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Abstract: In recent years, various question generation (QG) methods for reading 
comprehension have been proposed that automatically generate questions related to 
given reading passages. Specifically, QG methods based on deep neural networks 
have succeeded in generating high-quality questions. To apply such QG methods in 
educational systems, such as intelligent tutoring systems and adaptive learning 
systems, it is crucial to generate questions with difficulty levels that are appropriate for 
each learner’s reading ability. To meet this need, several difficulty-controllable QG 
methods have been proposed recently. However, a limitation of existing difficulty-
controllable methods is that they overlook the difficulty of the reading passages, which 
are given as the input context for QG. Since the difficulty of reading passages can affect 
the difficulty of the generated questions, selecting reading passages with appropriate 
difficulty is crucial. Therefore, in this study, we develop a difficulty-controllable QG 
method that includes a mechanism for selecting reading passages with appropriate 
difficulty for each learner. Our approach begins with the proposal of a new item 
response theory (IRT) model capable of simultaneously estimating the difficulty of both 
questions and reading passages. Using the developed IRT model and the latest IRT-
based difficulty-controllable QG method, we propose a framework to select reading 
passages and generate questions that are appropriate for each learner's reading 
ability. 
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1. Introduction 
 
In recent years, with the emergence of generative AI, the development of reading 
comprehension abilities has become increasingly important in education. To cultivate these 
abilities, it is effective to ask learners to read various reading materials while answering 
corresponding comprehension questions (Kurdi et al., 2020; Le et al., 2014; Rathod et al., 
2022; Zhang et al., 2021). This approach helps focus learners' attention on the content and 
provides an opportunity to identify any misconceptions they might have (Kurdi et al., 2020), 
thereby supporting the development of reading comprehension abilities. However, manually 
creating a variety of comprehension questions for different reading materials is both time-
consuming and costly. To address this issue, automatic question generation (QG) techniques 
have gained attention in recent years (Mostow & Chen, 2009; Heilman & Smith, 2010; 
Tomikawa & Uto, 2024). Specifically, QG methods based on deep neural networks have 
recently succeeded in generating high-quality questions (Du et al., 2017; Perkoff et al., 2023) 
 To effectively apply such QG methods in educational systems, such as intelligent 
tutoring systems (Graesser et al., 2012) and adaptive learning systems, it is more beneficial 
to generate questions with difficulty levels tailored to each learner’s reading ability rather than 
generating them randomly. To achieve this, recent studies have proposed techniques for 
generating reading comprehension questions with controllable difficulty levels (Cheng et al., 



2021; Gao et al., 2019; Uto et al., 2023; Goto et al., 2024; Tomikawa & Uto, 2024). For 
example, Uto et al. (2023) proposed a difficulty-controllable neural QG method that takes the 
difficulty level of questions, quantified using item response theory (IRT) (Lord, 1980), along 
with the reading passages as input, and outputs corresponding questions. Furthermore, 
Tomikawa and Uto (2024) extended this approach to a multiple-choice QG method. However, 
those existing methods focus only on controlling the difficulty of the questions, while 
overlooking the fact that the difficulty of the reading passages can affect the difficulty of the 
generated questions. For example, it is likely more challenging to generate high-difficulty 
questions from an easy reading passage compared to generating high-difficulty questions from 
a difficult passage. Additionally, selecting reading passages that are appropriate for each 
learner is crucial for enhancing their motivation and engagement. 
 Therefore, in this study, we develop a difficulty-controllable QG method that includes 
a mechanism for selecting reading passages with appropriate difficulty for each learner. Our 
approach begins with the proposal of a new IRT model that extends the Rasch model, one of 
the traditional IRT models, into a hierarchical Bayesian model to estimate the difficulty of 
reading passages alongside the difficulty of questions. Using the newly developed IRT model 
and the conventional IRT-based difficulty-controllable QG method proposed by Uto et al. 
(2023), we propose a framework to select reading passages and generate questions that are 
appropriate for each learner’s reading ability. 

In this study, we conducted experiments using a benchmark dataset and demonstrated 
that the difficulty of the reading passages influences the difficulty controllability of QG. Our 
experiments further show that selecting reading passages and generating questions with 
difficulty levels appropriate for each learner's ability is effective for efficiently estimating learner 
ability and facilitating more accurate difficulty control. 
 
