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Abstract: Reliability quantifies the extent of measurement errors in the observed 
feature scores and is an important quality indicator of measurements in educational 
research. However, the effect of feature reliability is underexplored in educational 
studies that use machine learning techniques. Understanding this effect is critical 
because the most of common features in education are contaminated by measurement 
errors. Recent research has revealed that the low reliability of features damages the 
prediction accuracy of machine learning models. The current study proposes that 
feature reliability also influences the generalization of machine learning models. This 
paper provides mathematical proof for the notion and further supports it via analyses 
on two empirical educational datasets. The results of data analyses also indicated that 
the effect of feature reliability on model generalization was moderated by the model 
complexity but not related to the model accuracy. Approaches to mitigate the impact of 
feature reliability are discussed. 
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1. Introduction 
 
Feature engineering is a critical step in traditional machine learning (ML), significantly 
impacting model performance (Dong & Liu, 2018; Verdonck et al., 2021). Deep learning 
models, such as CNN, RNN, and Transformer, can automatically extract and learn complex 
features from raw data, reducing the need for feature engineering. However, in cases of limited 
data or the need to extract certain theory-driven features, appropriate feature engineering can 
still enhance the performance of deep learning models. Feature engineering focuses on the 
contribution of features to the models’ predictive and classification performance and selects 
features accordingly. Nevertheless, in addition to feature importance, the reliability and validity 
of features (or variables) are also crucial quality indicators in educational research. As ML 
becomes increasingly popular in educational studies, understanding the roles of reliability and 
validity in ML in education is emergent. The current study focuses on feature reliability 
because it is relatively underexplored in the field of ML in education. 
 

1.1 Feature Reliability and Its Role in Educational Research 
 
Except for demographics, common variables in education, such as test scores, self-reported 
scale scores (e.g, attitudes and motivation), and learning process data (e.g., classroom 
dialogues and action logs in digital learning environments), contain measurement errors 
(AERA et al., 2014). Reliability is often used to quantify the extent of measure errors in test 
scores and self-reported scale scores. Although learning process data are objective records 
of events during learning, variables extracted from the data still contain measurement errors 
(Gray & Bergner, 2022), which can also be assessed using reliability (Zhang et al., 2024).  

Studies have well demonstrated the influence of variable reliability on the credibility of 
results in inferential statistical analysis in educational research. Specifically, low reliability or 



may obscure the true relationships between variables due to the substantial measurement 
errors in the data. For instance, if the reliability of students’ test scores is poor, it is impossible 
to accurately infer the relationship between scores and other factors (e.g., teaching methods 
and learning environments), leading to biased parameter estimates in statistical models 
(Rhemtulla et al., 2020). Low reliability can also decrease the statistical power of variable 
correlation tests and increase the false discovery rate (Parsons et al., 2019).  

 

1.2 The Impact of Feature Reliability on the Performance of Machine Learning Models 
 

Several studies have investigated the impact of feature reliability on the prediction 
performance of ML models. Jacobucci and Grimm’s (2020) simulation study found that low 
feature reliability worsened the prediction performance of linear regression and boosting 
regression models, with increasing sample size only slightly mitigating this effect. In 
McNamara et al.’s (2022) simulation study, the advantages of random forest and XGBoost 
over linear regression disappeared as feature reliability increased, even when the true 
relationships between features and outcomes were nonlinear. They concurred with Jacobucci 
and Grimm, concluding that measurement errors could prevent complex models (e.g., random 
forest and XGBoost) from capturing nonlinear relationships between features and labels, 
resulting in underfitting. Additionally, McNamara et al. found that sample size did not mitigate 
the effect of feature reliability. An empirical study replicated these findings (Gell et al., 2024). 
As such, researchers have suggested focusing on collecting reliable features for predictive 
modeling, in addition to employing complex modeling techniques (Jankowsky et al., 2024; 
Smith & Murayama, 2023). This is particularly relevant to educational applications of ML 
because, as mentioned earlier, most common features in education are contaminated by 
measurement errors. 

