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Abstract: Digital learning platforms equipped with behavior sensors have provided 
abundant educational data. Utilizing this data, learner modeling can identify assorted 
learner characteristics from their behavior logs for learning analytics and dynamically 
update them in real time. There is a growing demand for knowledge-level modeling, 
moving beyond behavioral logs to assess knowledge proficiency. Based on item 
response theories and cognitive statistical models, existing studies estimate learning 
rates across various knowledge elements in each learning step in intelligent tutoring 
systems. However, these models, tailored to specific knowledge domains, offer limited 
flexibility across different knowledge units and scenarios. This paper introduces an 
adaptation of the basic additive factor model underpinned by logistic regression, 
focusing on behavior indicators. Drawing upon authentic learning data from an e-book 
learning infrastructure for junior high math, we examine the feasibility of our adapted 
models and demonstrate their potential for flexibility across knowledge units and 
learning phases. 
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1. Introduction 
 
Learner models in digital learning platforms cover both domain-specific and domain-
independent information, quantified as learning evidence (Boticki et al., 2019).  These 
indicators come from platforms equipped with data sensors, such as e-book reading logs, test 
scores, and other pertinent data, which can dynamically update with logs. Among these 
models, knowledge holds vital importance, as the primary goal of online education is 
knowledge acquisition. This underscores the importance of understanding learners' 
knowledge states (Fischer et al., 2002), especially in K-12 contexts where knowledge levels 
are predominantly assessed from a cognitive perspective. Therefore, interventions driven by 
knowledge-based data are emphasized in such settings. 

In platforms like e-books, students engage with learning material through markers and 
memos, leaving various recorded behaviors. Research has explored how such engagement 
can be modeled and visualized for educational predictions using learning logs (Chen et al., 
2021). However, these outputs lack interpretability regarding knowledge states, 
addressing behaviors in content levels without clear correspondence to knowledge profiling. 
In mastery learning contexts such as math, active engagement does not necessarily 
guarantee success, as wheel spinning may occur (Wang et al., 2020). Therefore, it is 
imperative to reconsider how to effectively model learners' knowledge proficiency based on 
various types of e-book records. 

On the other hand, cognitive statistical models, originally applied for intelligent tutoring 
systems (ITS; Draney et al., 2012), incorporate dynamic interactions and dialog for each 
learning step. Logistic regression models are popular for knowledge modeling, providing a 
“probability” measure. Assuming each target problem is a knowledge unit, the probability of a 



learner successfully solving a problem can serve as a promising indicator of knowledge 
proficiency (Chounta et al., 2017). 

Extending from conventional item response models and underpinned by logistic 
regression, the Additive Factor Model (AFM) considers prior learning opportunities (Cen et al., 
2006). It is applicable for various digital learning platforms holding these records. Existing 
breakthroughs in cognitive models focus on weighting conjunctive knowledge components in 
learning steps, considering difficulty, slipping rate, and learning rate for each piece of 
knowledge (Chi et al., 2011; MacLellan et al., 2015). However, these coefficients are domain-
specific, lacking flexibility across contexts. Macro elements, such as general learning 
behaviors, show promise, although fewer cognitive models inspected learning rates for 
general behavioral interactions and broader contexts. 

Inspired by the basic AFM model and its variations, which consider learning rate 
coefficients of prior learning opportunities, this paper proposes an adapted instructional factor 
analysis model for knowledge proficiency based on an e-book context. Instead of estimating 
learning rates for respective knowledge or problems, we focus on general behavior indicators, 
for adaptability on broader learning scenarios. Drawing upon authentic learning data from 
junior high math, we investigated the feasibility of our adapted models and demonstrated their 
potential for flexibility across scenarios. 
 

