
Kashihara, A. et al. (Eds.) (2024). Proceedings of the 32nd International Conference on Computers in

Education. Asia-Pacific Society for Computers in Education

Developing a LLMs-Driven System Based
on Human-AI Progressive Code
Generation Framework to Assist

Mathematics Learning

Chun Yan Enoch SITa*, Yin YANGb*, Wing Kei YEUNGa* & Siu Cheung KONGab*
aArtificial Intelligence and Digital Competency Education Centre,
The Education University of Hong Kong, Hong Kong SAR, China

bDepartment of Mathematics and Information Technology,
The Education University of Hong Kong, Hong Kong SAR, China

*{ecysit, yyin, yeungwk, sckong}@eduhk.hk

Abstract: This paper proposed a system interface based on a novel progressive code
generation framework to produce verified programming codes using natural language
for mathematics learning. With the latest advancement of large language models such
as GPT-4, people can ask GPTs to generate programming code using natural
language. However, the codes generated may not be directly executable or aligned
with the user’s desired goal or purpose. Furthermore, different people may express
their goals and purpose in different ways. Hence, there are many possible ways to map
natural languages and code. Many of the code evaluation frameworks such as pass-
ratio@n, BLEU and CodeBLEU evaluate large language models (LLMs) code
generation ability based on their actual execution results on the first prompt without
giving feedback of the code execution error. With this in mind, a framework that allows
code generated from any large language model to progressively improve was
proposed. The idea is to re-prompt the LLMs with the error feedback to generate codes
until the code is executable and achieve the user’s desire goal or purpose with a
predefined number of iterations. If a certain number of iterations has been reached and
the code is still not executable or cannot achieve users' intended goals or desire, the
prompt would be useful to include in the training dataset for fine-tuning for that large
language model. In this study, the application of the proposed framework to enhance
the accuracy of mathematical problem-solving problems was tested and reported. This
framework may be useful to improve any LLM code generating ability continuously.
Discussions were made.

Keywords: generative artificial intelligence, natural language processing, large
language models (LLMs), tutoring system, mathematics

1. Introduction

The Large Language Models (LLMs), such as OpenAI's GPT (Generative Pre-trained
Transformer) series, have revolutionized the capabilities of Natural Language Processing
(NLP) by enabling the processing of vast amounts of text data (Yang et al., 2024). NLP is a
branch of artificial intelligence (AI) that aims to enable computers to understand and process
language similarly to humans. For instance, natural language descriptions or instructions can
be used to direct the focus of a model during training and let it learn specific types of biases
or patterns (Liu et al., 2023). The studies on using LLMs like GPT to generate human-like
language in education have been widely explored. A number of studies have shown that LLMs
can be used to generate step-by-step explanations for solving mathematical problems though
lacking a skill of calculating and cannot effectively correct misconceptions (Wardat et al., 2023;
Matzakos et al., 2023). Fundamentally speaking, the transformer model (Vaswani et al., 2017)

is not specifically designed to perform arithmetic operations (such as multiplications, square
roots, modulus or division); rather, it is designed to perform associations.

On the other hand, LLMs have showed promise in comprehending and generating
programming code (Dehaerne et al., 2022). Employing LLMs to generate source code implies
utilizing advanced machine-learning models to assist in implementing code for specific tasks
or functions (Kazemitabaar et al., 2024; Yeo et al., 2024). By providing a natural language
description, LLMs generate the corresponding code (Kong et al., in press). However, the
generation of executable programming code from natural language descriptions is a
challenging yet crucial area in AI. The produced codes may either fail to execute or not meet
the users' goals due to misinterpretations or incomplete translations of the intent. Many
existing code evaluation frameworks, such as pass-ratio@n (Yeo et al., 2024), BLEU
(Papineni et al., 2020), and CodeBLEU (Ren et al., 2020), assess the code generation ability
of LLMs based on the actual execution results of the first prompt, without providing feedback
on code execution errors.

In this study, we proposed a LLMs-driven system based on human-AI a novel
progressive code generation framework to assist mathematics learning. In many mathematics
learning contexts, the goal is not just to find the correct answer, but also to have students
demonstrate their understanding by evaluating the correctness of the solution derivation.
Conversely, by having the LLM generate code, the newly proposed framework can use human
feedback to iteratively improve the model’s code generation capabilities and enhance
accuracy. All in all, it is hoped that the system will help instructional designers or teachers
develop learning materials.

2. Literature Review

The prevalent LLMs, such as GPT and BERT, are primarily built on the transformer
architecture (Vaswani et al., 2017), which are able to generate text based on pre-trained
associations rather than logical reasoning or computational accuracy. This can lead to what
are termed “hallucinations” in generated content, particularly noticeable in tasks requiring
precise calculations, such as mathematics (Sun et al., 2024). When using natural language
as guidance, these models can adeptly handle text generation but often falter with tasks
requiring deep domain knowledge or exact computational outputs. The performance
limitations of GPT in mathematical contexts can largely be attributed to this inherent design
focus on associative rather than computational capabilities.

