Kashihara, A. et al. (Eds.) (2024). Proceedings of the 32" International Conference on Computers in Education.
Asia-Pacific Society for Computers in Education

MESHing Minds: Bridging the Gap
Between Creativity and loT Programming
Through Collaborative Mixed Reality

Yusuke SAKABE?, Emmanuel AYEDOUN"" & Masataka TOKUMARU®
@Graduate School of Science and Engineering, Kansai University, Japan
®Faculty of Engineering Science, Kansai University, Japan
*emay@kansai-u.ac.jp

Abstract: Fostering creativity in programming tasks is a challenging endeavor,
especially when working alone. Traditional programming environments often lack
support for stimulating creative thinking and idea generation. This paper presents an
interactive augmented reality (AR) system that aims to enhance creativity in Internet of
Things (loT) programming tasks. The proposed system leverages Interactive
Evolutionary Computation (IEC) and AR technologies to facilitate the collaborative
exploration and evolution of IoT device programs (MESH programs). Users can create,
evaluate, and iteratively refine MESH programs through an immersive AR interface,
while being inspired by the system’s suggestions and other users’ creations. The
system employs a genetic algorithm to evolve MESH programs based on user
evaluations, and utilizes natural language processing to generate program descriptions
that can trigger new ideas. A user study (n=16) was conducted to evaluate the system’s
effectiveness in stimulating creativity and promoting collaboration. Quantitative
analysis revealed a significant increase in idea generation over time and a greater
impact on inspiration for novice programmers. Qualitative findings highlighted the
system’s ability to foster a creative and collaborative environment. The insights gained
from this study inform the design of future tools and experiences that support creative
thinking and collaboration in the 1oT domain.

Keywords: Augmented Reality, MESH Programming, Collaborative Creativity
Support, Internet of Things Ideation, Divergent and Convergent Thinking

1. Introduction

In recent years, the proliferation of Internet of Things (loT) devices has opened up new
opportunities for creative expression and problem-solving. By combining various sensors,
actuators, and programmable components, individuals can design and develop innovative loT
gadgets tailored to their specific needs and interests. However, creating novel loT gadget
ideas often requires a diverse set of skills, including programming, electronics, and creative
design thinking, posing challenges for individuals with limited expertise in these areas.

To address this challenge, we propose an interactive augmented reality (AR) system
that leverages the power of Interactive Evolutionary Computation (IEC) and natural language
generation to support users in exploring and generating creative loT gadget ideas. IEC is a
human-centric optimization technique that involves users in the evolutionary process, allowing
them to guide the search towards desirable solutions based on their subjective evaluations.
By incorporating IEC into an AR environment, users can intuitively interact with virtual
representations of 10T gadget programs, visualize their behavior, and iteratively refine them
through interactive evaluation and selection.

The proposed system utilizes MESH, a visual programming environment for IoT
devices, to represent loT gadget programs. Users can collaboratively create, modify, and
evaluate MESH programs using an AR interface, where they can manipulate virtual objects
corresponding to MESH components and observe their effects in real-time. To further enhance
creativity and understanding, the system incorporates a natural language generation model

that produces descriptive explanations of the generated MESH programs, providing users with
additional insights and inspiration.

The main contributions of this work are:
1. An interactive AR system that leverages IEC and natural language processing to support
collaborative exploration and evolution of loT device programs.
2. A user study evaluating the system’s effectiveness in fostering creativity and its potential to
support collaborative programming experiences.
3. Insights and recommendations for designing interactive AR systems for creative
programming tasks.

2. Related Works
2.1 Creative Thinking

Creative thinking is a cognitive process that involves generating novel solutions to problems
without relying solely on prior knowledge or experience (Guilford, 1959). This process consists
of two essential components: divergent thinking and convergent thinking. Divergent thinking
refers to the generation of diverse ideas without being constrained by preconceived notions,
allowing for flexible and open-ended exploration of possibilities. Convergent thinking, on the
other hand, involves selecting and synthesizing the most useful ideas from the generated pool
to formulate effective solutions to the problem at hand. The interplay between divergent and
convergent thinking enables individuals to approach a given issue from multiple perspectives
and seek innovative solutions through the generation and refinement of ideas.