 

2. Conventional Difficulty-Controllable Question Generation Method 
 
This section explains the difficulty-controllable reading comprehension QG method proposed 
by Uto et al. (2023), which is used as the base method for our study. 

The QG task tackled in this study is outlined in Figure 1. As shown in the figure, the 
task involves generating a reading comprehension question and a corresponding correct 
answer, given a reading passage and a target difficulty value. Here, we assume that the 
correct answer to each question consists of a segment of text from the corresponding reading 
passage, as is typical in answer-aware QG tasks (Du et al., 2017; Zhou et al., 2017; 
Subramanian, 2018; Sun, 2018). 

To develop a QG method for this task, this study assumes the use of the SQuAD 
dataset (Rajpurkar et al., 2016), which is widely used as a benchmark dataset for question 
answering and QG tasks (Raffel et al., 2020; Lewis; 2020; He et al., 2021; Goto et al., 2024). 
The SQuAD dataset consists of approximately 100,000 sets of reading passages, questions 
created for those passages, and their corresponding answers. The reading passages are 
collected from Wikipedia, and the questions and answers were generated by crowd workers.  

Figure 1. Outline of Difficulty Controllable Question Generation  
 



The SQuAD dataset can be represented as 𝐷 = {𝒄𝑖 , 𝒒𝑖, 𝒂𝑖 ∣  𝐼 ∈  {1, … , 𝐼}}. Here, 𝒄𝑖  =
 {𝑐𝑖𝑚  ∣  𝑚 ∈  {1, … , 𝑀𝑖}}  denotes the 𝑖 -th reading passage, 𝒒𝑖  =  {𝑞𝑖𝑛 ∣  𝑛 ∈  {1, … , 𝑁𝑖}} 
represents the corresponding question, and 𝒂𝑖  =  {𝑎𝑖𝑜 ∣  𝑜 ∈  {1, … , 𝑂𝑖}} corresponds to the 
answer associated with the reading passage and question. Additionally, 𝑐𝑖𝑚 , 𝑞𝑖𝑛 , and 𝑎𝑖𝑜 
represent the 𝑚-th, 𝑛-th, and 𝑜-th words in 𝒄𝑖, 𝒒𝑖, and 𝒂𝑖, respectively, while 𝑀𝑖, 𝑁𝑖, and 𝑂𝑖 

indicate the number of words in 𝒄𝑖 , 𝒒𝑖 , and 𝒂𝑖 . 𝐼 represents the number of data points. In 
SQuAD, the answer 𝒂𝑖 is a substring of the sequence of words in the reading passage 𝒄𝑖, i.e., 

𝒂𝑖 ⊂  𝒄𝑖. 
 Although the SQuAD dataset does not include question difficulty levels, constructing 

difficulty-controllable QG methods requires a dataset of quadruplets (𝒄𝑖 , 𝒒𝑖, 𝒂𝑖, 𝑏𝑖), where 𝑏𝑖 
represents the difficulty of the 𝑖-th question. To address this, Uto et al. (2023) began by 
proposing a method to estimate the difficulty of each question in the SQuAD dataset. 
Specifically, they proposed to offer each question 𝒒𝑖 in the dataset to a number of question 
answering (QA) systems with varying ability levels, and estimate the difficulty 𝑏𝑖  of each 
question from their correct/incorrect response data. Then, by adding the estimated difficulty 
values to the dataset, we can get a dataset of quadruplets (𝒄𝑖 , 𝒒𝑖, 𝒂𝑖, 𝑏𝑖). Note that, to quantify 
the difficulty value, the Rasch model, an IRT model explained in the next section, is used. 

Using this extended SQuAD dataset with difficulty levels, the following two models are 
trained to construct the difficulty-controllable QG. 
 
 

2.1 Difficulty-Controllable Answer Extraction Model 
 
The first model is the difficulty-controllable answer extraction model, which is designed to 
extract answers from a reading passage that align with a desired difficulty level. Specifically, 
this model is implemented as a fine-tuned BERT (Bidirectional Encoder Representations from 
Transformers) model (Devlin et al., 2019) that takes as input a concatenated string of the 
difficulty  𝑏 and the reading passage 𝒄, and outputs the start and end positions of the answer 
in the passage. The architecture of this model is illustrated on the left side of Figure 2. The 
model fine-tuning is conducted by minimizing the following loss function. 