Previous studies have argued that the negative effect of low feature reliability on 
prediction performance is due to underfitting caused by measurement errors (Jacobucci & 
Grimm, 2020; McNamara et al., 2022). However, it is unclear whether the negative effect is 
also related to overfitting. Specifically, whether low feature reliability may enlarge the gap 
between training performance and test performance of ML models, thereby damaging model 
generalization. This is an important issue in education because we want a predictive model 
generalizable to new students. For instance, a dropout prediction model would be useless if it 
could not predict the dropout risk for new students. Therefore, this study aims to investigate 
the impact of feature reliability on the generalization of ML models in education. We elucidate 
this impact through mathematical deduction and empirical data analysis. 
 

2. The Effect of Feature Reliability on the Generalization of Machine Learning 
Models 

 
In standardized assessment, reliability refers to the consistency among multiple observations 
of a construct and quantifies the extent of measurement error in observations (AERA et al., 
2014). According to classical testing theory (CTT), the relationship between the reliability of a 
construct, observed value 𝑥, and true value 𝑥 can be expressed as (Jacobucci & Grimm, 2020):  

𝑥 = √𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑥 + 𝑒𝑥 ,                                                                        (1) 

𝑥 =
𝑥 − 𝑒𝑥

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
,                                                                              (2) 

where 𝑒𝑥 is the measurement error and obeys a normal distribution N(0,1−reliability). The 
lower the reliability, the greater the variance of 𝑒𝑥.  

Let 𝑓(·) denote the true mapping function between feature X and outcome Y, then 𝑌 =
𝑓(𝑋) + 𝑒𝑦, where 𝑒𝑦  is the irreducible error. For simplicity, this study assumes that the 

outcome does not contain measurement errors. Given that the observed value of X is 𝑥, the 
observed value of Y can be represented as 



𝑦(𝑋 = 𝑥) = 𝑓 (
𝑥 − 𝑒𝑥

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) + 𝑒𝑦 .                                                             (3) 

Let 𝑓(·) be a ML model, then the predicted value of Y can be represented as 𝑦̂ = 𝑓(𝑥̂), with 
the prediction error being 

𝑦 − 𝑦̂ = 𝑓 (
𝑥 − 𝑒𝑥

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) − 𝑓(𝑥̂) + 𝑒𝑦 .                                                         (4) 

Assuming that both the observed values of X in a training sample and a test sample 

are 𝑥, with measurement errors being 𝑒𝑥
𝑡𝑟𝑎𝑖𝑛 and 𝑒𝑥

𝑡𝑒𝑠𝑡. The true value in the training sample is 
𝑥−𝑒𝑥

𝑡𝑟𝑎𝑖𝑛

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
, while that in the test sample is 

𝑥−𝑒𝑥
𝑡𝑒𝑠𝑡

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
. Accordingly, the observed values of Y 

are 𝑓 (
𝑥−𝑒𝑥

𝑡𝑟𝑎𝑖𝑛

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) + 𝑒𝑦

𝑡𝑟𝑎𝑖𝑛  and 𝑓 (
𝑥−𝑒𝑥

𝑡𝑒𝑠𝑡

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) + 𝑒𝑦

𝑡𝑒𝑠𝑡  in the training and test samples, 

respectively. The predicted values of Y in both training and test samples are 𝑓(𝑥̂). The model 

training process aims to minimize the prediction error of the ML model 𝑓(·) in the training data, 

i.e., let it approximate 𝑓 (
𝑥−𝑒𝑥

𝑡𝑟𝑎𝑖𝑛

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
). Therefore, the prediction error in the test data is generally 

larger than that in the training data. The difference between the two prediction errors is 

𝑓 (
𝑥 − 𝑒𝑥

𝑡𝑒𝑠𝑡

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) − 𝑓 (

𝑥 − 𝑒𝑥
𝑡𝑟𝑎𝑖𝑛

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) + 𝑒𝑦

𝑡𝑒𝑠𝑡 − 𝑒𝑦
𝑡𝑟𝑎𝑖𝑛.                                 (5) 