The importance of incorporating others’ perspectives in creative thinking has been
highlighted in numerous studies. In the field of cognitive science, researchers have suggested
that projecting the ideas of others with different viewpoints onto oneself can facilitate
serendipitous discoveries and lead to creative solutions (Oehlmann, 2003). This notion has
been further explored in the context of sketching tasks, where the access to others’ viewpoints
has been shown to support creative thinking (Miell et al., 2004; Sawyer, 2012). By
incorporating the perspectives of others, individuals can uncover novel ideas and insights that
they might not have conceived independently, thus expanding their creative potential.

Despite the significance of both divergent and convergent thinking in creative problem-
solving, most existing idea support systems tend to focus on only one aspect of the creative
thinking process. Few studies have investigated the effective combination of both divergent
and convergent thinking in idea support systems. Moreover, while some previous idea support
systems have incorporated others’ viewpoints, they have not fully exploited the potential of
leveraging the broadened perspectives of peers to generate new ideas and support creative
thinking.

2.2 Technology Enhanced Creativity and Ideation Support

Creativity support systems have been a focus of research in various domains, aiming to
enhance and facilitate creative processes. These systems provide tools, techniques, and
environments that stimulate ideation, encourage exploration, and assist users in generating
novel solutions. Several studies have investigated the effectiveness of creativity support
systems. Shneiderman et al. (2006) proposed a framework for designing creativity support
tools, emphasizing the importance of easy exploration, rich history-keeping, and collaboration
support. Similarly, Resnick et al. (2005) outlined design principles for tools that support
creative thinking, focusing on the need for low thresholds, high ceilings, and wide walls in
creative environments. Frich et al. (2019) conducted a survey of creativity support tools and
identified common features such as inspiration galleries, sketching interfaces, and generative
algorithms.

There have been several approaches to support creative thinking and idea generation. A
notable one is the Interactive Evolutionary Computation (IEC) approach, where users interact
with a system to evolve solutions through iterative evaluation and selection (Takagi, 2001).
IEC has been successfully employed in fields such as graphic design (Secretan et al., 2011),
music composition (Jonsson et al., 2015),-user interface design (Quiroz et al., 2007) and 3D
modeling (Clune and Lipson, 2011). These applications demonstrate the potential of IEC to
generate novel and personalized solutions based on user preferences and feedback. By
involving users in the evolutionary process, IEC can capture subjective criteria and adapt to
individual creative goals.

Augmented Reality (AR) has also been explored for supporting creativity and idea
generation. AR overlays digital information onto the real world, providing immersive and
interactive experiences that enhance understanding and exploration. For instance, ElSayed
et al. [2016] proposed an AR system to support idea exploration during the early design phase.
Cascini et al. (2018) developed an AR-based system for co-creative design, allowing users to
manipulate virtual objects and collaborate in real-time. Suzuki et al. (2020) proposed an AR-
based collaborative sketching tool that enables multiple users to create and share ideas in a
shared virtual space. These examples highlight the potential of AR to facilitate collaboration
and creative exploration in various domains through enhanced spatial awareness and in-situ
visualization.

2.3 Collaborative Programming Environments

Collaborative programming environments have been developed to support teamwork,
knowledge sharing, and collective problem-solving in software development. Existing
collaborative programming environments incorporate features such as real-time code editing,
version control, and communication tools. For example, Collece (Bravo et al., 2013) is a
collaborative coding environment that supports real-time collaboration, code review, and issue
tracking. These tools aim to facilitate teamwork and improve the efficiency of collaborative
programming tasks. On the other hand, several AR-based programming tools have been
developed to assist learners in understanding and visualizing programming concepts. Narman
et al. (2020) created an AR-based learning environment for teaching data structures and
algorithms, using interactive visualizations to illustrate complex concepts. Sittiyuno and
Chaipah (2019) developed ARCode, an AR application aiming to help beginners to understand
the workflow of a program, and provide a collaborative learning environment. These tools
demonstrate the potential of AR to enhance programming education by providing intuitive and
engaging learning experiences.