2. Research foundations 
 

2.1 OKLM conceptualization from Learning analytics infrastructure 
 
With the advancement of learning analytics (LA), integrated learning platforms such as the 
Learning and Evidence Analytics Framework (LEAF) enable the collection of everyday 
learning logs (Ogata et al., 2024b). These logs, stored at the behavior level as primary learner 
models, provide a foundation for LA in learning predictions. One key challenge in developing 
such infrastructure is integrating various logs across learning resources to make it open-ended 
(Bull, 2020). To address this, the conceptualization of the Open Knowledge and Learner Model 
(OKLM) was proposed (Takii et al., 2024). This model aims to integrate scattered behavior 
logs into a knowledge level, so as to facilitate interoperability across learning systems and 
contexts. 

Figure 1 shows a conceptual diagram of the learner model construction in OKLM. OKLM 
presents a learner model capable of managing and tracking which knowledge items are 
covered by each learning action, linking the learner's daily learning logs to a knowledge map 
generated from learning resources such as e-books. Each node in the knowledge map 
contains information about the learning logs for its corresponding resources. To capture the 
complex nature of knowledge acquisition and proficiency, OKLM connects the verbs in xAPI 
logs from behavior sensors to Bloom’s taxonomy that represents multifaceted cognitive 
development (see Figure 2; Krathwohl, 2002). 

 

 
Figure 1. The conceptual diagram of the learner model construction in OKLM. 

 
 



 
Figure 2. Example connection of xAPI verbs and the layers of Bloom’s Taxonomy. 

 
Based on these connections constructed from educational big data in digital learning 

platforms, OKLM offers the potential to support learning, including learning status visualization, 
material recommendation, and grade prediction (Khadir et al., 2021; Takii et al., 2024). The 
model aids in integrating data from different learning tools based on connected knowledge 
units. Beyond conventional data-driven systems, applications based on OKLM design can 
provide explainable interventions based on learners' knowledge structures, rather than relying 
solely on black box models or simple log counts (Ogata et al., 2024a; Shin, 2021).  

To realize these applications, a fundamental challenge is to create Learner-Knowledge 
(L-K) connections from daily Learner-Resource (L-R) logs and Knowledge-Resource (K-R) 
labels assigned by instructors. Thus, the OKLM conception lays the conceptual foundation for 
bridging the gap of knowledge proficiency profiling from raw behavior logs. 

 

2.2 Cognitive modeling in intelligent tutoring systems 
 
In cognitive learning, learners progress through multiple learning steps, including Q&A dialogs, 
quizzes, or peer assistance, to acquire knowledge (Draney et al., 2012). To estimate the 
knowledge accumulation process from these steps, the frequency of previous exposure to 
relevant knowledge units is commonly considered. 

The Additive Factor Model (AFM; Cen et al., 2006) and its variations, originally extending 
from item response theory (Draney et al., 2012), are popular in cognitive modeling for 
predicting performance at each learning step. Due to its logistic model properties, the output 
of AFM models can quantify learners’ knowledge state, as predicted probability values can 
indicate proficiency on the target learning goal as a percentage. This logistic model also aligns 
with the Zone of Proximal Development (ZPD) theory (Vygotsky, 1980), as the “gray areas” 
near the classification threshold of predicted probability can represent such zones for learning 
recommendations (Chounta et al., 2017), thereby holding further educational significance. 

𝑧𝑖 = 𝛼𝑖 + ∑(𝛽𝑘𝑐 + 𝛾𝑘𝑐 × 𝑁(𝑘𝑐, 𝑖))

𝑘𝑐

 (1) 

𝑧𝑖 = 𝛼𝑖 + ∑(𝛽𝑘𝑐 + 𝜇𝑘𝑐 × 𝑆(𝑘𝑐, 𝑖) + 𝜌𝑘𝑐 × 𝐹(𝑘𝑐, 𝑖))

𝑘𝑐

 (2) 

𝑧𝑖 = 𝛼𝑖 + ∑(𝛽𝑘𝑐 + 𝜇𝑘𝑐 × 𝑆(𝑘𝑐, 𝑖) + 𝜌𝑘𝑐 × 𝐹(𝑘𝑐, 𝑖) + 𝜈𝑘𝑐 × 𝑇(𝑘𝑐, 𝑖))