Decreases in the reliability of X lead to increases in the variances of 𝑒𝑥
𝑡𝑒𝑠𝑡 and 𝑒𝑥

𝑡𝑟𝑎𝑖𝑛, 

which, in turn, enlarge the variances of 𝑓 (
𝑥−𝑒𝑥

𝑡𝑒𝑠𝑡

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) and 𝑓 (

𝑥̂−𝑒𝑥
𝑡𝑟𝑎𝑖𝑛

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
). Consequently, the 

variance of 𝑓 (
𝑥−𝑒𝑥

𝑡𝑒𝑠𝑡

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) − 𝑓 (

𝑥−𝑒𝑥
𝑡𝑟𝑎𝑖𝑛

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) becomes larger, and the probability of obtaining a 

large 𝑓 (
𝑥̂−𝑒𝑥

𝑡𝑒𝑠𝑡

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) − 𝑓 (

𝑥̂−𝑒𝑥
𝑡𝑟𝑎𝑖𝑛

√𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
) via random sampling increases. Thus, given the sample 

size, the difference in the prediction errors of ML models in the training and test data enlarges 
as the reliability of features decreases. That is, the model generalization becomes worse.  

 

3. Empirical examples 
 
This section illustrates the impact of feature reliability on model generalization using two 
empirical datasets. Table 1 summarizes the characteristics of the datasets. The first dataset 
was from an undergraduate introductory programming course at a Midwestern U.S. university 
(Zhang et al., 2023), and the second was from the PISA 2012 Shanghai data1. Due to the 
questionnaire rotation design in PISA 2012, only one-third of the participants responded to the 
25 feature scales used in this study. Thus, only these students' data were used. McDonald's 
ω coefficient was used as the reliability indicator (Flora, 2020). 
 

3.1 Analysis 
 
Previous studies on feature reliability in ML have used both linear and ensemble modeling to 
investigate whether the impact of feature reliability depends on model complexity (Jacobucci 
& Grimm, 2020; McNamara et al., 2022). This study adopted the same approach, using one 
simple linear model (lasso regression) and two complex ensemble methods (random forest 
and XGBoost). These ensemble methods were also used in the previous studies. We selected 
lasso regression because of its capabilities in preventing overfitting and handling 
multicollinearity.  

Each model used the high and low reliability features separately (see Table 1). The cut-
off was the median ω. In the data from the programming course, a feature lower than the 
median was assigned to the high reliability group because its meaning was closer to this group 
than the low reliability group. The hyperparameters were the same between models with high 

 
1 https://www.oecd.org/en/data/datasets/pisa-2012-database.html#data 



reliability features and models with low reliability features to ensure that differences in model 
generalization were not due to hyperparameters variations. We employed 10-fold cross-
validation, where the data were randomly divided into 10 parts. Each model was trained 10 
times, with 9 parts for training and 1 part for testing each time. The root mean squared error 
(RMSE), R2, and linear correlation coefficient (r) were used as prediction performance metrics. 
After each training, the metrics for training and test data as well as their differences (referred 
to as the generalization gap) were computed. The final value of each metric was the mean 
over the 10 times of training.   

 
Table 1. Characteristics of the datasets 

Dataset Students Outcome 
Source of 

feature 

The number of features and 
examples 

The means 
and ranges 

of ω High reliability Low reliability 

Introduct
ory 

program
ming 

course 

607 
Final 
exam 
scores 

Program
ming 

traces 

6 features, 
e.g., familiarity 

with Java 
syntax and 
semantics 

6 features, e.g., 
accuracies in 

debugging 
syntactic and 

semantic errors 

.68； 

.55 ~ 

.83 

.45； 

.36 ~ 

.56 

PISA 
2012 

Shangh
ai 

1730 

Math, 
science, 
reading 

test 
scores 

Self-
reported 
scales 

13 features, 
e.g., math 

anxiety, math 
self-concept 

12 features, e.g., 
persistence, 

willingness to 
learn math 

.87； 

.81 ~ 

.92 

.65； 

.45 ~ 

.78 

 

