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Abstract: Peer feedback is a pedagogical strategy for peer learning. Despite recent 
indications of Large Language Models (LLMs) ' potential for content analysis, there is 
limited empirical exploration of their application in supporting the peer feedback process. 
This study enhances the analytical approach to peer feedback activities by employing 
state-of-the-art LLMs for automated peer feedback feature detection. This research 
critically compares three models—GPT-3.5 Turbo, Gemini 1.0 Pro, and Claude 3 Sonnet—
to evaluate their effectiveness in automated peer feedback feature detection. The study 
involved 69 engineering students from a Singapore university participating in peer 
feedback activities on the online platform Miro. A total of 535 peer feedback instances were 
collected and human-coded for eleven features, resulting in a dataset of 5,885 labeled 
samples. These features included various cognitive and affective dimensions, elaboration, 
and specificity. The results indicate that GPT-3.5 Turbo is the most effective model, offering 
the best combination of performance and cost-effectiveness. Gemini 1.0 Pro also presents 
a viable option with its higher throughput and larger context window, making it particularly 
suitable for educational contexts with smaller sample sizes. Conversely, Claude 3 Sonnet, 
despite its larger context window, is less competitive due to higher costs and lower 
performance, and its lack of support for training and fine-tuning with researchers' data 
weakens its learning capabilities. This research contributes to the fields of AI in education 
and peer feedback by exploring the use of LLMs for automated analysis. It highlights the 
feasibility of employing and fine-tuning existing LLMs to support pedagogical design and 
evaluations from a process-oriented perspective. 
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1. Introduction 
 

Peer feedback, as a widely applied pedagogical design, is usually defined as written comments 

from classmates that identify the strengths and weaknesses of a document and suggest 

constructive improvements (Wu & Schunn, 2020a). By engaging in these activities, students 

develop critical thinking and evaluative skills as they assess their peers' work and reflect on their 

own (Nicol et al., 2014; Tai et al., 2016). This process encourages deeper understanding and 

knowledge construction, as students are required to articulate their thoughts clearly and 

constructively (Boud & Molloy, 2013). Additionally, peer feedback fosters a collaborative learning 

environment, promoting essential communication and teamwork skills (Carless & Boud, 2018). It 

also increases students’ learning motivation and engagement by making learning more interactive 

and giving students a sense of ownership over their learning (van Gennip et al., 2010). 

Furthermore, the practice of giving and receiving feedback helps students develop feedback 

literacy, enabling them to use feedback effectively to improve their work (Mutch et al., 2018). 



However, engaging in peer feedback activities does not lead to learning improvement. 

Accumulating research has pointed out the significant roles of the different peer feedback features 

on students’ learning improvement (Chen et al., 2022; 2024; Gielen & De Wever, 2015; Lyu, et 

al., 2023; Schunn & Wu, 2020a; Strijbos et al., 2010). For example, more elaborated warm toned 

peer feedback was found to enhance learning (De Sixte et al., 2019). The clarification and 

suggestion for improvement were also beneficial for knowledge improvement (Chen et al., 2022; 

Lyu et al., 2023). Most peer feedback features analysis remains a post-learning analysis, which 

may not provide instant valuable analytics for students and allow them to make immediate 

revisions. When there are limited instructor-student ratios in authentic classrooms, it could be 

difficult to conduct real-time analysis for students’ peer feedback content, and accordingly improve 

their peer feedback regarding the various features to enhance students’ learning improvement.  

Thanks to the rapid development of AI techniques based on large language models (LLMs) 

such as ChatGPT from OpenAI, Gemini from Google, and Claude from Microsoft, these models 

enable real-time text analysis, making it possible to analyze peer feedback content in a very short 

time. This technology advancement opens new opportunities for providing instant evaluation and 

analysis for students’ learning data, such as peer conversations, online logs as well as learning 

artefacts (e.g., write-ups) (Grassini, 2023). There is a possibility to enhance students' peer 

feedback efficiency by automated peer feature analysis by leveraging the LLMs (Bauer et al., 

2023).  

