of output. These metrics do not consider the potential for iterative 
improvement through feedback or the model's ability to correct errors post-deployment 
(reference needed here). This gap highlights the need for more dynamic and adaptive 
evaluation frameworks that can capture the ongoing learning and adjustment capabilities of 
LLMs in code generation tasks. 
 
 

3. The Proposed Human-AI Progressive Code Generation Framework  
 
The new framework proposed in this study aims to integrate Human-AI progressive code 
generation framework into the existing code evaluation framework to increase the accuracy of 
calculating mathematical problems by dynamically improving the code generation through re-
prompting the LLM with specific feedback using natural language on execution errors or 
misalignments with user goals. Figure 2 shows that prompts are dynamically generated 
according to errors feedback from both code execution error and human evaluator iteratively. 
Initially, LLM(s) are presented with the Math problem and a prompt. If the generated code is 
executed with error(s) in the intended code execution environment, the error message will be 
fed back to the LLM(s) along with all the chat history until the code can be successfully 
executed. If the code is successfully executed in R iterations, the code output answer will then 
be evaluated against the correct answer. If the code generated a wrong answer, the evaluation 
results will be presented back to the LLM in H iterations. If the code generated from the LLM(s) 
cannot be executed in the intended execution environment under R iterations or (R+H) 
iterations, we will consider the LLM to have failed this test case in the similar manner to the 
other framework shown in Figure 2. 
 

 
Figure 2. Process in generation llms-generated gode evaluation framework 

 
In this paper, we propose the Progressive Code Generation Framework. The 

Progressive Code Generation (ProG) Metric derived from several parameters. At the very 
essence of the framework, the Progressive Code Generation Score must depend on the 
parameter r and h as follows: 

𝑃𝑟𝑜𝐺 = 𝑓(𝑟, ℎ)  =
1

𝑒(𝑟+ℎ−𝑜)
 

 



 

 

Where o refers to the offset. For instance, if the evaluation progress includes further 
evaluation (i.e. h ≥ 1 and r ≥ 1), o should be set to 2. On the other hand, if the evaluation 
progress only includes the code execution evaluation process (i.e. h = 0 and r ≥ 1), o should 
be set to 2. We focused on the case where there is no further evaluation process. Figure 3 
shows the Vanilla Progressive Code Generation Framework only considering executable code. 
 

 
Figure 3. Vanilla progressive code generation framework only considering executable code 

 
The equation can be simplified as follows: 

𝑣𝑃𝑟𝑜𝐺 =
1

𝑒𝑠(𝑟−1)
 

 
The equation above captures the idea that if the code is executable in the first iteration 

without any error, the accuracy is 1 (align with other framework shown before and the more 
feedback it needs to give the correct code, the lower the score it gets. The equation also shows 
that the parameters can be scaled to allow dynamic scaling if the average number of r 
iterations required is larger than 5. Where s is defined in the equation below. 
 
 

4. The Introduction to the System 
 
The following section shows the introduction to the system. Figure 4 shows the interface of 
the system. The user interface of our system comprised of three main parts. The left most 
panel list out the Math questions. The middle panel provides a space for taking notes during 
the interaction with the LLM. The right-hand side of the panel allows teaching experts to 
interact with the LLM, including calculation through JavaScript and explaining the questions 
and answers. 
 

 
Figure 4. User interface of the system, including parts for selecting questions (left), 

taking notes (middle) and interacting/ chatting with LLM (right) 
 



 

 

Figure 5 illustrates how users can interact with the LLM using our system. Users first 
choose one of the questions from the question panel or provide a natural language description 
of the mathematics problem they want to solve. After sending the prompt using the "JS Eval” 
function, LLM returns JavaScript code to calculate the answer to the question. Once users 
click "execute code", the JavaScript code is executed, then the calculation's answer is 
displayed. Users can also ask LLM for explanations on the questions, logic of formulas, or 
calculations. 
 

 
Figure 5. Function of listing formula with JavaScript (left), solving the formula with 

JavaScript (middle) and generating explanations (right) 
 

After the system generates codes, answers and explanations, users can evaluate the 
results against the expected solution, and record the useful information with the function of 
recording and saving the corresponding text. Figure 5 shows the function of note taking of 
this system. 
 
 

5. Methodology 
 
In this study, a usability test was conducted to evaluate the effectiveness of the proposed 
Human-AI progressive code generation framework in solving mathematical problems. The 
test involved preparing situational questions designed to assess the arithmetic aspects of 
mathematical problem-solving capabilities. These questions were used to compare the 
performance of GPT-4 with and without using the progressive generation framework in this 
study. 

Ten situational questions were prepared for testing on different chatbots. Each of them 
involves multiplication or divisions of multi-digit numbers (answers with more than thirteen 
digits, or seven decimal places). An example of the multiplication questions is as follows: “A 
tech company sold 8,123,456 units of their latest device; each costing $567,890. Calculate 
the total revenue generated from the sales.” 

Four researchers and developers were involved in this usability test. Each tester was 
asked to interact with both GPT-4 with and without using our framework to solve the given 
questions. Users provided a natural language description of the problem to each chatbot and 
observed the generated code and solutions. The performance of both chatbots was 
evaluated based on the feedback of LLMs and the accuracy of the calculation. 
 
 

6. Results 
 
Our testers test each of the ten questions once on chatbot with GPT-4. It was found that 0 out 
of 40 trials has returned a correct answer, resulting in a 0% accuracy rate. It was found that 
the first few digits of the answers given by GPT-4 are often close to the correct answer. The 



 

 

model's answers also vary across the trials, while some trials appear to be significantly larger 
in comparison to the other answers, suggesting a lack of consistency in its responses. 

 
7. Discussions and Conclusions 
 
This study shows the potential of a human-AI progressive code generation framework in 
enhancing the accuracy of answering mathematical multiplication questions in LLMs. The 
results indicate that the frameworks’ ability to adapt to complex arithmetic mathematical 
tasks more effectively.  

Future studies will aim to validate and expand the application of this proposed system 
in real classroom settings. Thus, both teachers’ and students’ pattern of prompting and 
opinions will be collected. In addition, the framework can be revised and used for other 
disciplines, such as coding education.  

Last but not least, although our system allows users to provide error feedback through 
the “Chat” function, integrating error feedback or code execution feedback error have not 
been tested extensively. This study only uses a limited set of arithmetic mathematic 
problems to demonstrate the framework without showing cases with r larger than 1. In the 
future, we should demonstrate cases where r and h are both larger than 1. 
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