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Abstract: Embodied learning represents a natural and immersive approach to
education, where the physical engagement of learners plays a critical role in how they
perceive and internalize concepts. This method allows students to actively embody and
explore knowledge through interaction with their environment, significantly enhancing
retention and understanding of complex subjects. However, researchers face
significant challenges in exploring children’s learning in these physically interactive
spaces, particularly due to the complexity of tracking multiple students’ movements and
dynamic interactions in real-time. To address these challenges, this paper introduces
a Double Diamond design thinking process for developing an Al-enhanced timeline
aimed at assisting researchers in visualizing and analyzing multimodal interactions
within embodied learning environments. We outline key considerations, challenges,
and lessons learned in this user-centered design process. Our goal is to create a
timeline that employs state-of-the-art Al techniques to help researchers interpret
complex datasets, such as children's movements, gaze directions, and affective states
during learning activities, thereby simplifying their tasks and augmenting the process
of interaction analysis.
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1. Introduction and Motivation

Embodied learning represents a natural and immersive approach to education, where the
physical engagement of learners plays a critical role in how they perceive and internalize
concepts. By actively involving their bodies, learners can interact with their environment in
ways that significantly enhance retention and understanding of complex subjects (Danish et
al., 2020). For instance, Lindgren et al. (2016) demonstrated that students who physically
acted out the movement of meteors in a game had a deeper understanding of object motion
and the influence of gravity compared to those who used a traditional desktop simulation. They
found that when learners enact concepts and experience critical ideas through whole-body
interactions, it not only leads to significant learning gains, but also builds a more positive
attitude towards science.

Monitoring and measuring embodied learning are essential to better understand how
students interact with these physical learning environments. In contrast to conventional
learning setups where verbal or written interactions, or clickstreams, are easy to track,
embodied learning involves capturing a range of complex non-verbal cues, including body
movements, spatial positioning, gaze direction, and emotional expressions. These elements
are crucial for understanding how learners engage and collaborate in real-time.

Traditional methods for measuring embodied learning have relied on qualitative
approaches like Interaction Analysis (IA), where human observers manually analyze
classroom footage and interactions to identify patterns in learning behavior. While effective,
these methods are highly resource-intensive, requiring significant time and human effort to
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process data (Zhou et al., 2024). Advances in artificial intelligence and multimodal learning
analytics enable the automated tracking of students' movements, gaze, and emotional states,
offering a more scalable and efficient solution. Al-based systems can interpret complex
datasets and provide insights that are otherwise difficult to capture in real-time through
traditional observation alone. Despite these advances, current challenges remain in scaling
these methods to real-world classrooms. This paper proposes an Al-enhanced timeline
designed to assist researchers in visualizing and analyzing multimodal interactions within
embodied learning environments. By leveraging Al, this system aims to simplify the process
of monitoring and interpreting students’ activities within embodied learning contexts.

Previous works on visualizations of multimodal data, such as Ez-Zaouia's Emodash
(Ez-zaouia et al., 2020), have explored the visualization of learner emotions and system
interactions in online learning sessions. Emodash, for example, reinforced the challenge of
identifying the right level of detail and timescales for effective visualizations. This work builds
upon previous research that explored visualizing learners' performances and behaviors using
primarily systems logs dashboards, as well as the design of multimodal and contextual
emotional dashboards for tutors (Schwendimann et al., 2017). Similarly, Fernandez-Nieto et
al. (2021) developed interactive timelines to integrate multimodal data, such as physiological
responses and logged actions, in clinical simulations, leveraging data storytelling principles to
aid students’ reflection during debriefing sessions.

Our work extends these into the domain of embodied learning, where real-time
interactions in a 3D space add layers of complexity to data capture and analysis. We aim to
augment the capabilities of learning scientists in making inferences by providing a more
dynamic, real-time view of student interactions. Our timeline not only integrates system
interactions and affective data but also incorporates gaze tracking to study attention shifts
during learning activities. This is particularly crucial in embodied learning environments, where
physical movement, gaze, and emotional engagement are integral to the learning process.
Through synchronizing the timeline’s multimodal data with video playback, we allow
researchers to focus on high-level interpretation while Al handles lower-level data inferences.
This approach empowers human researchers to interpret the learning process while still
benefiting from automated assistance, making it a valuable tool for IA in complex embodied
environments.