Though some recent studies indicated the possibility to introduce the LLMs for learning 

content analysis (Mayer et al., 2023), there remains limited empirical explorations of applying 

LLMs to support peer feedback process. Some very recent studies such as Hutt et al. (2024) 

employed LLMs to evaluate the quality of peer feedback content. However, there is a lack of 

investigation on a fine-grained analysis of peer feedback features with LLMs, which could provide 

valuable insights for educators as well as actionable suggestions for students. Another 

underexplored question is how to fine-tune the LLMs for peer feedback feature analysis with the 

limited data sample size (e.g., student number, lesson number) in authentic education context. 

For the peer feedback feature analysis task with limited learning data, what are the actual 

performance of the various LLMs? These questions are difficult ones for educators to employ the 

trending models to support the everyday peer feedback activities. Therefore, this study aims to 

explore the feasibility and effectiveness of applying LLMs for peer feedback feature analysis. The 

guiding research question is: To what extent do the LLMs support peer feedback features analysis 

in university classroom context?  

 

2. Method 
 
2.1 Participants and learning context 
 

The participants were 69 engineering students from a Singapore university. The study was 

approved by university IRB committee (IRB-2020-04-031) and all participants indicated their 

consent by signing consent forms. In a mechanical engineering course, they participated in in-

class peer feedback activities on the online platform Miro, commenting on each other’s design 

solutions for an automated vehicle.  

 



2.2 Data collection 
 

All participants’ peer feedback on the Miro platform and their design solutions were collected for 

content analysis. A total of 535 peer feedback were collected.  

 

2.3 Data analysis 
 
2.3.1 Training data preparation  

 

Qualitative content analysis was conducted to identify the peer feedback features, with every slice 

of peer feedback as one unit of analysis. The coding scheme of peer feedback features is based 

on the peer feedback literature (Chen et al., 2022; Gielen & De Wever, 2015; Lyu, et al., 2023; 

Schunn & Wu, 2020a; Strijbos et al., 2010). A total of eleven peer feedback features were human 

coded in a binary way (code 0/code 1): the cognitive dimension (positive evaluation (Cohen’s 

kappa: 0.96); neutral evaluation (Cohen’s kappa: 0.82); negative evaluation (Cohen’s kappa: 

0.79); problem identification (Cohen’s kappa: 0.81); suggestion (Cohen’s kappa: 0.94); solution 

(Cohen’s kappa: 0.86) and clarification (Cohen’s kappa: 0.77)), the affective dimension (hedge 

(Cohen’s kappa: 0.71); mitigation (Cohen’s kappa: 0.82)), elaboration (Cohen’s kappa: 0.79) and 

specificity (Cohen’s kappa: 0.90). Eventually, human coders produced eleven features encoding 

results for each peer feedback sample, and finally produced 5885 data samples with labels. 

 
2.3.2 Models selection 

 

In this study, we selected three comparable AI models—GPT-3.5 Turbo, Gemini 1.0 Pro, and 

Claude 3 Sonnet—to analyze peer feedback, considering factors such as data size, API costs, 

and potential performance. Both GPT-3.5 Turbo and Gemini 1.0 Pro were fine-tuned using our 

own training data to better detect peer feedback features, whereas Claude 3 Sonnet does not 

support fine-tuning. In terms of context window size, Claude 3 Sonnet offers a significant 

advantage with a 200K token limit, compared to 33K for Gemini 1.0 Pro and 16K for GPT-3.5 

Turbo, making it more suitable for processing extensive texts. However, this comes at a higher 

cost, with Claude 3 Sonnet charging $3.00 per million input tokens and $15.00 per million output 

tokens, while GPT-3.5 Turbo and Gemini 1.0 Pro are more economical, both priced at $0.50 per 

million input tokens and $1.5 per million output tokens. In terms of throughput, which measures 

output tokens per second, Gemini 1.0 Pro leads with 82 tokens per second, followed by Claude 

3 Sonnet at 61 tokens per second, and GPT-3.5 Turbo at 52 tokens per second. These metrics 

highlight the trade-offs between processing capacity, cost efficiency, and performance across the 

three models. 