While existing collaborative programming environments have shown promise in
supporting teamwork, there are opportunities to enhance these tools to support collaborative
creative thinking by integrating AR and generative Al technologies. AR can provide immersive
and interactive visualizations of code structures, fostering a shared understanding among
collaborators. On the other hand, generative Al techniques such as natural language
processing and computer-driven optimization techniques such as IEC, can assist in generating
code descriptions, suggestions, identifying potential bugs, and facilitating communication
between team members.

3. Proposed Environment
3.1 Problem Statement and Novelty of Approach

Existing idea support systems often focus primarily on either divergent or convergent thinking,
failing to effectively integrate both aspects of the creative process. Moreover, while some
systems have incorporated others’ viewpoints to stimulate creative ideation, they have not fully
leveraged the potential of harnessing diverse perspectives to generate novel ideas and
support creative problem-solving.

Our proposed AR-based creativity support system introduces a dual-source approach
to stimulating creative thinking. By presenting users with both system-generated programs,
based on their preferences, and programs created by their peers, the system encourages
creative ideation from two distinct sources: the system’s algorithmic suggestions and the
innovative and relevant ideas of fellow users. This unique integration sets our system apart
from existing approaches, as it effectively combines divergent and convergent thinking while
harnessing the power of diverse perspectives to support creative problem-solving.

The proposed system’s ability to support the creation, visualization, and modification
of MESH programs, while providing computer-generated suggestions and descriptions, aligns
with the principles of easy exploration, rich history-keeping, and collaboration support. By
offering a seamless and intuitive interface for exploring and refining IoT programming ideas,
the system lowers the threshold for engagement and encourages creative experimentation.

3.2 System Features

The proposed system, as described above, aims to provide an immersive and interactive
environment that stimulates creative thinking and idea generation in loT programming tasks.
The key features of the system are described below.

3.2.1 Visual Programming

MESH is an innovative programming platform developed by Sony that enables users to create

interactive projects and explore computational thinking concepts through a series of engaging
challenges. The platform consists of various types of physical blocks (Figure 1-Left), such as
LED, Button, Motion, Move, Brightness, Temperature & Humidity, and GPIO, which can be
programmed using a simple drag-and-drop interface in the MESH app. By connecting these
blocks and specifying their behaviors, users can create a wide range of interactive projects,
from smart light bulbs to security cameras.

MESH’s visual programming approach and modular design make it well-suited for
Internet of Things (loT) programming and creative exploration. The intuitive interface allows
users to focus on the high-level logic and functionality of their loT applications, reducing the
cognitive load associated with traditional text-based programming. The pre-defined blocks and
simulation capabilities enable rapid prototyping and experimentation, fostering creativity and
innovation in loT solution development. Additionally, MESH’s compatibility with a wide range
of l1oT devices and protocols makes it a versatile platform for creative exploration in various
loT domains.

MESH programming emphasizes key computational thinking principles, including
sequencing, decomposition, and understanding the loT. Through a series of increasingly
complex challenges, users learn to break down problems into smaller, more manageable
components and create programs that combine simple sequences to achieve desired
outcomes. The MESH platform not only provides a hands-on approach to learning
programming concepts but also encourages creativity and innovation by allowing users to
design and build their own unique projects. Figure 1 (Right) shows a MESH program which

&' Random / © Take Picture
Trigger
—

s

. o=
On Detection

Turn ON ®

Figure 1. Left: MESH blocks and visual programming user interface,
Right: Example of simple program for MESH-based loT application for motion-
triggered camera and LED activation

demonstrates an Internet of Things application where detecting motion causes a camera to
capture an image and an LED to illuminate.

3.2.2 AR Interface

The AR interface provides an immersive and interactive environment for users to visualize,
manipulate, and evaluate the generated loT application designs. To implement it, we leverage
the capabilities of the Microsoft HoloLens 2, a state-of-the-art AR headset. It offers advanced
features such as spatial mapping, hand tracking, and gesture recognition, enabling intuitive
user interactions with virtual objects. Users interact with the AR interface using natural hand
gestures. The generated MESH programs are visualized as 3D holograms, allowing users to
examine the structure and connectivity of the IoT application designs. Users can manipulate
the holograms, rearrange components, and make modifications to the designs using intuitive
gestures such as grabbing, moving, and scaling.