𝑘𝑐

 (3) 

The formulas of three popular AFM models from Chi et al. (2011) are depicted above, 
with the predicted probability 𝑝𝑖 = 1 (1 + 𝑧𝑖)⁄ . In the basic AFM (1), for a learner i, its 
coefficients consider the baseline of student proficiency (α), knowledge difficulty (β), and 
learning rates (γ) of previous exposures (N). The Performance Factor Model (PFM) (2) breaks 
down general exposure into success (S) and failure (F) for each knowledge unit (α) can be 
omitted in some versions (MacLellan et al., 2015), while the Instructional Factor Model (IFM) 
(3) goes beyond assessable steps and incorporates additional learning interactions such as 
direct tellings T from ITSs. Despite manifold variations, their core idea of cognitive modeling 



is to estimate learning rates for different knowledge units, resulting in potentially large numbers 
of parameters and domain-specific models. Efforts on model extensions often focus on 
expanding knowledge-specific indicators, such as forgetting models with slipping rates for 
each knowledge unit (MacLellan et al., 2015). 

 

2.3 Connecting cognitive models to e-book context: adapted AFMs for behaviors 
 

While the grounding systems and contexts differ, the two learning scenarios share similarities 
in data structure and problem space. Figure 3 illustrates this comparison, indicating the 
potential to apply AFMs in the L-K Modeling for OKLM construction. In AFM, the aim is to 
predict the probability of passing a step (L-S probability) using previous exposures to L-C and 
prescribed C-S. Similarly, for OKLM, the goal is to estimate knowledge proficiency (L-K) based 
on logs on L-R and prescribed K-R. This similarity allows for the reproducibility of AFM into 
the OKLM challenge. 

 
Figure 3. A comparison between learner modeling in OKLM and AFM. 

 
 However, differences exist between the two approaches. The original AFM emphasizes 

the effect of knowledge itself, while the OKLM context focuses on behavior adaptation. 
Therefore, in the adapted models discussed in this paper, we only employ behavior indicators 
from AFM models. We created formulas to illustrate the adapted AFMs tailored to the OKLM 
context, emphasizing learning rates of different learning behaviors beyond knowledge 
features.. Formula (4) derives from the basic AFM, (5) from PFM, and (6) from IFM respectively. 
Also, instead of “tell opportunities (T)” or other dialog acts in ITS in the original model, we use 
a more general term, such as engagement (E). For reference, we renamed each adapted 
model based on input behavior indicators (S, F, and E) in the formula and the subsequent 
description. 

𝑧𝑖 = ∑(𝛾 × 𝐸(𝑟, 𝑖))

𝑟

 (4) 

𝑧𝑖 = ∑(𝜇 × 𝑆(𝑟, 𝑖) + 𝜌 × 𝐹(𝑟, 𝑖))

𝑟

 (5) 

𝑧𝑖 = ∑(𝜇 × 𝑆(𝑟, 𝑖) + 𝜌 × 𝐹(𝑟, 𝑖) + 𝛾 × 𝐸(𝑟, 𝑖))

𝑟

 (6) 

Unlike ITS, there can be multiple learning resources in LA systems with limited reuse for 
each, making conducting AFM for individual resources less meaningful. Thus, to investigate a 
more general effect from a behavioral perspective, this study aims to further demonstrate the 
feasibility of estimation from behavior indicators by addressing the following research 
questions. We then conducted data analysis in a junior high math context to answer these 
questions. First, we examine the performance of the adapted model, followed by an 
exploration of its adaptability to different scenarios, spanning different knowledge units, learner 
levels, and learning stages. 

 RQ1: Can we model knowledge proficiency based on behavior indicators with adapted 
AFM models? 

 RQ2: Can the adapted AFM models fit across scenarios with different knowledge units 
and learning stages? 