3.2 Results 
 
Figure 1 shows the generalization gap in each dataset. The bar height in the column RMSE 
represents test performance - training performance, while in the columns  R2 and r, it 
represents training performance - test performance. In most cases, the generalization gap in 
the high reliability group was significantly smaller than in the low reliability group. Paired 
sample t-tests indicate that this difference is statistically significant for all performance metrics 
(p < .01; Cohen’s d = 0.96, 1.26, and 1.38 for RMSE, R2, and r, respectively).  

The effect of feature reliability on the generalization gap is moderated by model 
complexity. The differences in the generalization gap between high and low reliability groups 
were larger in more complex models (random forest and XGBoost) than in simpler models 
(lasso regression).  

The effect of feature reliability on generalization difference is not related to model 
performance. For example, in the case of predicting the final exam scores of programming 
course, the RMSE, R2, and r of XGBoost in the training data were almost identical when using 
high reliability features versus using low reliability features, but the generalization difference 
was distinct. 

 

4. Discussion and next steps 
This study demonstrates that in educational contexts, feature reliability may affect the 
generalization of ML models: the lower feature reliability is, the weaker model generalization 
is. Therefore, when applying ML in education, it is necessary to assess feature reliability and 
use high reliability features whenever possible. Using advanced ML techniques does not 
eliminate the necessity of collecting high quality data with reliable features. In contrast, 
complex models are more prone to the impact of measurement errors, as suggested by the 
findings in the current and prior studies (Jacobucci & Grimm, 2020; McNamara et al., 2022).   

Smith and Murayama (2023) recommended two solutions to mitigate the impact of 
feature reliability and measurement errors in ML. One solution involves using dimension 
reduction algorithms (e.g., principal component analysis) to compress multiple low-reliability 
features into new component features that suffer less from measurement errors. The 
limitations of this solution are that it may not effectively reduce the measurement errors and 



Figure 1. Generalization difference in prediction performance between training and test data 
Note. Black dots represent the training performance. The bar height indicates the difference 
between training and test performance.  
 
that the new component features may be difficult to interpret. Another solution is combining 
ML with structural equation modeling (SEM) to account for measurement errors, such as 
regularized SEM (Brandmaier & Jacobucci, 2023). The limitation of this SEM approach is that 
SEM may regard some useful information as measurement errors and discard it. In addition, 
there are few available options for combining ML and SEM. Alternatively, researchers may 
apply reliability-based loss functions in the feature engineering phase to select features that 
significantly contribute to model prediction and have high reliability (Grimm & Jacobucci, 
2021). However, this approach demands a high level of technical expertise. In summary, 
effective approaches to reduce the impact of feature reliability in ML are under development. 
Future research may develop more user-friendly tools to automatically conduct the selection 
of high reliability features. Alternatively, with the rapid development of generative artificial 
intelligence (e.g., GPT4 and Gemini), it may be feasible to develop agents based on these 
techniques that assist researchers in feature selection. 

This study does not examine the impact of feature reliability on the generalization of 
classifiers when the outcome variable is categorical. We also do not systematically investigate 
how the effect of feature reliability may change with sample size. It is also unclear that, given 
a particular sample size, what is the minimum reliability levels to ensure a reasonable model 
generalization. We plan to address these issues in the next step via systematic simulations 
and more empirical data analyses.  
 

Acknowledgements 
We thank Dr. Luc Paquette for sharing the programming course dataset used in this study. 
This work was supported by the National Key Research and Development Program of China 
(2023YFC3305704). 
 

References 
AERA, APA, & NCME. (2014). Standards for educational and psychological testing (7ed.). American 

Educational Research Association. 



Brandmaier, A. M., & Jacobucci, R. C. (2023). Machine learning approaches to structural equation 
modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 722-739). Guilford 
Press. 