LLM generated code evaluation framework (Papineni et al., 2020; Ren et al., 2020; Yeo
et al., 2024) has been discussed recently. Usually, the evaluation framework starts with
extracting coding problems from various coding platforms to gather relevant coding problems
that can be used for further processing by the LLM. Then, using transformer and self-attention
mechanisms, the LLM generates code based on the extracted problems. Finally, the LLMs
generate code and the evaluation framework analyze and evaluate the quality of the generated
code. This is a linear evaluation process starts from preparing the coding problem, through
LLM inference, to the final evaluation of the generated code. However, this framework does
not let humans in the loop. Using natural language to instruct LLMs is possible and can be
integrated into the traditional evaluation framework to help educators to adjust the generated
content.

Figure 1 shows the process of integrating prompts in a traditional LLM code generator.
First, the user can write prompts at different levels —from simple problem descriptions to more
complex instructions with constraints and execution examples (Yeo et al., 2024). These
prompts are fed into the LLM code generator, which produces the initial code. This generated
code is then subjected to a two-step evaluation process: first, it is tested against predefined
test cases, and second, the results are analyzed using specific metrics (Yeo et al., 2024).

Figure 1. General framework for code evaluation procedure

To sum up, existing evaluation metrics, including pass-ratio@n (Yeo et al., 2024), BLEU
(Papineni et al., 2020), and CodeBLEU (Ren et al., 2020), predominantly assess code based
on the initial correctness of output. These metrics do not consider the potential for iterative
improvement through feedback or the model's ability to correct errors post-deployment
(reference needed here). This gap highlights the need for more dynamic and adaptive
evaluation frameworks that can capture the ongoing learning and adjustment capabilities of
LLMs in code generation tasks.

3. The Proposed Human-AI Progressive Code Generation Framework

The new framework proposed in this study aims to integrate Human-AI progressive code
generation framework into the existing code evaluation framework to increase the accuracy of
calculating mathematical problems by dynamically improving the code generation through re-
prompting the LLM with specific feedback using natural language on execution errors or
misalignments with user goals. Figure 2 shows that prompts are dynamically generated
according to errors feedback from both code execution error and human evaluator iteratively.
Initially, LLM(s) are presented with the Math problem and a prompt. If the generated code is
executed with error(s) in the intended code execution environment, the error message will be
fed back to the LLM(s) along with all the chat history until the code can be successfully
executed. If the code is successfully executed in R iterations, the code output answer will then
be evaluated against the correct answer. If the code generated a wrong answer, the evaluation
results will be presented back to the LLM in H iterations. If the code generated from the LLM(s)
cannot be executed in the intended execution environment under R iterations or (R+H)
iterations, we will consider the LLM to have failed this test case in the similar manner to the
other framework shown in Figure 2.

Figure 2. Process in generation llms-generated gode evaluation framework

In this paper, we propose the Progressive Code Generation Framework. The

Progressive Code Generation (ProG) Metric derived from several parameters. At the very
essence of the framework, the Progressive Code Generation Score must depend on the
parameter r and h as follows:

𝑃𝑟𝑜𝐺 = 𝑓(𝑟, ℎ) =
1

𝑒(𝑟+ℎ−𝑜)

Where o refers to the offset. For instance, if the evaluation progress includes further
evaluation (i.e. h ≥ 1 and r ≥ 1), o should be set to 2. On the other hand, if the evaluation
progress only includes the code execution evaluation process (i.e. h = 0 and r ≥ 1), o should
be set to 2. We focused on the case where there is no further evaluation process. Figure 3
shows the Vanilla Progressive Code Generation Framework only considering executable code.

Figure 3. Vanilla progressive code generation framework only considering executable code

The equation can be simplified as follows:

𝑣𝑃𝑟𝑜𝐺 =
1

𝑒𝑠(𝑟−1)

The equation above captures the idea that if the code is executable in the first iteration

without any error, the accuracy is 1 (align with other framework shown before and the more
feedback it needs to give the correct code, the lower the score it gets. The equation also shows
that the parameters can be scaled to allow dynamic scaling if the average number of r
iterations required is larger than 5. Where s is defined in the equation below.

4. The Introduction to the System

The following section shows the introduction to the system. Figure 4 shows the interface of
the system. The user interface of our system comprised of three main parts. The left most
panel list out the Math questions. The middle panel provides a space for taking notes during
the interaction with the LLM. The right-hand side of the panel allows teaching experts to
interact with the LLM, including calculation through JavaScript and explaining the questions
and answers.

Figure 4. User interface of the system, including parts for selecting questions (left),

taking notes (middle) and interacting/ chatting with LLM (right)

Figure 5 illustrates how users can interact with the LLM using our system. Users first
choose one of the questions from the question panel or provide a natural language description
of the mathematics problem they want to solve. After sending the prompt using the "JS Eval”
function, LLM returns JavaScript code to calculate the answer to the question. Once users
click "execute code", the JavaScript code is executed, then the calculation's answer is
displayed. Users can also ask LLM for explanations on the questions, logic of formulas, or
calculations.

Figure 5. Function of listing formula with JavaScript (left), solving the formula with

JavaScript (middle) and generating explanations (right)

After the system generates codes, answers and explanations, users can evaluate the
results against the expected solution, and record the useful information with the function of
recording and saving the corresponding text. Figure 5 shows the function of note taking of
this system.