Moreover, the AR interface is seamlessly integrated with the MESH programming
platform. In other terms, the changes made to the designs in the AR interface are synchronized
with the underlying MESH code, enabling users to experiment with different configurations
and observe the effects of their modifications in real-time. This further ensures consistency
between the visual representation and the actual program logic. This hands-on approach is
expected to help fostering creativity and facilitating a deeper understanding of loT
programming concepts.

3.2.3 Natural Language Generation

The natural language processing module, powered by GPT-3.5, is incorporated into the
proposed system to generate program descriptions and provide explanations of the generated
loT application designs. GPT-3.5 is employed to generate human-readable descriptions of the
MESH programs evolved by the IEC algorithm. The generated descriptions aim to provide
users with a high-level understanding of the functionality and purpose of each loT application
design. GPT-3.5 takes the MESH code as input and generates coherent and informative
descriptions using its language understanding capabilities. These descriptions aim to trigger
new ideas and perspectives among users, further stimulating creative thinking. To ensure the
quality and relevance of the generated descriptions, prompt engineering techniques are
applied. The prompts used to query GPT-3.5 are carefully crafted to guide the model towards
generating descriptions that are specific to the IoT domain and the MESH programming
language.

3.3 System Implementation

The proposed system’s technical architecture, as illustrated in Figure 2, comprises several
interconnected components that facilitate collaborative programming and creative exploration
using MESH blocks. At the core of the system is a web server hosting Streamlit, a Python
framework for developing interactive web applications. Streamlit serves as the user interface
for writing descriptions of MESH programs, allowing users to input and share their ideas
seamlessly. The web server communicates with a host server via HTTP to transmit user-
generated description data. The host server is tasked with critical functions such as FastAPI-
based HoloLens synchronization management, users’ description management, and
HoloLens downtime recovery, ensuring smooth operation and data consistency across the
system.

Users interact with the system through their PCs, which display the Streamlit-based
user interface for writing descriptions of their MESH programs. The MESH blocks themselves
are equipped with sensors that collect data from the surrounding environment. This sensor
data is transmitted to Unity, a powerful game development platform that plays a crucial role in
the system’s IEC process. Unity utilizes the sensor data and user preferences to generate
MESH programs that align with users’ creative intent. The generated MESH programs are

' Web Server

™y Streamlit

Stream Ul to let user |_

to write description

EEEEE viESH

Get surrounding data
from each sensor

' Host Server

O FastAPI
E HoloLens sync management
Send Users’ description management
description data .
from users HoloLens downtime recovery

m User’s PC

Get a user’s

d ipti
escription Display Ul for writing description of
the user’s MESH program
© FastAPI
©Bleak Get sensor data from MESH blocks

Send sensed data Run a MESH program

X
the number of users & &

A Microsoft Azure

4-> our virtual network
" Our subscription

@5y Azure OpenAl Instance

OpenAl Model (GPT3.5)

Send other users’ descriptions Send

flows & applications

Send permission to of MESH programs

proceed next phase

_’Q Unity ﬁ

Interactive Evolutionary Computation

Command to (MESH program generation)
run a MESH program

X
the number of users &

Figure 2. The technical architecture of the proposed system, showcasing the

interconnected components that enable collaborative programming and creative
exploration using MESH blocks.

Evaluation phasel " i b

\J- ‘
.m -m

Each presented program
idea is evaluated on a 5

point scale

05:41

HOHDERICA L

2o
BIC#HI DN Could be used as a mechanism to detect
and alert on the presence of a visitor and

] - B

1

r_ '-i--ﬂ

1 2

Go to progrumming phase

> IRI332Y7x-AA

> TnISLmBiER<

@ —TOMMT

Evaluation phaselid” i 4

—ETHAZBALLS, —EDOMBTMESHTOY 2D
When someone is sensed nearby, the
LED automatically lights up and turns off
when surroundings get brighter.

