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Abstract: Several studies have been conducted to improve program comprehension 
through code tracing. However, most of these studies have focused on a single flow of 
control, with insufficient proposals to support program comprehension of multiple flows 
of control. It is difficult for novices to trace code with multiple flows in the correct order. 
In this study, we propose a code trace support environment for letting learners to trace 
the appropriate flow in execution with synchronization constraints. It also supports the 
component-based comprehension of synchronization mechanisms in multiple flows. 
The evaluation experiment confirmed the learning effect of understanding the 
appropriate order of steps. However, several issues regarding the component-based 
comprehension have been identified. 
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1. Introduction 
 
Code tracing is essential to program comprehension in programming education. However, 
novice learners frequently struggle with tracing and program states (Sorva et al., 2013) (Lister 
et al., 2004). One cause of these difficulties is novice learners’ low abstraction ability. Vainio 
and Sajaniemi (2007) indicated that the inability to increase the level of abstraction for data 
structures and/or operations in codes causes a depletion of working memory, resulting in 
mental simulation errors. Therefore, numerous research projects have supported learners in 
tracing program codes using program visualization techniques. Muldner et al. (2022) reviewed 
program visualization tools and their effectiveness. 

Some modern software applications solve problems not only by a single sequential flow 
of control but also by executing multiple flows simultaneously. For instance, in computer 
science curricula, learners learn multiple flows in socket programming, parallel programming, 
and other programming and algorithm classes. Although it is more difficult for learners to 
correctly trace multiple flows, most learning support environments only allow tracing programs 
with a single sequential flow of control. Several studies have suggested visualization tools for 
learners to observe program concurrency such as Trümper et al. (2010) and Malnati et al. 
(2008), Lönnberg et al. (2011) and Strömbäck (2022). These tools are useful for programmers 
who have certain programming/debugging skills and knowledge for concurrency and 
synchronization, and they have already understood the behaviors and required function of 
each flow. However, these are not sufficient scaffolds for novices to learn a single flow of 
control to understand code with multiple flows. 

In this study, we propose a learning environment that supports learners in tracing 
program codes with multiple flows. The proposed environment supports learners in correctly 
tracing multiple control flows and observing interactions among flows. We experimentally 
evaluated the learning effects of the proposed environment using an echo-back server and 
client applications, which are often assigned to network programming classes.  



2. Learning Environment 
 

2.1 Learning Methodology 
 
In program tracing, learners trace program code step-by-step and observe the changes in 
program states between steps. For a single sequential flow, it is clear for learners that the flow 
of control must be traced; for multiple flows without dependencies, learners can also observe 
the result of each flow individually. Learners can also use existing visualization tools that 
support a single side-by-side control flow. In contrast, the multiple flows with dependencies, 
learners must consider the order of the steps themselves. If a subtask requires data to 
proceed, the flow must wait until the other tasks prepare the data. For instance, in program 
code that handles input/output devices, including network sockets, i/o blocking features 
synchronize multiple flows. 

Such synchronization features are essential for programs with multiple flows; however, 
it is difficult for learners to understand them. First, in tracing the codes, learners should decide 
which flow they should move forward in every step. In this time, for choosing correct step, 
learners require to understand the state of the current flow (e.g., blocked or ready) and which 
flow will solve the blocked state in the later step. Second, these types of features are 
sometimes implemented as system libraries. Such codes are generally too complicated for 
learners, although they must understand the basic functions and behaviors of APIs required 
to trace the flow of the program. However, it is not necessary to trace the steps inside the 
libraries with the same granularity when tracing the application code and observing the details 
of the data at each step. Figure 1 shows the types of step granularities for a tracing function-
call hierarchy. Most learning support systems enable learners to trace program codes based 
on trace type (A) or (B). However, it is complicated for learners to trace the code inside system 
libraries of trace types (A). If the function of the APIs can be explained only by the change 
between the before and after states of the function call, such as a pure function, (B) style 
tracing can be used for code comprehension. However, understanding the behavior inside 
libraries is important because these functions are designed based on side effects. For instance, 
the behavior inside “send” function make effect for the behaviors of other application; the 
behavior inside “listen” function make effect for the behavior of “accept” function as other 
function in network libraries. Thus, learners should proceed with style (C) tracing by choosing 
the essential steps/data in the library codes and interpreting complicated data structures at an 
appropriate level of abstraction.  