5. Methodology

In this study, a usability test was conducted to evaluate the effectiveness of the proposed
Human-AI progressive code generation framework in solving mathematical problems. The
test involved preparing situational questions designed to assess the arithmetic aspects of
mathematical problem-solving capabilities. These questions were used to compare the
performance of GPT-4 with and without using the progressive generation framework in this
study.

Ten situational questions were prepared for testing on different chatbots. Each of them
involves multiplication or divisions of multi-digit numbers (answers with more than thirteen
digits, or seven decimal places). An example of the multiplication questions is as follows: “A
tech company sold 8,123,456 units of their latest device; each costing $567,890. Calculate
the total revenue generated from the sales.”

Four researchers and developers were involved in this usability test. Each tester was
asked to interact with both GPT-4 with and without using our framework to solve the given
questions. Users provided a natural language description of the problem to each chatbot and
observed the generated code and solutions. The performance of both chatbots was
evaluated based on the feedback of LLMs and the accuracy of the calculation.

6. Results

Our testers test each of the ten questions once on chatbot with GPT-4. It was found that 0 out
of 40 trials has returned a correct answer, resulting in a 0% accuracy rate. It was found that
the first few digits of the answers given by GPT-4 are often close to the correct answer. The

model's answers also vary across the trials, while some trials appear to be significantly larger
in comparison to the other answers, suggesting a lack of consistency in its responses.

7. Discussions and Conclusions

This study shows the potential of a human-AI progressive code generation framework in
enhancing the accuracy of answering mathematical multiplication questions in LLMs. The
results indicate that the frameworks’ ability to adapt to complex arithmetic mathematical
tasks more effectively.

Future studies will aim to validate and expand the application of this proposed system
in real classroom settings. Thus, both teachers’ and students’ pattern of prompting and
opinions will be collected. In addition, the framework can be revised and used for other
disciplines, such as coding education.

Last but not least, although our system allows users to provide error feedback through
the “Chat” function, integrating error feedback or code execution feedback error have not
been tested extensively. This study only uses a limited set of arithmetic mathematic
problems to demonstrate the framework without showing cases with r larger than 1. In the
future, we should demonstrate cases where r and h are both larger than 1.

References

Anderson, R. E. (1992). Social Impacts of Computing: Codes of Professional Ethics. Social Science

Computer Review, 10(4), 453-469. https://doi.org/10.1177/089443939201000402
Dehaerne, E., Dey, B., Halder, S., De Gendt, S., & Meert, W. (2022). Code Generation Using Machine

Learning: A Systematic Review. IEEE Access, 10, 82434–82455.
https://doi.org/10.1109/ACCESS.2022.3196347

Kazemitabaar, M., Ye, R., Wang, X., Henley, A. Z., Denny, P., Craig, M., & Grossman, T. (2024).
CodeAid: Evaluating a Classroom Deployment of an LLM-based Programming Assistant that
Balances Student and Educator Needs. arXiv.Org. https://doi.org/10.48550/arxiv.2401.11314

Kong, S.C., Sit C. Y., Yang, Y., & Yeung, W.K. (2024, in press). One step forward towards the use of
human language to instruct computers to work: A reflection on an example of applying prompts in
text-based generative AIfor programming. In the Proceedings of the 8th International Conference
on Computational Thinking and STEM Education, Beijing, China.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, prompt, and predict: A
systematic survey of prompting methods in natural language processing. ACM Computing
Surveys, 55(9), 1-35.

Matzakos, N., Doukakis, S., & Moundridou, M. (2023). Learning mathematics with large language
models: A comparative study with computer algebra systems and other tools. International
Journal of Emerging Technologies in Learning (iJET), 18(20), 51-71.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). Bleu: A method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics. (pp. 311-318).

Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., ... & Ma, S. (2020). Codebleu: A method for
automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297.

Sun, Y., Yin, Z., Guo, Q., Wu, J., Qiu, X., & Zhao, H. (2024). Benchmarking hallucination in large
language models based on unanswerable math word problem. arXiv preprint arXiv:2403.03558.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
Polosukhin, I. (2017). Attention Is all you need. arXiv.Org.
https://doi.org/10.48550/arxiv.1706.03762

Wardat, Y., Tashtoush, M. A., AlAli, R., & Jarrah, A. M. (2023). ChatGPT: A revolutionary tool for
teaching and learning mathematics. Eurasia Journal of Mathematics, Science and Technology
Education, 19(7), em2286. https://doi.org/10.29333/ejmste/13272

Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., … Hu, X. (2024). Harnessing the Power of
LLMs in Practice: A Survey on ChatGPT and Beyond. ACM Transactions on Knowledge
Discovery from Data, 18(6), 1–32. https://doi.org/10.1145/3649506

Yeo, S., Ma, Y., Kim, S. C., Jun, H., & Kim, T. (2024). Framework for evaluating code generation
ability of large language models. ETRI Journal, 46(1), 106–117.
https://doi.org/10.4218/etrij.2023-0357