2. Timeline System Design

2.1 Design process

The development of the timeline followed a “human-in-the-loop” co-design process. We
actively engaged end-users, ensuring a profound comprehension of their needs and the tasks
they aim to achieve with the timeline. Specifically, our collaboratively multidisciplinary research
team consists of experts with technical skills (computer scientists (CS)) and primary users of
the timeline (learning scientists (LS)). The learning scientists have experience with the
Interaction Analysis methodology for assessing embodied learning data through qualitative
observations.

We initiated the development process by following the Double Diamond (DD) design
framework. The DD framework! consists of two main phases—divergent and convergent
thinking (Van Tyne, 2022)—which occur twice throughout the process, encompassing four key
stages: Discover, Define, Develop, and Deliver (as shown in Figure 1).

In the Discover phase, we took diverging approaches to gain a comprehensive
understanding of the challenges involved in collecting and analyzing multimodal data in
embodied learning environments. Specifically, we employed two diverging approaches: a
controlled lab pilot study with graduate students and an analysis of archival data from real
classroom settings, where children participated in embodied learning activities. By combining
these two complementary approaches, we were able to develop a more thorough

! https://www.designcouncil.org.uk/our-resources/framework-for-innovation
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understanding of the data and its context across diverse settings.

DISCOVER |  DEFINE DEVELOP | DELIVER
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Figure 1. The Double Diamond Design Thinking Process

Next, in the Define phase, we held discussions with learning scientists to examine their
current methodologies for analyzing multimodal data in embodied learning environments. This
process involved reviewing the tools and techniques they most commonly use to capture and
interpret student interactions. Our goal was not only to understand how these methods support
their analysis but also to identify where they fall short in capturing the full complexity of
embodied learning activities. By assessing both the strengths and limitations of these
approaches, we aimed to pinpoint areas where Al-driven methods could enhance the analysis
process and help researchers manage the large volumes of multimodal data more efficiently.

Following the completion of the first design cycle, the second cycle begins with the
Develop phase. In this phase, we explored various data analysis and visualization techniques
to accurately represent the multimodal data generated in embodied learning environments.
This exploration was a collaborative effort between LS and CS team, with each team
contributing their expertise and offering unique perspectives to guide the development
process.

Finally, in the Deliver phase, we evaluated the solutions, refined them, and ensured
that the final design met the evolving requirements of the LS team. This phase involved
iterative testing with end-users, such as learning scientists, to gather feedback on the usability
and effectiveness of the Al-enhanced timeline.

2.2 System Architecture

2.2.1 Synchronous MMLA data collection

Synchronizing multiple data streams during classroom activities is a critical challenge in
analyzing multimodal interactions in real-time learning environments. In our study, it was
essential that the data—such as video from different camera angles, audio, system logs, and
simulation recordings—were collected in a time-aligned manner to ensure accurate interaction
analysis. Time-aligned data is crucial for creating a timeline visualization where videos from
multiple angles can be analyzed with added context, and inferences can be derived from the
multimodal data without needing to manually synchronize the streams, which is time-
consuming and prone to error.

To address this challenge, we employed ChimeraPy (Davalos et al., 2023), an open-
source distributed streaming framework. It enabled us to rapidly deploy in the classroom,
ensuring that multiple sources of data were synchronized from the moment of collection. This
eliminated the need for manual post-collection alignment, which is both resource-intensive
and a potential source of inaccuracies.
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Figure 2. Architecture shows the processes of data collection in classroom, MMLA analysis
and Timeline Visualization

Thus, our timeline design builds upon this pre-synchronized data to support Interaction
Analysis effectively. IA typically requires researchers to spend significant amounts of time
logging content and manually aligning data from multiple sources. The timeline is fully
interactive, allowing researchers to click on any segment or row to jump directly to specific
points in the video, providing targeted insights based on the multimodal data being displayed,
while displaying an integrated view of student behavior during the embodied learning activity.

2.2.2 MMLA data analysis

The analysis of system logs was essential for understanding the nuances of student
interactions and their progression within the MR environment. These logs provided a temporal
record of molecule changes and movements made by students throughout the learning
activity, allowing researchers to identify patterns in how students navigated the virtual space,
interacted with different elements, and transitioned between molecules. The dataset yielded
three key dimensions: (1) Students' States—tracking which molecules students embodied at
different times helped explore their evolving understanding of scientific concepts; (2) Students'
Actions—analyzing actions associated with molecular embodiment was fundamental to
gauging students' grasp of the photosynthesis process; and (3) System State—capturing
whether the simulation was in daylight or night.