Dong, G., & Liu, H. (2018). Feature engineering for machine learning and data analytics. CRC press. 
Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which coefficient omega is right? A 

tutorial on using r to obtain better reliability estimates. Advances in Methods and Practices in 
Psychological Science, 3(4), 484-501. http://doi.org/10.1177/2515245920951747 

Gray, G., & Bergner, Y. (2022). A practitioner's guide to measurement in learning analytics: decisions, 
opportunities, and challenges. In C. Lang, G. Siemens, A. F. Wise, D. Gašević, & A. Merceron 
(Eds.), Handbook of Learning Analytics (2ed., pp. 20-28). SoLAR. 
http://doi.org/10.18608/hla22.002. 

Gell, M., Eickhoff, S. B., Omidvarnia, A., Küppers, V., Patil, K. R., Satterthwaite, T. D., Müller, V. I., & 
Langner, R. (2024). The burden of reliability: How measurement noise limits brain-behaviour 
predictions. bioRxiv. http://doi.org/10.1101/2023.02.09.527898 

Grimm, K. J., & Jacobucci, R. (2021). Reliable trees: Reliability informed recursive partitioning for 
psychological data. Multivariate Behavioral Research, 56(4), 595-607. 
http://doi.org/10.1080/00273171.2020.1751028 

Jacobucci, R., & Grimm, K. J. (2020). Machine learning and psychological research: The unexplored 
effect of measurement. Perspectives on Psychological Science, 15(3), 809-816. 
http://doi.org/10.1177/1745691620902467 

Jankowsky, K., Krakau, L., Schroeders, U., Zwerenz, R., & Beutel, M. E. (2024). Predicting treatment 
response using machine learning: A registered report. British Journal of Clinical Psychology, 
63(2), 137-155. http://doi.org/10.1111/bjc.12452 

McNamara, M. E., Zisser, M., Beevers, C. G., & Shumake, J. (2022). Not just “big” data: Importance 
of sample size, measurement error, and uninformative predictors for developing prognostic 
models for digital interventions. Behaviour Research and Therapy, 153, 104086. 
http://doi.org/10.1016/j.brat.2022.104086 

Parsons, S., Kruijt, A., & Fox, E. (2019). Psychological science needs a standard practice of reporting 
the reliability of cognitive-behavioral measurements. Advances in Methods and Practices in 
Psychological Science, 2(4), 378-395. http://doi.org/10.1177/2515245919879695 

Rhemtulla, M., van Bork, R., & Borsboom, D. (2020). Worse than measurement error: Consequences 
of inappropriate latent variable  measurement models. Psychological Methods, 25(1), 30-45. 
http://doi.org/10.1037/met0000220 

Smith, G., & Murayama, K. (2023). Machine learning meets traditional statistical methods in psychology: 
Challenges and future directions. OSF Preprint. https://doi.org/10.31219/osf.io/6xt82 

Verdonck, T., Baesens, B., Óskarsdóttir, M., & Vanden Broucke, S. (2021). Special issue on feature 
engineering editorial. Machine Learning http://doi.org/10.1007/s10994-021-06042-2 

Zhang, Y., Paquette, L., Pinto, J. D., & Fan, A. X. (2023). Utilizing programming traces to explore and 
model the dimensions of novices' code-writing skill. Computer Applications in Engineering 
Education, 31(4), 1041-1058. http://doi.org/https://doi.org/10.1002/cae.22622 

Zhang, Y., Ye, Y., Paquette, L., Wang, Y., & Hu, X. (2024). Investigating the reliability of aggregate 
measurements of learning process data: From theory to practice. Journal of Computer Assisted 
Learning, 40(3), 1295-1308. http://doi.org/10.1111/jcal.12951 

 
 
 

http://doi.org/10.18608/hla22.002
http://doi.org/10.1177/1745691620902467
http://doi.org/10.1111/bjc.12452
http://doi.org/10.1037/met0000220
http://doi.org/10.1007/s10994-021-06042-2