𝐿𝑜𝑠𝑠(𝑎𝑒) = − ∑ ∑ {𝑍𝑖𝑚
(𝑠)

log 𝐻𝑖𝑚
(𝑠)

+ 𝑍𝑖𝑚
(𝑒)

log 𝐻𝑖𝑚
(𝑒)

}

𝑀𝑖

𝑚=1

𝐼

𝑖=1

 (1) 

𝐻𝑖𝑚
(𝑠)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑺 ∙ 𝑻𝑖𝑚) =
exp(𝑺 ∙ 𝑻𝑖𝑚)

∑ exp(𝑺 ∙ 𝑻𝑖𝑚′)𝑀𝑖

𝑚′=1

(2) 

Figure 2. Architecture of the Conventional Difficulty-Controllable Question Generation Method 
 



𝐻𝑖𝑚
(𝑒)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑬 ∙ 𝑻𝑖𝑚) =
exp(𝑬 ∙ 𝑻𝑖𝑚)

∑ exp(𝑬 ∙ 𝑻𝑖𝑚′)𝑀𝑖

𝑚′=1

(3) 

Here, 𝑍𝑖𝑚
(𝑠)

 and 𝑍𝑖𝑚
(𝑒)

 are dummy variables that take the value of 1 when the 𝑚-th word in the 𝑖-

th reading passage is the start position and end position of the answer, respectively. 𝑻𝑖𝑚 
denotes the output vector of BERT for the 𝑚-th word in the reading passage, and 𝑺 and 𝑬 
represent the learnable weight. 
 
 

2.2 Difficulty-Controllable Question Generation Model 
 
Another model is the difficulty-controllable QG model, which is designed to generate questions 
based on a reading passage and an answer that align with a desired difficulty level. Specifically, 
this model is implemented as a fine-tuned GPT-2 (Generative Pre-trained Transformer 2) 
model (Radford et al., 2019) that takes as input a concatenated string of the difficulty 𝑏, the 
reading passage 𝒄, and the answer 𝒂, and generates a question 𝒒. The architecture of this 
model is illustrated on the right side of Figure 2. The model fine-tuning is conducted by 
minimizing the following loss function. 

𝐿𝑜𝑠𝑠(𝑞𝑔) = − ∑ ∑ log{𝑃(𝑞𝑖𝑛|𝑞𝑖1,  … ,  𝑞𝑖(𝑛 −1),  𝒄𝑖 ,  𝒂𝑖 ,  𝑏𝑖)}

𝑁𝑖

𝑛=1

𝐼

𝑖=1

(4) 

𝑃(𝑞𝑖𝑛|𝑞𝑖1,  … ,  𝑞𝑖(𝑛 −1),  𝒄𝑖,  𝒂𝑖,  𝑏𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑮 ∙ 𝑻𝑝𝑟𝑒𝑖(𝑛 −1)

𝑞𝑖𝑛 ) =
exp (𝑮 ∙ 𝑻𝑝𝑟𝑒𝑖(𝑛 −1)

𝑞𝑖𝑛 )

∑ 𝑮 ∙ 𝑻𝑝𝑟𝑒𝑖(𝑛 −1)

𝑞𝑖𝑣𝑉
𝑣=1

(5) 

 

Here, 𝑉  is the total vocabulary size of GPT-2, 𝑻𝑝𝑟𝑒𝑖(𝑛−1) 

𝑞𝑖𝑛 is the output vector of GPT-2 

corresponding to 𝒒𝑖𝑛 given the word sequence 𝑝𝑟𝑒𝑖(𝑛−1) = (𝑞𝑖1,  … ,  𝑞𝑖(𝑛 −1),  𝒄𝑖,  𝒂𝑖,  𝑏𝑖), and 𝑮 

represents the learnable weight. 
 
 

3. Item Response Theory 
 
As mentioned in Section 2, this study assumes that question difficulty is quantified using IRT. 
IRT is a test theory that utilizes mathematical models known as IRT models. The IRT models 
separate the representation of question difficulty and examinee ability, enabling an accurate 
estimation of examinee ability independent of the specific characteristics of the questions. The 
Rasch model, the most traditional IRT model, is defined by the following equation. 

𝑃𝑖𝑗(𝑢𝑖𝑗 = 1|𝜃𝑗, 𝑏𝑖) =
1

1 + exp (−(𝜃𝑗 − 𝑏𝑖))
(6) 

Equation (6) represents the probability that a learner 𝑗 with ability 𝜃𝑗 will correctly answer a 

question 𝑖 with difficulty 𝑏𝑖, where, 𝑢𝑖𝑗 is a variable that takes the value of 1 when learner 𝑗 

answers question 𝑖 correctly, and takes 0 otherwise. These parameters are estimated from a 
collection of correct/incorrect response data of learners to questions.  

