Kashihara, A. et al. (Eds.) (2024). Proceedings of the 32" International Conference on Computers in
Education. Asia-Pacific Society for Computers in Education

A Proposal of Quality Assurance
Programming Exercise

Nobuya ISHIHARA®, Samsul HUDA? & Yasuyuki NOGAMIP
aGreen Innovation Center, Okayama University, Japan
®Graduate School of Environmental, Life, Natural Science and Technology,
Okayama University, Japan
*n.ishihara@okayama-u.ac.jp

Abstract: This paper proposes a new exercise format for programming assignments
called Quality Assurance Programming Exercises (QAEX), which incorporates the use
of generative artificial intelligence (Al). In QAEX, students are allowed to use Al tools
to generate solutions for programming problems and are also required to submit
comprehensive test cases to validate these solutions. Students can use Al to create
these test cases as well. The inclusion of Al in both solution development and testing
underscores the importance of effective software testing and encourages students to
engage more deeply with programming and quality assurance practices. A preliminary
trial of QAEX was conducted to assess students' engagement and performance.

Keywords: programming education, Al, test codes, Al hallucinations, Quality
Assurance Programming Exercises

1. Introduction

Al in education has evolved to include web systems, robots, and chatbots, assisting with
grading, improving teaching quality, and customizing the curriculum (Chen, et al., 2020).

Today, generative Al is being used by students for report writing and solving
assignments, independent of educational institutions. Instead of banning the use of Al in
traditional hands-on exercises, we propose customization.

2. Traditional Programming Exercise

Figure 1 illustrates the common stages of the two typical system development methodologies,
the 'Waterfall Model' and 'Agile Development,' (Stoica, et al., 2016) and shows the relationship
between specifications, programs, and test specifications. In traditional programming
exercises, a simple specification given as an assignment is used to create a program. Due to
the difficulty of creating test specifications, which encompass the two major types of testing:
white-box testing and black-box testing, they are rarely created by learners. Instead, they are
often used for grading assignments or as supplements to assignment descriptions.

I Black Box Test
Specification pF=====—m=———== Test case

White Box/

Test ,/
Programming]
(Traditional Exercise) !)
- Unit Test
Program
Javadoc, Sphinx 9 TDD

N
Figure 1. Three Steps for Programming.

In recent years, generative Al has become capable of generating programming code with
increasing accuracy. Therefore, we propose QAEX, a method that utilizes Al to help learners
create test code as well.

3. Proposal Programming Exercise (QAEX)

In QAEX, learners use Al to prepare test code and submit the source code, which has passed
the tests, along with the test code. The implicit requirements for learners when submitting are
as follows:

Completion of unit tests: The completion of tests ensures that the source code
functions correctly for the tested items. If the tests are not completed, the process cannot
proceed.

Review of source code: If the tests are not completed or the test specifications are
insufficient, learners must review and modify the source code to add necessary test items.

Review of test code: The test code may also contain errors, so it needs to be reviewed.

Increasing the number of test items: For tests to be considered complete, there must
be a meaningful number of test items. It is necessary to consider boundary conditions and
coverage, and increase the number of test items accordingly. Here, a higher number of test
items is deemed better.

4. Preliminary Trial Exercise (Small-Scale Pilot Study)

Table 1. A Result of the Small-Scale Trial Exercise

A B C D E

ex01 (easy) 111(9) 100(1) 111(1) 101(5) 111(7)
ex02 (middle) 110(5) 101(3) 111(1) 111(5) 101(1)
ex03 (difficult) 100(1) 100(2) 111(1) 111(3) 010(1)
ex04 (difficult) 100(1) 100(1) 111(1) 111(2) 010(1)

Table 1 shows how the A~E students behaved in response to the four tasks. The three digits
1/0 indicate that the unit tests were completed/not completed, the source code was
reviewed/not reviewed, and the test code was reviewed/not reviewed, and the numbers in
parentheses indicate the number of test items.

In many assignments/persons, the source code or test code was reviewed after the tests
were run, which was as expected. In E-ex03 and E-ex04, the test is incomplete; in A-ex04 and
B-ex04, the test is complete but the number of test items is submitted with 1. The former
indicates that the assignment solution is difficult for E even with the support of Al, while the
latter indicates that the source code and test code generated by Al were tested as is and
completed, so they are submitted. Additionally, our findings indicate that some learners utilize
print statements as test code. Furthermore, Al hallucination code was identified in ex03 and
ex04. Notably, the Al returned an answer in the form of a file rather than a string on the screen.

5. Conclusion and Future Tasks

We propose a new exercise format called "Quality Assurance Programming Exercises
(QAEX)," where students are allowed or encouraged to use Al to solve exercise problems.
Instead of merely submitting the solutions, students are required to submit test cases (test
code) along with their solutions. In our preliminary trial exercise, we found that difficult question
such that Al return hallucination-code, are also difficult in our exercise, too.

In the future, we will introduce a copy-paste/D&D type tool on the browser so that in
addition to this theme, we can use unittest, a Python test environment, naturally while checking
the code to be submitted on the screen. We would like to verify the extent to which test code
generation by Al can be used.

References

Chen, L., Chen, P., Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264-
75278. https://doi.org/10.1109/ACCESS.2020.2988510

Stoica, M., Ghilic-Micu, B., Mircea, M., Uscatu, C. (2016). Analyzing agile development-from waterfall
style to scrumban. Informatica Economica, 20(4), 5.,5-14.
https://doi.org/10.12948/issn14531305/20.4.2016.02