Figure 3 illustrates the pipeline for processing video frames from multiple camera
angles, allowing us to perform person reidentification, affect detection, and gaze estimation.
The process begins with video frames from multiple cameras, which are passed through an
MTCNN to detect faces. Using the HSEmotions model for facial landmark detection enabled
us to capture detailed facial expressions and predict valence and arousal scores. These two
steps result in face crops, bounding box coordinates, and valence-arousal scores for each
frame of every camera. These outputs feed into our person reidentification (RelD) algorithm,
which links faces across frames and cameras, resolving issues like occlusion or students
leaving the camera's view. This results in face tracklets, where each bounding box and face
crop is attached to a specific person ID for every frame.

Affect detection then leverages the person tracklets and the valence-arousal scores.
These scores were categorized based on Russell’s circumplex model of emotions (Russell,
1980) and D’Mello’s dynamics of affective states (D’Mello & Graesser, 2012). The emotions
are categorized into both learning-centered emotions, which are specific to educational
contexts, and quadrant-based emotions based on the four quadrants of Russell’s model.

Using the face tracklets from the first line, LZCSNet estimates gaze vectors based on
the monocular images from each camera. However, these vectors are in 2D camera
coordinates. To understand where students are looking in the 3D environment, we apply the
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ZoeDepth model to reconstruct the scene in 3D. The 2D gaze vectors are then reprojected
into this 3D scene, allowing us to determine where the students are directing their gaze in that
coordinate system. Having done annotations of objects of interest (OOIs) via Vision6D?, ray
tracing is then used to detect which OOls (e.g., the screen, teacher, researcher, or other
students) the gaze vectors intersect with, providing insight into students' attention within the
learning environment. For more details about the technical components, please refer to
(Fonteles et al., 2024).
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Figure 3. Pipeline for person reidentification, affect detection, and 3D gaze estimation

3. Study Context

This study is part of the GEM-STEP project (Generalized Embodied Modeling to support
Science through Technology Enhanced Play), where motion-tracking technologies and mixed-
reality environments enable students to embody scientific phenomena. In our study, 4th-grade
students from a public school in the southeastern United States participated in a two-month
project focusing on food webs and photosynthesis. We focused on the photosynthesis model
to guide the tool's initial development. This closed-loop simulation allows students to
repeatedly test molecular transformations as the screen alternates between day and night.
The simulation features a tomato plant, a mouse, and zoomed-in views of chloroplasts and
roots. As students move around the classroom, motion-tracking technology reflects their
movements on the screen, allowing them to embody molecules (oxygen, carbon dioxide,
water, and sugar) and interact with features in the simulation, as shown in Figure 4. The goal
is for students to understand that sunlight enables carbon dioxide and water to turn into oxygen
and sugar in the plant's chloroplast, driving photosynthesis. This process fuels plant growth

2 https://github.com/InteractiveGL/vision6D
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and illustrates how animals, like the mouse, depend on oxygen produced by plants,
emphasizing collaboration and matter rearrangement in sustaining life.

Figure 4. The photosynthesis model where children embody molecules
4. Results from design thinking process

The first diamond thinking process: Discover and Define Phase

We started the discovery process by conducting a small pilot study with 9 graduate students
in a lab-based environment. The learning science researchers helped us conduct the study.
The aim of this study was to build knowledge regarding the study context, understand what
type of data usually collected, what metrics could be derived from the data using Al techniques,
and what kinds of constraints would occur during the in-the-wild classroom studies.

Upon getting a better understanding of the dataset, we conducted regular (e.g.,
weekly) interaction meetings with the learning science researchers to understand what data
analysis tools they utilize and what challenges are faced by them. We discovered that they
predominantly use Interaction Analysis (IA) as their primary method for interpreting
collaborative, embodied learning environments. IA is highly effective in revealing deep insights
and capturing nuanced interactions from video data. However, the researchers noted that
while IA provides valuable insights, the manual process is inherently time-consuming and
requires significant human resources.

The second diamond thinking process: Develop and Deliver Phase

The learning science researchers mentioned that they would like to see a tool that can capture
the nature of embodiment, i.e., provide insights on how students move across the space and
how their attention shifts during contextualized learning process. Having already acquired
knowledge on the types of information we could derive from embodied activities through the
pilot study, we proceeded with data collection in a 4th grade science class, thus being able to
assess how our models would fare with real, in-the-wild data of children’s embodied
experiences.