Figure 3 shows the item characteristic curves (ICCs) based on Equation (6) for three 
questions with different difficulty levels. The horizontal axis represents the ability value 𝜃𝑗, and 

the vertical axis represents the probability 𝑃𝑖𝑗. The three curves correspond to the ICCs for 

three questions with different difficulty values. From this figure, it can be observed that when 
𝜃𝑗  is the same, the probability of a correct response is higher for questions with a lower 

difficulty 𝑏𝑖. 
 The difficulty-controllable QG method introduced above uses IRT because it has the 
unique feature of formulating the relationship between learner ability and question difficulty, 
making it easier to select difficulty values appropriate to a learner's ability. According to Ueno 
and Miyazawa (2018), presenting questions at a difficulty level where the learner has a 50% 
chance of answering correctly is effective for facilitating learning. As shown in Figure 3, the 



probability of a correct response becomes 0.5 when 𝑏𝑖 = 𝜃𝑗. This suggests that the selecting 

difficulty 𝑏𝑖 = 𝜃𝑗 is appropriate when generating questions using the difficulty-controllable QG 

method.  
 IRT is also utilized as a foundational technology in computerized adaptive testing 
(CAT) (Van der Linden & Glas, 2010; Ueno & Miyazawa, 2018), a testing method that involves 
a cycle of sequentially presenting questions at a difficulty level suited to a learner’s ability and 
estimating their ability based on their responses. Specifically, because the standard error of 
ability estimates is calculable as the inverse square root of the Fisher information (FI), IRT-
based CAT generally selects questions repeatedly that have maximum FI for a current ability 
estimate of each individual learner. In the Rasch model, the FI is maximized when 𝑏 = 𝜃. 
Therefore, we can implement the CAT framework through the sequential procedures of 
estimating ability from the response history and presenting questions with difficulty values 
close to the current ability estimates. Based on this strategy, Uto et al. (2023) developed an 
adaptive QG framework that generates questions with difficulty levels appropriate for learners 
while efficiently estimating their abilities each time a question is presented. As described in 
Section 5.2, we also employ this adaptive framework to select reading passages and generate 
questions with difficulty levels appropriate for each learner's ability. 
 
 

4. Proposed Method 
 
The difficulty-controllable QG methods introduced above focus only on the difficulty of the 
questions, while ignoring the difficulty of the reading passages. However, as discussed in 
Section 1, selecting reading passages with appropriate difficulty is crucial for enhancing the 
controllability of question difficulty and the engagement of learners. Therefore, in this study, 
we develop a difficulty-controllable QG method that includes a mechanism for selecting 
reading passages with difficulty levels tailored to each learner. For our method, we develop a 
new IRT model capable of simultaneously estimating the difficulty of both questions and 
reading passages. Using the proposed IRT model and the IRT-based difficulty-controllable 
QG method, we propose a framework to select reading passages and generate questions that 
are appropriate for each learner's reading ability. 
 
 

4.1 Hierarchical IRT Model for Estimating the Difficulty of Reading Passages 
 
The proposed IRT model, which can estimate the difficulty of both reading passages and 
questions, is formulated as a hierarchical Bayesian extension of the Rasch model. Our model 

Figure 3. Item Characteristic Curves for a Rasch Model with Different Item Difficulty Values 
 



defines the probability that a learner 𝑗 with ability 𝜃𝑗 will correctly answer a question 𝑖 with 

difficulty 𝑏𝑖, which is related to the reading passage 𝑟 with difficulty 𝑏𝑖
(𝑟)

, as follows. 

𝑃𝑖𝑗
(𝑟)

=
1

1 + exp (−(𝜃𝑗 − 𝑏𝑖))
(7)

𝜃𝑗 ~ 𝒩(0, 1) (8)

𝑏𝑖 ~ 𝒩 (𝑏𝑖
(𝑟)

, 𝜎) (9)

𝑏𝑖
(𝑟) ~ 𝒩(0, 1) (10)

 

where, 𝜎 is a hyperparameter, and 𝒩(𝑚, 𝑠) indicates a normal distribution with a mean of 𝑚 

and a standard deviation of 𝑠. The graphical model of the proposed model is shown in Figure 

4. In the figure, 𝐽 represents the number of learners, 𝑅 represents the number of reading 
passages, and 𝐼𝑟 represents the number of questions corresponding to the 𝑟 -th reading 
passage. 