 

2.3.3 Experiment setup 

 

To explore the performance of above LLMs for peer feedback features analysis, this study utilized 

peer feedback data that had been previously human-coded. This dataset was divided into three 

parts in the ratio of 7:2:1, with 70% for training, 20% for validation, and 10% for testing. The 7:2:1 

ratio ensures ample training data while providing sufficient data for validation and testing. This 

ratio strikes a relative balance, comprehensively considering various factors in the current 



research context, such as dataset size, task complexity, and computational resources. The fine-

tuning process involved training each model on the peer feedback dataset to enhance higher 

quality to detect specific feedback features. For GPT-3.5 Turbo and Gemini 1.0 Pro, different 

number of examples are included in the fine-tune process. Since Claude 3 Sonnet does not 

support fine-tuning with human-coded data up to now, we directly used all data samples for 

prompting. For all models, we construct the same prompts by Python script with API setting 

according to users guide. This study analysed the models' performance using key metrics such 

as accuracy, precision, recall, and F1 score.  

 

3. Results 
 

The performance of the models was evaluated and compared in terms of accuracy, precision, 

recall, and F1 score. The results are summarized in the table 1 below: 

 

Table 1. Summary Table of Models Performance 

Models Accuracy Precision Recall F1 Score 

GPT-3.5 Turbo 0.88 0.88 0.88 0.88 

Gemini 1.0 Pro 0.83 0.82 0.83 0.83 

Claude 3 Sonnet 0.58 0.41 0.77 0.53 

 

GPT-3.5 Turbo outperformed the other two models, achieving the highest scores across all 

metrics, indicating superior performance in detecting peer feedback features. Gemini 1.0 Pro also 

performed well but with slightly lower metrics, while Claude 3 Sonnet had the lowest performance 

among the three models. This study also compared the models based on their operational 

efficiency, focusing on the context window, cost, and throughput, as previously provided in the 

table 2. Gemini 1.0 Pro demonstrated the highest throughput with 82 output tokens per second 

and a larger context window of 33K tokens, making it cost-effective despite its slightly lower 

performance metrics compared to GPT-3.5 Turbo. It is worth to mention that the maximum limit 

on data examples is 500 up to now as required by Gemini 1.0 Pro. Therefore, it only requires a 

very small amount of data input to achieve a relatively ideal accuracy rate. GPT-3.5 Turbo, with 

a context window of 16K tokens and a cost of $0.50 per input and $1.5 per output per million 

tokens, showed balanced performance and operational efficiency. Claude 3 Sonnet, despite 

having the largest context window of 200K tokens, had the highest cost and lower throughput, 

making it less favourable for this application.  

 

4. Discussion 
 

To enhance the current analytical approach of peer feedback activities, this study employs the 

state-of-the-art LLMs to realize automated peer feedback features detection. A critical comparison 

was conducted among the three models GPT-3.5 Turbo, Gemini 1.0 Pro, and Claude 3 Sonnet. 

The results indicate that GPT-3.5 Turbo is the most effective model for automated detection of 

peer feedback features, offering the best combination of performance and cost-effectiveness. 

However, Gemini 1.0 Pro also presents a viable option with its higher throughput and larger 

context window, making it particularly suited to the education domain, where research contexts 

typically have a smaller sample size. Claude 3 Sonnet, while offering a significantly larger context 



window, is less competitive due to its higher costs and lower performance. In addition, the lack of 

support for training and fine-tuning with the researcher's data weakens its  learning capabilities to 

some extent. These findings suggest that LLMs can indeed support the automated detection of 

peer feedback features, with GPT-3.5 Turbo and Gemini 1.0 Pro being the most promising 

candidates for practical implementation. 

This study contributes to AI in education and peer feedback research fields by exploring the 

use of LLMs for automated peer feedback analysis. As for the AI in education field, this study 

highlights the feasibility of employing and fine-tuning the existing LLMs to support pedagogical 

design and evaluations from a process-oriented perspective. This study demonstrates that 

educators, even without deep knowledge and expertise in natural language processing, can 

access and employ the current LLMs for their daily classroom practices and evaluations.  