 



3. Research method 
 

3.1 Learning context and data preparation 
 

The study delves into junior high math, a scenario requiring cognitive skills and often learned 
through extensive practice in problem-solving. In Japan, a national project provides one tablet 
per student for ubiquitous and mobile learning (Sato & Uchiyama, 2023). In experimental 
schools where students were informed and consented to data collection, math practice 
problems are accessible via the BookRoll e-book system of LEAF (Ogata et al., 2024b), 
allowing students to engage with math problems during their learning. Each page of the book 
contains one math problem labeled with its corresponding knowledge units. The e-book 
learning unfolds in two contexts: during regular learning of new units and vacations for review 
purposes. Students can interactively operate the e-book with memos and hand-writings, and 
annotate their success or failure on each problem page as part of self-regulated learning 
practice. 

The e-book system tracks success and failure in daily problem attempts, along with 
engagement indicators like annotations and memos. These indicators correspond to success 
(S) and failure (F) counts of steps in the IFM. Engagement (E) is counted based on whether 
the learner performs any operations on the page within a one-hour slot. All learning logs are 
anonymized when stored in the database with xAPI to deidentify learners. Additionally, to 
estimate the learning rate coefficients, actual grades of unit tests and post-vacation tests 
(where achieving 60% or more is considered passing) in the year 2023 were provided by the 
school teacher. These grades were deidentified and linked to system logs via system ID 
numbers assigned by the school. 

The study employed the aforementioned math dataset with e-book learning logs as input 
and actual grades of tests as target output to construct the L-K proficiency model. A total of 
49,423 records were employed after data cleaning. For the new knowledge learning, logs and 
grades from three geometry units were used from grade 3 students: “Similarity” (n = 64; 14,740 
records), “Circle” (n = 31; 7,139 records), and “Pythagorean theorem” (n = 45; 12,269 records). 
For vacation review, logs and post-vacation grades from grade 1 students (n = 112; 15,275 
records) were used, focusing on basic algebra, including rational numbers, algebraic 
expressions, and equations. Each data item records the total count of S, F, E, and the actual 
grade (scaled with the output probability) with a boolean flag indicating the pass obtained from 
the test of one student for one knowledge unit. Students with missing grades due to absence 
were excluded from the analysis. 

 

3.2 Data analysis 
 
For RQ1, we implemented adapted AFM, PFM, and IFM models, as depicted in Figure 3, using 
Python logistic regression tools (MacLellan et al., 2015). To assess the average model 
performance, we conducted 50 runs of 5-fold unstratified cross-validation for each of the three 
models using “Similarity” and “Circle” datasets. To assess the average model performance, 
we conducted 50 runs of 5-fold unstratified cross-validation for each of the three models using 
“Similarity” and “Circle” datasets. We compared the models in terms of confusion matrix-based 
accuracy, logit likelihood (LL), root mean square error (RMSE), and correlation between 
predicted probability and actual grade. As the number of parameters in our models is small, 
we did not consider the BIC. Regarding the learning rate coefficient, though some AFM 
variations restrict the coefficients of each knowledge to be positive under the premise that 
learners can learn even from errors (MacLellan et al., 2015), we do not set such bound 
limitation in our macro-level behavior. 

For RQ2, we conducted two analyses to inspect the model adaptability across contexts 
with different spans. First, we evaluated the performance of the model trained in RQ1 using 
the “Pythagorean theorem” dataset, indicating a different knowledge unit and a relatively small 
context span. Subsequently, we tested the model using the summer vacation dataset, which 
represents a different learner level and learning stage and encompasses a larger context span. 



As logit likelihood and RMSE are relative indicators, we examined accuracy, and correlations, 
and conducted paired sample tests between predicted probabilities and the actual grades of 
unit tests or post-vacation tests to ensure that the estimated knowledge proficiency reflects 
the actual knowledge. 

 

4. Result 
 

4.1 Performance under cross-validations 
 
Table 1 summarizes the results of model construction from three approaches, presenting 
learning rate coefficients with 7 valid digits. In the IFM-based model (S-F-E), the learning rate 
of engagement (E) is tiny and negative, indicating a negligible contribution to final proficiency. 
Similarly, in the PFM-based model (S-F), the learning rate of failure practice exhibits a 
negative coefficient. 
 