Having time-aligned data collected from system logs, screen recordings, videos and
audio of the environment, we proceeded with processing this multimodal dataset to highlights
students’ contextualized choices within the learning environment, highlighting moments where
they were able to successfully perform the correct transformations defined in the
photosynthesis model, as well as all their exploratory actions beforehand since researchers
were interested in investigating patterns of success and productive failures. System logs
provided a temporal record of student interactions with the environment, allowing us to trace



molecule changes and movements, which revealed patterns in navigation and transitions
between molecules and offered valuable context for understanding students' explorations and
choices.

Timeline prototype:

Based on the insights from 4 learning science researchers during the design process, we
created a basic prototype of the timeline in order to present the multimodal findings
contextualized with the science model and the video of students’ embodied activities. The
timeline visualization, shown in Figure 5, is divided into multiple lines, each representing a
different data modality captured during the photosynthesis simulation. This multimodal
approach allows researchers to analyze and interpret the students' interactions with the mixed-
reality environment effectively. Each segment on the timeline is fully interactive—clicking on
any part of the timeline will jump the video cursor to that specific moment, providing
synchronized video playback to support deeper analysis.
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Figure 5. A basic prototype of the timeline of multimodal data

1. Student States: This line shows which molecule each student embodied at any given
moment in the simulation (e.g., oxygen, carbon dioxide, water, or sugar). The visual
representation of these molecules is consistent with what the students see in the
simulation, making it easier to track which role a student played during key interactions.
Student Actions: This line represents the movements of the students within the
simulation, indicating which element of the simulation they interacted with, such as the
mouse, roots, the leaf's chloroplast, or the plant stem. These actions are crucial for
observing molecular transformations, which only occur if the student interacts with the
element that causes transformations to their current molecule.
3. System States: This line displays the simulation’s transitions between day and night.
These shifts are essential for photosynthesis, as the process occurs only during the

N



daytime when sunlight is present. This allows researchers to track whether students

recognize that sunlight is necessary for photosynthesis.

4. Gaze Estimation: This line is represented by color-coded segments, showing where
students directed their attention over time. It tracks whether they were looking at the
screen (simulation), the teacher, another student, or the researcher. This helps
researchers observe how the students' focus shifts during the activity.

5. Affect Detection: This line shows students' emotional states, represented by color-
coded segments. The emotions are derived from facial expression analysis, which
calculates valence and arousal and maps them into labeled emotions. This provides
insights into how students’ emotional engagement fluctuates during the activity.

For Student States, Student Actions, and System States we used figures
representative of the photosynthesis model to simplify tracking and make it easier for
researchers to follow the students’ progress and interaction with the system. For Gaze
Estimation and Affect Detection we employed color-coded segments, allowing researchers to
quickly pinpoint shifts in patterns of attention and emotional engagement over time.

5. Lessons learned and future directions

Throughout the development of the multimodal timeline, we engaged in regular feedback
sessions with 7 learning scientists. These sessions were integral in helping us identify
challenges and opportunities for improvement, and reflect on both the usability of the system
and its alignment with the researchers' needs. Based on our initial analysis during the early
phases of the Double Diamond (DD) design process, it became apparent that the solutions
generated were insufficient to fully address the design requirements of the timeline.

Researchers initially expressed concerns about cognitive load when presented with all
multimodal findings simultaneously. They noted that the relevance of each modality might vary
depending on the research question being explored, and suggested that the ability to toggle
between viewing all data at once or focusing on specific subsets would be helpful. Additionally,
learning scientists, who are not Al specialists, emphasized the need for Al explainability. This
would help them better understand Al’'s role and limitations in generating insights, allowing
them to more confidently interpret the findings and reflect on how human judgment and Al
interact in the analysis process.

Another insight was the recognition of speech as a crucial modality for future iterations.
Researchers observed that shifts in student gaze or attention were often triggered by verbal
interactions—such as remarks from the teacher or peers—that influenced student actions and
understanding. Including speech data would help disambiguate such shifts and provide a
clearer picture of the underlying factors driving changes in behavior and learning.

Looking ahead, we plan to enhance the timeline to not only support individual student
analysis but also facilitate collaborative learning analysis. We aim to provide researchers with
the ability to query specific moments of interest, allowing them to dive deeper into reasoning
and uncover patterns across multiple days of embodied learning—something not feasible
within the constraints of traditional Interaction Analysis alone.
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