With regard to the contribution to the peer feedback research, these LLMs can be integrated 

with existing peer feedback implementation/learning improvement models (e.g., Wu & Schunn, 

2020b; Wu & Schunn, 2021; Fong & Schallert, 2023). This integration will make it possible to 

evaluate peer feedback in real-time, providing immediate insights and predictions about learning 

improvements and knowledge gains (Lin et al., 2024), which is more timely compared to traditional 

post-class assessments. In summary, using LLMs for real-time peer feedback feature evaluation 

offers a practical advancement in peer feedback research and AI for education practices. It 

provides insights for the adoption of the state-of-the-art LLMs to support students’ learning 

efficiency during peer feedback activities. 

While this study provides valuable insights into the use of LLMs for automated peer 

feedback analysis, the limitations regarding sample size, contextual applicability, the range of 

models tested, and ethical considerations highlight the need for further research. Firstly, the 

sample size is relatively small, consisting of only 535 slices  for each peer feedback features. This 

limited sample may not fully capture the diversity of peer feedback practices across different 

educational contexts. Future research could include a larger and more varied dataset to validate 

and generalize the findings. Secondly, the study was conducted in a specific context of 

engineering classrooms. The unique characteristics and dynamics of this educational setting may 

not be directly transferable to other disciplines or educational levels. Different subject areas and 

classroom environments may present distinct challenges and nuances in peer feedback 

processes that were not addressed in this study. Thirdly, this study only included three LLMs: 

GPT-3.5 Turbo, Gemini 1.0 Pro, and Claude 3 Sonnet. While these models provide valuable 

insights, a more comprehensive analysis involving a greater number and variety of models is 

necessary to fully understand the capabilities and limitations of LLM-based AI for peer feedback 

analysis. Future studies may compare a wider range of models to determine the best fit for 

different educational applications.  

 

Acknowledgements 
 

This study was funded by the EdeX Teaching and Learning (T&L) Grant (#021799-00001) 

supported by Nanyang Technological University, Singapore.  

 

  



References 
 
Bauer, E., Greisel, M., Kuznetsov, I., Berndt, M., Kollar, I., Dresel, M., Fischer, M. & Fischer, F. (2023). 

Using natural language processing to support peer‐feedback in the age of artificial intelligence: a cross‐
disciplinary framework and a research agenda. British Journal of Educational Technology, 54(5), 
1222-1245. 

Boud, D., & Molloy, E. (2013). Rethinking models of feedback for learning: The challenge of design. 
Educational Psychology Review, 38(6), 698–712. https://doi.org/10.1080/02602938.2012.691462 

Carless, D., & Boud, D. (2018). The development of student feedback literacy: Enabling uptake of feedback. 
Assessment & Evaluation in Higher Education, 43(8), 1315–1325. 
https://doi.org/10.1080/02602938.2018.1463354 

Chen, W., Lyu, Q., Su, J., Aileen, C. S. C., Zhang, W., Su, G., & Li, X. (2023). How Does Feedback 
Formulation Pattern Differ between More-Improvement and No-Improvement Student Groups? An 
Exploratory Study. In Proceedings of the 17th International Conference of the Learning Sciences-ICLS 
2023, pp. 577-584. International Society of the Learning Sciences. 
https://doi.org/10.22318/icls2023.747522  

Chen, W., Lyu, Q., & Su, J. (2024). How more-improvement and less-improvement groups differ in peer 
feedback giving and receiving practice-an exploratory study. Instructional Science, 1-21. 
https://doi.org/10.1007/s11251-024-09667-7 

De Sixte, R., Mañá, A., Ávila, V., & Sánchez, E. (2020). Warm elaborated feedback. Exploring its benefits 
on post-feedback behaviour. Educational Psychology, 40(9), 1094-1112. 

Fong, C. J., & Schallert, D. L. (2023). “Feedback to the future”: Advancing motivational and emotional 
perspectives in feedback research. Educational Psychologist, 58(3), 146-161. 