Table 1. Averaged learning rate coefficients from cross-validations 

Adapted model μ for S ρ for F γ for E 

IFM 0.0223972 -0.0837946 -0.0054021 

PFM 0.0104901 -0.0933654  

AFM   -0.0020906 

 
Figure 4 shows the performance of three cognitive statistic models in the cross-validation 

of the training dataset. Each pair represents one run under a random data division from the 
same seed. While accuracy is similar across all models, S-F-E and S-F exhibit relatively higher 
rates. S-F demonstrates better performance in terms of RMSE and LL, whereas S-F-E shows 
poorer performance due to some extreme values. In terms of correlation to the actual grade, 
both S-F-E and S-F demonstrate positive relationships, though not statistically significant due 
to the small fold size in the cross-validation. The engagement-based model shows a negative 
correlation and performs poorly in this indicator to explain why was it less effective. 

 

 
Figure 4. Performance of adapted AFM, PFM and IFM. 



 

4.2 Adaptability to different learning contexts  
 
As for the adaptability to different knowledge units, Figure 5 depicts the distribution of 
estimated proficiency compared to actual proficiency from the unit test. Each pair represents 
one learner in this case. Paired sample tests on two models confirm consistency (p= .153 > 
.05 for S-F-E and p = .131 > .05 for S-F) between the distributions at a confidence level of 
95%. Despite a non-significant correlation coefficient, the models achieved accuracies of 0.89 
for S-F-E and 0.91 for S-F, and the inaccurate predictions occur mainly in the positive true cell 
of the confusion matrix. 
 

 
Figure 5. Distribution of estimated proficiency compared to actual proficiency from the 

unit test. 
 

When applying the model to the dataset from a more diverse learning context with 
different learner levels and learning stages, the paired sample test revealed a significant 
difference between estimated and actual values (p < .001 for both S-F-E and S-F), suggesting 
a misalignment when the learning context varies with an accuracy of 0.18 for S-F-E and 0.17 
for S-F. Figure 6 displays the original distribution of estimated proficiency in vacation practice 
compared to actual proficiency from the post-summer vacation test.  
 

 
Figure 6. Original distribution of estimated proficiency compared to actual proficiency 

from post-summer vacation test. 
 

Despite the significant difference, a notable positive correlation was observed between 
estimated and actual values (r = .330, p < .01 for S-F-E and r = .412, p < .01 for S-F). Given 
the disparity in average scores between unit tests and summer vacation practice, where the 
former represents initial exposure to the knowledge unit and the latter involves a review period, 
such discrepancies are explainable. 



Evidently, the model's accuracy falls below acceptable levels. However, by adjusting the 
predicted probabilities to account for the difference in mean values between the two 
distributions, alignment across knowledge contexts was achieved (see Figure 7), with the 
model's accuracy improving to 0.74 for S-F-E and 0.82 for S-F. 
 

 
Figure 7. Distribution of adjusted proficiency compared to actual proficiency from post-

summer vacation test. 
 

5. Discussion 
 
For RQ1, the results indicate that both adapted PFM (S-F) and IFM (S-F-E) can estimate 
knowledge proficiency at an acceptable level. However, AFM, relying solely on exposure 
counts, fails to reflect knowledge proficiency adequately. Unlike courses with low cognitive 
demand in higher education (Chen et al., 2021), mere engagement does not necessarily 
correlate with expected learning performance in math. The learning rate associated with pure 
engagement is small and negative, reflecting the phenomenon of wheel spinning commonly 
observed in math learning. It refers to a phenomenon where a student has spent considerable 
time practicing a skill, yet displays little or no progress towards mastery (Gong & Beck, 2015). 
These results underscore the imperative for nuanced selection of meaningful indicators from 
the abundant learning log data. 

