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Abstract: Academic dishonesty, particularly source-code plagiarism, poses significant
ethical challenges in educational institutions and online coding platforms. It undermines
the integrity of the learning and teaching process as well as the credibility of students
and institutions. To address these challenges, this study developed a code similarity
assessment tool utilizing deep neural networks, specifically character-level recurrent
neural networks (char-RNN) and long short-term memory networks (LSTM), to detect
source-code plagiarism. It leverages the strengths of both models while minimizing
their weaknesses, allowing it to learn and capture both low-level and short-term
patterns as well as complex and long-term dependencies in the source code. The
dataset used was mainly from the “IR Plag Dataset", and data augmentation and
various preprocessing technigues were performed. The final model configuration of the
hybrid neural network architecture resulted in training and validation accuracy of 99%
and 90% , respectively. Its evaluation was conducted using various metrics such as
precision, recall, and F1-score. The hybrid neural network architecture achieved a
precision of 0.94, a recall of 0.935, an F1-score of 0.94, and a final accuracy of 93.75%
. In addition, the tool was also evaluated on real-world data and discovered to be
capable of identifying a range of code similarities, providing assurance that the tool can
effectively differentiate authentic or original work from work that may have been
plagiarized. However, the evaluation also revealed the presence of false positives and
negatives, which leaves room for improvement.
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1. Introduction

Academic dishonesty has become a rampant and troubling ethical issue among students and
educational institutions. Academic dishonesty includes acts such as cheating and plagiarism,
wherein one’s ideas are copied or stolen by others without giving proper credit (Mahabeer &
Pirtheepal, 2019) . These actions diminish the quality of learning and teaching processes, the
credibility of students, as well as the reputation of the educational institution. In the context of
programming, source-code plagiarism refers to the phenomenon where different pieces of
code share similar structures, patterns, and functionalities (Holden, et. al, 2021) . Thus, this
study presents the development and evaluation of a code similarity assessment tool that
utilizes deep neural networks to analyze source codes and provides a probability of plagiarism.
It sought to answer the following research questions: (a) How can the hybrid neural network
architecture of Char-RNN and LSTM models enhance the detection of source code
plagiarism? (b) What are the key factors that contribute to the performance of the hybrid neural
network architecture of Char-RNN and LSTM models in detecting source code similarity? (c)
How does the incorporation of bidirectional layers in both Char-RNN and LSTM models impact
the detection of similar patterns in source code?



2. Methodology
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Figure 1. Pipeline.

3. Results and Discussion

The Char-RNN model achieved a training accuracy of 90% and a validation accuracy of 70%.
The LSTM model performed slightly better, with a training accuracy of 94% and a validation
accuracy of 71%. Both models showed potential for improvement, particularly in terms of
validation accuracy, which is an indication of how well the model generalizes to unseen data
as well as preventing overfitting. The hybrid neural network, combining Char-RNN and LSTM,
initially resulted in a training accuracy of 95%, resulting in an improvement of 5% over the
Char-RNN model and 1% over the LSTM model. However, the validation accuracy remained
at 70%, suggesting that overfitting was still an issue. In response to this, the hybrid neural
network model was configured by adjusting parameters such as the number of units in
bidirectional layers and hyperparameters such as the number of epochs, batch size, patience,
and validation split. These modifications led to a significant increase in both training and
validation accuracy, reaching 99% and 90%, respectively. This resulted in an improvement of
9% in training accuracy and 20% in validation accuracy over the Char-RNN model. Compared
to the LSTM model, the improvements were 5% in training accuracy and 19% in validation
accuracy.

Table 3. Comparative Results of the Models from Both Classes

Model Precision Recall F1-Score

Char-RNN 0.85 0.85 0.85

LSTM 0.89 0.885 0.885

Hybrid Neural 0.94 0.935 0.94
Network

In Table 3, a comparative result of the models' performance across various evaluation metrics
such as precision, recall, and f1-score in both classes is presented. The Char-RNN model had
scores of 0.85 across metrics. The LSTM model resulted in improved precision, recall, and
F1-score metrics, all scoring around 0.885 to 0.89, and a final accuracy of 88.75%. The hybrid
neural network model proves to be the most effective, with a precision of 0.94, a recall of
0.935, an F1-score of 0.94, and a final accuracy of 93.75%.



4. Conclusion

The study demonstrated that the hybrid neural network architecture, combining Char-RNN
and LSTM models, significantly enhances the detection of source code plagiarism. The Char-
RNN model excels at capturing low-level sequential patterns and short-term dependencies in
the source code data. On the other hand, the LSTM model is adept at learning, capturing, and
retaining complex sequential patterns and long-term dependencies. By integrating these two
models into a hybrid neural network architecture, the tool leverages the strengths of both
models. The hybrid hybrid neural network model achieved a final average training accuracy of
99% and a validation accuracy of 90%, compared to 90% and 70% for Char-RNN and 94%
and 71% for LSTM.

This study identified several key factors that contribute to the performance of the hybrid neural
network architecture in detecting source code similarity. The quality and diversity of the “IR
Plag Dataset” provided a wide range of programming concepts and tasks. Secondly, the
preprocessing steps applied to the dataset, including data augmentation, tokenization,
encoding into IDs, pad sequencing, and splitting the dataset ensured that the data is in a
suitable format for learning. Thirdly, the model’s performance was significantly influenced by
careful tuning parameters like the bidirectional layer units, epochs, batch size, patience, and
validation split. Lastly, the implementation of early stopping and other fine-tuning processes
helped to lessen overfitting and improve the model’s performance.

Lastly, this study found that the incorporation of bidirectional layers in both Char-RNN and
LSTM models significantly enhances the detection of similar patterns in source code.
Bidirectional layers allow the model to process the input sequence in both forward and
backward directions, enabling the model to capture dependencies in both temporal directions.
In the Char-RNN model, the bidirectional layer enhances the model’'s ability to capture low-
level sequential patterns and short-term dependencies. On the other hand, in the LSTM model,
the bidirectional layer improves the model's capacity to understand intricate patterns within
the character sequences and manage long-term dependencies. The incorporation of
bidirectional layers in the hybrid neural network model resulted in a final average training
accuracy of 90% and an average validation accuracy of 90%, indicating that it was highly
effective and efficient in detecting similar patterns in source code. Therefore, the incorporation
of bidirectional layers in both Char-RNN and LSTM models plays a crucial role in enhancing
the detection of similar patterns in source code.

5. Recommendation

Future research should focus on several key areas based on this study's findings. Firstly, using
larger and more diverse datasets can enhance model generalization. Secondly, exploring
advanced preprocessing techniques, like byte pair encoding or context-aware encodings such
as ELMo or BERT, could improve token representation. Additionally, investigating state-of-
the-art models, such as transformers or capacitor networks, may offer better performance.
Thirdly, upgrading computational resources could enhance training efficiency. Lastly,
integrating the tool with APIs to include external sources, like online code repositories, could
increase its robustness and versatility.
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