Gielen, S., Peeters, E., Dochy, F., Onghena, P., & Struyven, K. (2010). Improving the effectiveness of peer 
feedback for learning. Learning and instruction, 20(4), 304-315. 

Grassini, S. (2023). Shaping the future of education: exploring the potential and consequences of AI and 
ChatGPT in educational settings. Education Sciences, 13(7), 692. 

Hutt, S., DePiro, A., Wang, J., Rhodes, S., Baker, R.S., Hieb, G., Sethuraman, S., Ocumpaugh, J. and Mills, 
C. 2024. Feedback on Feedback: Comparing Classic Natural Language Processing and Generative 
AI to Evaluate Peer Feedback. Proceedings of the 14th Learning Analytics and Knowledge Conference 
(Kyoto Japan, 2024), 55–65. 

Lin, Z., Yan, H., & Zhao, L. (2024). Exploring an effective automated grading model with reliability detection 
for large‐scale online peer assessment. Journal of Computer Assisted Learning. 
https://doi.org/10.1111/jcal.12970 

Lyu, Q., Chen, W., Su, J., & Heng, K. H. J. G. (2023). Steps to implementation: the role of peer feedback 
inner structure on feedback implementation. Assessment & Evaluation in Higher Education, 1–14. 
https://doi.org/10.1080/02602938.2023.2291340 

Mayer, C. W. F., Ludwig, S., & Brandt, S. (2023). Prompt text classifications with transformer models! An 
exemplary introduction to prompt-based learning with large language models. Journal of Research on 
Technology in Education, 55(1), 125–141. https://doi.org/10.1080/15391523.2022.2142872 

Mutch, A., Young, C., Davey, T., & Fitzgerald, L. (2018). A journey towards sustainable feedback. 
Assessment & Evaluation in Higher Education, 43(2), 248–259. 
https://doi.org/10.1080/02602938.2017.1332154 

Nicol, D., Thomson, A., & Breslin, C. (2014). Rethinking feedback practices in higher education: A peer 
review perspective. Assessment & Evaluation in Higher Education, 39(1), 102–122. 
https://doi.org/10.1080/02602938.2013.795518 

Tai, J. H.-M., Canny, B. J., Haines, T. P., & Molloy, E. K. (2016). The role of peer-assisted learning in 
building evaluative judgement: Opportunities in clinical medical education. Advances in Health 
Sciences Education, 21(3), 659–676. https://doi.org/10.1007/s10459-015-9659-0 

Strijbos, J. W., & Sluijsmans, D. M. A. (2010). Unravelling peer assessment: Methodological, functional, 
and conceptual developments. Learning and Instruction, 20, 265-269. 

van Gennip, N. A. E., Segers, M. S. R., & Tillema, H. H. (2010). Peer assessment as a collaborative learning 
activity: The role of interpersonal variables and conceptions. Learning and Instruction, 20(4), 280–290. 
https://doi.org/10.1016/j.learninstruc.2009.08.010 

Wu, Y., & Schunn, C.D. (2020) a. When peers agree, do students listen? The central role of feedback 
quality and feedback frequency in determining uptake of feedback. Contemporary Educational 
Psychology, 62, 101897. 

https://doi.org/10.1080/02602938.2012.691462
https://doi.org/10.1080/02602938.2018.1463354
https://doi.org/10.22318/icls2023.747522
https://doi.org/10.1111/jcal.12970
https://doi.org/10.1080/15391523.2022.2142872
https://doi.org/10.1080/02602938.2017.1332154
https://doi.org/10.1080/02602938.2013.795518
https://doi.org/10.1007/s10459-015-9659-0
https://doi.org/10.1016/j.learninstruc.2009.08.010


Wu, Y., & Schunn, C. D. (2020) b. From feedback to revisions: Effects of feedback features and perceptions. 
Contemporary Educational Psychology, 60, 101826. 

Wu, Y., & Schunn, C. D. (2021). From plans to actions: A process model for why feedback features influence 
feedback implementation. Instructional Science, 49(3), 365-394. 