Additionally, The learning rate for success is the highest among the three indicators in 
the S-F-E and S-F models, while failure holds a negative learning rate. The finding is 
consistent with that in physics ITS (Chi et al., 2011), suggesting that subjects requiring higher 
knowledge might struggle to learn from errors. Moreover, it highlights the potential for LA 
studies on the wheel-spinning effect in cognitively demanding contexts, such as learning 
process graphs (LPG) based on knowledge models (Di Pierro et al, 2023). 

Regarding RQ2, the results demonstrate the adaptability of the aforementioned models 
to broader scenarios. The initial analysis reveals that the model can successfully transition to 
other math knowledge units, affirming its versatility within a limited context. This suggests the 
possibility of utilizing the modeling approach to estimate learning proficiency in other new 
knowledge-learning contexts based on e-book math learning behaviors.  

Although there is room for improvement in the positive true category in the confusion 
matrix due to the small sample of passed students, since our research goal is to estimate 
proficiency rather than solely classify pass or fail outcomes on the post-test, the model can be 
considered acceptable. Additionally, the analysis also indicates that the S-F model performed 
slightly better than the S-F-E model, which aligns with the cross-validation results in RQ1. 
Even minor differences like these could be crucial when selecting a model suitable for a 
specific application, ensuring effective practice and saving time for learners (Pelánek, 2017). 

In the second analysis, it is acknowledged that model accuracy is affected by context 
differences. Training data for contexts where students encounter knowledge units for the first 
time exhibit diverse patterns compared to data from review stages during summer vacation. 
However, the model can adapt to new contexts with subtle adjustments. By incorporating an 
additional constant to account for the mean deviation of target grades between datasets, the 



adjusted model fits the new learning context effectively. This additional constant may 
represent the overall learner level depending on the learning stage, akin to the intercept of 
original AFM models (Chi et al., 2011). Moreover, the distribution of predicted proficiency 
aligns with actual performance, indicating that even original estimates of knowledge 
proficiency can apply to LA contexts concerned primarily with relative differences among 
learners, such as peer helper recommendation and group formation (Liang et al., 2024). 

In comparison to traditional cognitive models that assign difficulty and learning rates to 
each knowledge concept, this study demonstrates the possibility of constructing models 
without considering knowledge differences. While the original models may yield higher 
accuracy and performance in specific contexts, our emphasis is on learner modeling using 
general behavior indicators for broader contexts, aligning with the principles of system 
interoperability advocated by the OKLM conception. Consequently, our adapted models help 
identify meaningful indicators from multiple behavior logs, determine the weight of each 
indicator to effectively model knowledge proficiency, and facilitate OKLM applications on a 
regular basis as outlined in Section 2.1. 

The model in this study is still in its preliminary stage, using only behavior indicators 
related to success and failure from classical PFM models, which may oversimplify the 
assessment of knowledge proficiency. It is imperative to further disaggregate engagement (E) 
into more meaningful behavior aspects that could impact knowledge accumulation. This  
constitutes future work that the higher layers of cognitive processes can be explored. For 
instance, according to the definition of "tell" in the original IFM, logs on peer help and 
feedback could contribute to the knowledge model on the “evaluate” layer with certain weights 
(Vassileva et al., 2016). Besides, the potential of writing memos with penstroke data deserves 
further inspection to explore meaningful indicators for the “apply” and “analyze” layers involved 
in math learning (Yoshitake et al., 2020). Finally, the limited sample size may have resulted in 
some non-significant differences and the influence of extreme values in certain statistical 
analyses. Therefore, further data collection in consultation with experimental schools is 
necessary to address this limitation. 
 

6. Conclusion  
 
This study adapted cognitive statistical models based on logistic regression to model 
knowledge proficiency from everyday learning logs in digital learning systems. We emphasize 
the learning rates of general behavior indicators, departing from conventional models that 
focus on weights of specific domain knowledge. Through examination of authentic learning 
data from a junior high math e-book infrastructure, our study demonstrates the feasibility and 
adaptability of the models across diverse knowledge units and learning phases. Future work 
will explore more meaningful behavior indicators and realize inter-operable learner modeling 
in broader contexts. 
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