As previously discussed, learners attempting to trace programs with multiple flows 
require the following support functions. 
 
A) Guiding learners in tracing code with multiple flows by following the appropriate order of 

steps under the constraint of synchronizing features. 
B) Guiding learners in tracing only the essential steps of the code inside APIs. 
C) Visualizing abstracted behavior only between essential steps inside APIs.  

 

 
Figure 1. Step granularity for tracing the function-call hierarchy in a flow. 
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2.2 Architecture 
 
2.2.1 Basic Architecture of TEDViT 
 
In this study, we solved Problems A), B), and C) by extending TEDViT. TEDViT (Yamashita 
et al., 2013) is a program visualization environment that supports multiple panes: source code, 
domain world, and other dynamic information based on code execution. When learners trace 
program codes, they can observe program behaviors in the domain world synchronized with 
their chosen steps. Figure 2 shows the basic architecture of the TEDViT environment. When 
teachers provide program codes for an exercise and visualization policy as rules using an 
authoring tool, TEDViT generates the learning environment for novice programmers based on 
the program execution logs and the rules, and current steps of the codes chosen by learners. 
 

 
Figure 2. Overview of the architecture of TEDViT 

 
2.2.2 Interface of the Extended TEDViT 
 
Figure 3 shows the extended TEDViT interface, which includes two code views for each flow 
on both sides and a shared conceptual view at the center of the window. The conceptual view 
is shared by both flows; teachers can design all objects in the view by defining rules based on 
the intent of their instruction. There are four buttons at the bottom of each program code view 
that allow learners to step-forward/backward through the program code. In addition, an 
indicator notifies the learners of whether they can step forward. 
 

 
Figure 3. Interface of extended TEDViT 

 

In this case, the left view shows the code for the client application, while the right view 
shows the code for the server application. The learner progressed through the server code to 
the statement of the “a  e  ”   n   on    nk l ne     observing the changes in the conceptual 
view. At the bottom right of the conceptual view, a server-side socket data structure was 
visualized using TEDViT rules. Although the socket structure and other variables defined in 

        

          

       

       

         

         

             

              

            

             

                 

               



the actual code are complicated, the visualized socket data structure was abstracted based 
on   e  ea  ers’  n en  on to focus on learners’  n ers an  n . 

At the “accept” s e ,   e “a  e  ”   n   on allows the application to block conditions; the 
environment disables   e learner’s s e -forward action on the right code view and notifies the 
learner that the blocking condition continues  n  l   e  l en ’s  onne   on is invoked at the step 
on the client code (green-colored line). The learner manipulates the step on the client code 
from the beginning (pink-colored line in the left view   o   e s e  o    e “ onne  ”   n   on 
(green-colored line in the left view). While the learner steps forward on a few inner steps of 
the “connect” function, the learner can o ser e   e   an e  n   e “s a e,” “IP,” an  “ or ”  n 
both sockets in the conceptual view and the released condition in the server code view. In 
addition, if the learner steps forward on the inner steps of the “a  e  ”   n   on  n   e ser er 
code, they can observe the creation of a new socket for the connected client, and the local 
variable “clSock” links to the socket. In this manner, even for codes with multiple flows, the 
extended TEDViT allows learners to learn by comparing each step of the code and the change 
in conceptual view when tracing the code. 
 

2.2.3 Visualization for Blocking/non-blocking Conditions 
 
In this study, we treat echo-back server and client applications as cases of code with multiple 
flows. Figure 4 shows the possible execution times of the blocking and releasing functions. To 
merge each execution log with the correct step order, we extended the format of the execution 
logs to record the actual step time before each step. Based on the actual time both before and 
after the step, the extended TEDViT reconstructed the appropriate order of steps for learners, 
such as [D] to [X] or [F] to [X]. 
 