LEDZ B &ICRUT
LEDZEHIT T 3.

04:14

welcome them

Figure 3. Top: The evaluation phase interface, where users can view and provide
feedback on MESH programs created by other users or generated by the system

Bottom: The programming phase interface, where users can create MESH
programs by connecting virtual MESH blocks in an AR environment.

then managed by the main server, which oversees their flow and applications within the

system.

We rely on the robust Microsoft Azure platform, leveraging its Azure OpenAl Instance
and the OpenAl GPT-3.5 model for natural language processing tasks. This integration allows

the system to interpret and process user descriptions effectively, enhancing the overall user
experience and enabling more accurate generation of MESH programs.

3.4 Interaction Flow

The system supports a collaborative programming experience by allowing multiple users to
participate in the MESH program evolution process simultaneously. Users are provided
opportunities to view and evaluate each other's MESH programs, fostering indirect idea
exchange and collective exploration. Users’ interaction within the system consists of two main
phases: the evaluation phase, which promotes divergent thinking, and the programming phase,
which encourages convergent thinking.

3.4.1 Evaluation Phase

In the evaluation phase, the system presents MESH programs created by other users or
generated by the system itself. Users can access descriptions corresponding to the presented
MESH programs, which outline the program flow and provide application examples, as
illustrated in Figure 3 (Top). Users can rate or provide feedback on these programs, which is
then used by the IEC algorithm to generate new program candidates.

By presenting ideas from the system and other users, the system stimulates the users’
divergent thinking and encourages the generation of new ideas.

3.4.2 Programming Phase

During the programming phase, users create new MESH programs based on the ideas
acquired in the evaluation phase. The programming interface provides an AR environment
where users can construct MESH programs by connecting virtual MESH blocks. As shown in
Figure 3 (Bottom), the interface displays various MESH components, such as sensors and
actuators, which can be combined to create IoT applications. Users can select physical objects
or devices from their surroundings and associate them with the virtual MESH components,
enabling the creation of loT gadgets that interact with the real world. After a user creates a
MESH program, the system presents suggestions of other MESH programs that share
common elements with the user’s creation, further supporting idea generation. By providing
an opportunity to transform ideas into tangible programs, the system promotes convergent
thinking among users.

The evaluation and programming phases are repeated for a predetermined number of
iterations. It is important to note that the system shares the MESH programs and descriptions
created during the programming phase with other users who are simultaneously using the
system. The shared MESH programs and descriptions, along with those generated by the
system, are then presented to users in the evaluation phase.

This cyclical process of evaluating and programming, combined with the sharing of
user-created content is designed to foster a collaborative and creative environment where
users can draw inspiration from both the system’s suggestions and the ideas of their peers,
ultimately enhancing the ideation and development of innovative loT applications.

4. Experimental Evaluation
4.1 Study Design and Procedure

To evaluate the effectiveness of the proposed multi-participant creative support system, a
controlled user study was conducted. The study employed a within-subjects design with
counterbalancing to minimize order effects. A total of 16 university students (10 males and 6

Figure 4. Experimental setup for the study showing a group of four participants

females) aged between 18 and 24 years (M = 20.5, SD = 1.8) were recruited from diverse
academic backgrounds, including computer science majors ranging from bachelor's to
master’'s levels. Before the study, participants completed a questionnaire to assess their
programming experience, based on which they were categorized as novice, intermediate, or
expert programmers. These 16 participants were then divided into 4 groups of 4 participants
each.

Each group participated in two 60-minute sessions, separated by a 15-minute break.
The experiment was designed to consist of multiple iterations of the evaluation and
programming phases, with each complete cycle allocated a specific duration. The time
allocated for each phase within a cycle was carefully considered to ensure that participants
had sufficient opportunities to engage in both divergent and convergent thinking processes.
During each session, participants wore HoloLens 2 AR headsets and were asked to complete
a series of creative programming tasks using the provided system. The programming tasks
involved visual programming by selecting and connecting MESH blocks to create unique IoT
gadgets using real-world objects, such as a ping-pong paddle, a ping-pong ball, a whiteboard,
a wooden block, a rope, a mirror, an adhesive tape, etc.. Participants were encouraged to
think creatively and explore various possibilities to design loT gadget with these objects using
the proposed system. Figure 4 shows the experiment setting featuring a group of four
participants.