The proposed model is designed such that the difficulty of a question follows a normal 
distribution with the difficulty of the corresponding reading passage as its mean. This allows 
the model to estimate the difficulty of the reading passage based on the difficulty of the 
questions. These parameters are estimated using the Markov chain Monte Carlo method with 
the No-U-Turn Sampler (Hofman & Gelman, 2014; Uto, 2021; Uto et al., 2023) based on the 
Hamiltonian Monte Carlo approach (Brooks et al., 2011). 

 
 
4.2 Selecting Reading Passages with Appropriate Difficulty 
 
Here, we propose a method that selects reading passages appropriate to the learner's ability 
level, based on the difficulty of the passages estimated using the proposed IRT model, and 
then generates questions of suitable difficulty. As discussed in Section 3, presenting questions 

with difficulty 𝑏 = 𝜃 is appropriate. This suggests that selecting a reading passage with 𝑏(𝑟) =
𝜃  and generating questions using the difficulty-controllable QG method with the selected 
reading passage, along with 𝑏 = 𝜃, is a reasonable procedure.  

However, in actual learning environments, the learner's ability 𝜃  is not known in 
advance. Therefore, this study employs the adaptive QG framework explained in Section 3. 
The adaptive framework, which involves selecting reading passages, generating questions, 
and updating learner ability, is as follows.  

1. Initialize a learner's ability estimate 𝜃  =  0.0. 

2. Select a reading passage with a difficulty 𝑏(𝑟) close to 𝜃. 

3. Using the selected reading passage and specify the question difficulty 𝑏 = 𝜃, generate a 
question and answer using the difficulty-controllable QG method. 

4. Present the generated question to the learner and collect their correct/incorrect responses. 

Figure 4. The Graphical Model of the Proposed IRT Model. 



5. Update the learner's ability estimate 𝜃  from the responses given the difficulty of the 
presented question 𝑏. 

6. Repeat steps 2 through 5. 
 By following these steps, it is possible to select reading passages and generate 
questions with difficulty levels that match the learner's ability. 
 
 

5. Experiments 
 
In this section, we describe the procedure and results of experiments conducted on a 
benchmark dataset to evaluate the effectiveness of the proposed method. 
 
 

5.1 Effects of Selecting Appropriate Reading Passages 
 
We first conducted an experiment to evaluate whether the difficulty of the reading passages 
affects the difficulty of the generated questions. The experiment was conducted using the 
SQuAD dataset introduced in Section 2. The SQuAD dataset consists of training data and test 
data. In the following experiments, the training data is used for the preliminary training of the 
QG method and the construction of QA systems. Furthermore, a portion of the test data is 
used for training the difficulty-controllable QG method, along with the IRT-based difficulty 
estimation for the questions and reading passages, while the remaining part of the test data 
is used for evaluating the generation performance. The detailed experimental procedure is as 
follows: 

1. The difficulty-controllable QG method was trained using the SQuAD training data 𝐷(𝑡𝑟𝑎𝑖𝑛) 
without considering difficulty, as suggested by Uto et al. (2023). 

2. QA systems with varying ability levels were constructed. Specifically, we used 12 BERT 
variants and trained them using 600, 1200, 1800, 2400, and 3000 data points randomly 

extracted from 𝐷(𝑡𝑟𝑎𝑖𝑛). As a result, we obtained a total of 60 QA models. 

3. The response data from the 60 QA systems for the questions in 𝐷(𝑒𝑣𝑎𝑙)  were collected 

and then the difficulties of the reading passages 𝑏(𝑟) and the questions 𝑏 within 𝐷(𝑒𝑣𝑎𝑙) 
were estimated using the proposed IRT model. In this experiment, we set the 
hyperparameter 𝜎 of the proposed IRT model to 10.  

Figure 5. Correct Ratio of 60 QA Systems for Questions Generated from Reading 
Passages with Different Difficulty Values 



4. After adding the estimated difficulties 𝑏(𝑟) and 𝑏 to 𝐷(𝑒𝑣𝑎𝑙), we divided the data into 90% 

and 10%. The 90% of data, designated as 𝐷𝑏
(𝑡𝑟𝑎𝑖𝑛)

, was used to train difficulty-controllable 

QG method, while the remaining 10%, designated as 𝐷𝑏
(𝑒𝑣𝑎𝑙)

, was used as test data.  