  
Figure 4. Cases of execution time between the blocking and releasing functions.1 

 
By allowing learners to trace multiple flows in considering their blocking/non-blocking 

conditions, the extended TEDViT allows teachers to define blocking and releasing functions 
using rules. Teachers can define combinations of blocking and releasing functions, as shown 
in Figure 5, by setting the line number for each code and/or regular expression to identify the 
function call. The extended TEDViT supports learners in tracing the appropriate order of steps 
based on these definitions and reconstructed execution logs. This definition states that when 
  e learner rea  es a s e  o    e  lo k   n   on,     ro     s   e learner’s s e -forward action 
in the flow and encourages them to step forward in the flow on the release function side, based 
on execution logs. Moreover, when the learner reaches the release step, the corresponding 
blocking function is not reached in the other flow, prompting the learner to step forward in the 
flow on the block function side. By following these guidelines, learners can trace multiple flows 
of code based on the actual executed flow; they can also trace multiple flows of code without 
deviating from the constraints imposed by the block-release function relationship.  

 
1 The case [B] is the situation that releasing function in [B] did not work for releasing the blocking condition in [X], 

because the releasing function in [B] was called after the end of the blocking function in [X]. Thus, for learners, the 
appropriate order of the steps is from [X] to [B].  

                 

                     

                  



 
Figure 5. Defined relationships of blocking and releasing functions 

 
 

3. Evaluation 
 

3.1 Procedure 
 
In this evaluation, the following two hypotheses were proposed.  
 
H1: E  en e   EDV   s   or s learners’  n ers an  n  o    l   le  lows  n  ro ra s  e  er 

than exercises with ordinary IDE and textbooks. 
H2: E  en e   EDV   s   or s learners’  n ers an  n  o  libraries’ functions and behaviors 

better than exercises using ordinary IDE and textbooks. 
 

We recruited 11 undergraduate and 3 graduate students majoring in computer science. 
We confirmed their basic programming skills and applied our pre-test to balance the control 
and experimental groups. This experiment was designed with 20-minutes pre-test, 25-minutes 
exercise, and 20-minutes post-test. During the exercise, the experimental group used the 
proposed system, and the control group used a basic IDE. Both groups referred to the same 
textbook, which contained explanations of the server/client programs and libraries. In the pre-
test and post-test, we asked 19 questions. We categorized eight questions into C1, regarding 
the understanding of the flow of the sample codes, and the other 11 questions into C2, 
regarding the understanding of the function and behavior of the socket APIs.  
 

3.2 Result & Discussion 
 

Table 1 lists the differences between the pre- and post-test assessments of the learning 
effect scores of the groups. Regarding H1, it was confirmed that learners could understand 
multiple flows in the programs in the proposed environment. All subjects in the experimental 
group had higher scores on C1 questions. This indicates that the subjects succeeded in tracing 
multiple flows of applications with the appropriate order of steps. Regarding H2, it was not 
confirmed whether learners understood the functions of library APIs and their inner behaviors. 
The medians of both groups were the same, but the mean of the control group was higher 
than that of the experimental group. This indicates that the proposed environment may be the 
cause of the learners' incorrect understanding.  
 
Table 1. Results of learning effect in the experiment 

Category Group N Mean Median S.D. S.E. 

C1 questions Control 7 1.14 1.00 1.46 0.553 
 Experimental 7 2.86 2.86 1.21 0.459 
C2 questions Control 7 3.00 3.00 1.29 0.488 
 Experimental 7 1.86 3.00 2.12 0.800 

 

                   

 

             

               

 

               

 

                   

 

                    
                  

                

 

                     

 

            



Table 2. Results of two-tailed Mann-Whitney U Test for learning effects 

Category U p Mean Difference Effect Size 

C1 questions 8.50 0.043 -2.000 0.653 
C2 questions 17.50 0.386 1.000 0.286 

 
 

4. Conclusion 
 
In this study, we proposed a code-tracing support environment for programs with multiple 
flows, and confirmed the effectiveness of the environment in understanding multiple flows in 
programs. In the experiment, the proposed environment worked effectively to comprehend the 
behavior of multiple flows of control and synchronization. In addition, learners acquired an 
understanding of the system APIs required to trace the behavior of multiple control flows. 
However, for some learners, the proposed environment was not sufficient to deepen their 
understanding of the inner behavior of system APIs. In the future, for program comprehension 
in tracing code with functional components, it will be necessary to improve the supporting 
function to visualize the behavior of the component with appropriate abstraction.  
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