To assess the system’s impact on creative thinking, participants completed
questionnaires before and after each session. The questionnaires measured various aspects
of creativity, such as idea generation, originality, and inspiration using a 5 point Likert-Scale.
Semi-structured interviews were also conducted to gather qualitative insights into participants’
experiences and perceptions.

4.2 Results

Quantitative analysis of the questionnaire responses revealed significant effects of the
proposed system on participants’ creative thinking. A repeated-measures ANOVA showed a
significant main effect of time (before vs. after the break) on the number of MESH programs
created (F(1, 15)=7.2, p <0.05, n?=0.32). As illustrated in Figure 5-Left, participants created
more programs after the break (M = 8.0, SD = 1.3) compared to before (M = 5.8, SD = 1.1),
indicating an increase in idea generation over time.

Additionally, a significant interaction effect was found between programming
experience and the system’s impact on inspiration (F(2, 13) = 4.8, p < 0.05, n? = 0.42). Post-
hoc tests revealed that novice programmers (M = 4.2, SD = 0.4) experienced a significantly
greater increase in inspiration compared to intermediate (M = 3.7, SD = 0.5) and expert
programmers (M = 3.2, SD = 0.4), suggesting that the system was particularly beneficial for
those with less programming experience (Figure 5-Right).

Number of crafted MESH programs over time Inspiration score
45

4
35

3

Before break After break Novice

O AN WA OO N ® © O
N
o

Figure 5. Left: Main effect of time on the number of MESH programs created
Right: Interaction effect between programming experience and the system’s
impact on inspiration

Qualitative analysis of the interview data provided further insights into participants’
experiences. Many participants praised the system’s ability to stimulate creative thinking, with
one stating, "The AR environment and the presented programs really helped me think outside
the box and come up with ideas | wouldn’t have considered otherwise." Others appreciated
the collaborative aspect, noting that "Seeing other people’s creations and getting feedback on
my own programs was really motivating and inspiring."

However, some participants also identified areas for improvement. Several novice
programmers found the task allocation times to be too short, with one explaining, "/ sometimes
felt rushed and couldn'’t fully explore all the possibilities." Expert programmers, on the other
hand, suggested increasing the complexity and flexibility of the available MESH blocks to allow
for more advanced creations.

4.3 Discussion and Conclusion

The findings of this study provide preliminary evidence for the effectiveness of the proposed
multi-participant creative support system in promoting creative thinking in visual programming
tasks. The observed increase in idea generation over time suggests that the system’s
evolutionary algorithm and collaborative features may have contributed to stimulating
participants’ creativity. Additionally, the finding that novice programmers experienced the
greatest increase in inspiration highlights the potential of the system to support and encourage
individuals who are new to programming.

The qualitative data gathered from the interviews offer further insights into the system’s
ability to create a creative and collaborative environment. Participants’ positive feedback
regarding the AR interface and the exposure to diverse perspectives is consistent with prior
research on the benefits of immersive technologies and social creativity support tools.
However, it is important to acknowledge that the small sample size of this study limits the
generalizability of these findings. Future research with larger and more diverse participant
groups is necessary to validate and extend these initial results.

The study also identified several areas for future system development and
improvement. The pre-study questionnaire revealed varying needs and preferences among
participants with different levels of programming experience, suggesting that incorporating
adaptive task allocation and difficulty adjustment could enhance the system’s effectiveness
and user experience. Moreover, the inclusion of more advanced MESH blocks and greater
flexibility in program creation could better cater to the needs of expert programmers while still
providing support for novices.