5. Using the 𝐷𝑏
(𝑡𝑟𝑎𝑖𝑛)

, the difficulty-controllable QG method was trained. Then, using the 

trained difficulty-controllable QG method, we generated questions and answers for two 

reading passages in 𝐷𝑏
(𝑒𝑣𝑎𝑙)

 with different difficulty levels, 𝑏(𝑟)  =  −0.03 and 1.51 while 

varying the target question difficulty 𝑏 from −3 to 3. 
 Figure 5 shows the results. The horizontal axis represents the question difficulty, and 
the vertical axis represents the correct ratio of the 60 QA systems for the generated questions. 
The blue line represents the results for the questions generated from a reading passage with  

𝑏(𝑟)  =  −0.03, while the orange line represents those generated from a passage with 𝑏(𝑟)  =
 1.51. This figure indicates that the higher the difficulty of the reading passage, the lower the 
correct ratio. This suggests that the difficulty of the reading passage affects the difficulty of the 
generated questions, emphasizing the importance of selecting appropriate reading passages 
to generate questions with suitable difficulty levels. 
 
 

5.2 Performance of Adaptive Question Generation 
 
Next, we conducted an experiment to evaluate the performance of adaptive QG. Specifically, 
we used a QA system with 𝜃 =  0.755 as a target learner and investigated the adaptive QG 
framework with the following two strategies for selecting reading passages: 

• Proposed adaptive selection: Selects the reading passage with the difficulty level closest 

to 𝜃. 

• Random selection: Selects a reading passage randomly. 
Note that for both methods, QG was performed using the difficulty-controllable QG method, 

with the question difficulty set closest to 𝜃. 
 Figure 6 shows the trajectories in ability estimates obtained using these methods. The 
horizontal axis represents the number of questions administered, with a maximum of 50, while 

the vertical axis represents the ability estimates 𝜃. The blue line indicates the true ability value 

of 𝜃 = 0.755, the orange line represents 𝜃  obtained from the method using the proposed 

adaptive selection, and the green line represents 𝜃  obtained from the method using the 
random selection.  
 From these results, it can be seen that the proposed method approaches the true 
ability value more efficiently. This suggests that selecting appropriate reading passages using 

Figure 6. Trajectory in Ability Estimates for a QA System with Ability of 
0.755 



the proposed method is more efficient for estimating learner ability, thereby enhancing the 
selection of more appropriate difficulty values for the learner. 
 
 

6. Conclusion 
 
In this study, we aimed to address the limitation of existing difficulty-controllable QG methods, 
that is the ignorance of the difficulty of the reading passages. To this end, we first proposed a 
new IRT model capable of estimating the difficulty of both the questions and the reading 
passages by applying a hierarchical Bayesian approach to the Rasch model. We then 
proposed a framework based on the adaptive QG method to select reading passages and 
generate questions that are appropriate for each learner's reading ability. The experiments 
demonstrated that (1) the difficulty of the reading passages influences the difficulty 
controllability of QG, and (2) selecting reading passages and generating questions with 
difficulty levels appropriate for each learner's ability is effective for efficiently estimating learner 
ability and facilitating more accurate difficulty control. 
 There are three main challenges for future works. The first challenge involves handling 
new reading passages whose difficulty has not been pre-calibrated. Our adaptive QG method 
currently assumes to select reading passages from the training dataset because the difficulty 
level of each passage must be known in advance. However, reusing reading passages may 
affect the reliability of ability measurement. To address this issue, we will examine to integrate 
a new approach capable of estimating the difficulty of unseen reading passages. The second 
challenge pertains to model training for difficulty controllability. The difficulty-controllable QG 
method used in this study was trained to maximize the likelihood of question texts within the 
training dataset, meaning it did not directly optimize for difficulty control accuracy. To enhance 
this accuracy, an approach could involve additional training using reinforcement learning, 
which directly optimizes difficulty control accuracy. The third challenge is that it is difficult to 
appropriately control the difficulty for items not included in the training dataset. For example, 
controlling the difficulty for types of texts not included in the dataset (e.g., narrative texts) or 
for groups with cognitive levels different from those in the dataset is challenging. Addressing 
this issue will also be a task for future work. 
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