Despite the limitations of the small sample size, the study’s findings have potential
implications for the design of creative support tools in programming education and practice.
The promising results regarding the system’s ability to promote creative thinking and
collaboration highlight the potential of combining AR and evolutionary computation to foster
innovation and problem-solving skills. However, further research is needed to investigate the

long-term effects of such systems on programmers’ creative development and to explore their
application in real-world contexts, such as educational institutions and software development
teams.

In conclusion, while this study provides initial evidence for the effectiveness of the
proposed multi-participant creative support system in promoting creative thinking in visual
programming tasks, the small sample size limits the generalizability of the findings. Further
research with larger and more diverse participant groups is necessary to validate and extend
these results. Nonetheless, the insights gained from this study offer valuable direction for
future system development and highlight the potential of AR and evolutionary computation in
supporting creative programming education and practice.

References

Bravo, C., Duque, R., & Gallardo, J. (2013). A groupware system to support collaborative programming:
Design and experiences. Journal of Systems and Software, 86(7), 1759-1771.

Cascini, G., O’'Hare, J., Dekoninck, E., Becattini, N., Boujut, J. F., Guefrache, F. B., ... & Morosi, F.
(2020). Exploring the use of AR technology for co-creative product and packaging design.
Computers in Industry, 123, 103308.

Clune, J., & Lipson, H. (2011). Evolving 3d objects with a generative encoding inspired by
developmental biology. ACM SIGEVOlution, 5(4), 2-12.

ElSayed, N. A., Thomas, B. H., Marriott, K., Piantadosi, J., & Smith, R. T. (2016). Situated analytics:
Demonstrating immersive analytical tools with augmented reality. Journal of Visual Languages &
Computing, 36, 13-23.

Frich, J., Nouwens, M., Halskov, K., & Dalsgaard, P. (2021). How digital tools impact convergent and
divergent thinking in design ideation. In Proceedings of the 2021 CHI conference on human factors
in computing systems (pp. 1-11).

Guilford, J. P. (1959). Traits of creativity. In H.H. Anderson (Ed.), Creativity and its Cultivation, Harper,
142-161

Jénsson, B. b., Hoover, A. K., & Risi, S. (2015). Interactively evolving compositional sound synthesis
networks. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation (pp. 321-328).

Miell, D. (2004). Collaborative creativity: Contemporary perspectives. London: Free Association Books
Littleton, K. (Eds.)

Narman, H. S., Berry, C., Canfield, A., Carpenter, L., Giese, J., Loftus, N., & Schrader, I. (2020).
Augmented reality for teaching data structures in computer science. In 2020 IEEE Global
Humanitarian Technology Conference (GHTC), 1-7.

Oehlmann, R. (2003). Metacognitive and Computational Aspects of Chance Discovery, New Generation
Computing, 3-12, Springer

Quiroz, J. C., Louis, S. J., & Dascalu, S. M. (2007). Interactive evolution of XUL user interfaces.
In Proceedings of the 9th annual conference on Genetic and evolutionary computation (pp. 2151-
2158).

Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T., & Eisenberg, M. (2005).
Design principles for tools to support creative thinking. National Science Foundation workshop on
Creativity Support Tools. Washington DC.

Sawyer, R.K. (2012). Explaining creativity: The science of human innovation (2nd ed.). Oxford, UK;
New York, NY: Oxford University Press

Secretan, J., Beato, N., D’Ambrosio, D. B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J. T., &
Stanley, K. O. (2011). Picbreeder: A case study in collaborative evolutionary exploration of design
space. Evolutionary computation, 19(3), 373-403.

Shneiderman, B. (2007). Creativity = support tools: accelerating discovery and
innovation. Communications of the ACM, 50(12), 20-32.

Sittiyuno, S., & Chaipah, K. (2019). Arcode: Augmented reality application for learning elementary
computer programming. In Proceedings of 2019 16th International Joint Conference on Computer
Science and Software Engineering (JCSSE) (pp. 32-37).

Suzuki, R., Kazi, R. H., Wei, L. Y., DiVerdi, S., Li, W., & Leithinger, D. (2020, October). Realitysketch:
Embedding responsive graphics and visualizations in AR through dynamic sketching.
In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology
(pp. 166-181).

