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Abstract: This study aims at modeling and visualizing students’ behavior in a self-
regulated and unguided learning environment with a focus on learning progression. 
Since the modeling approach is process-oriented and does not depend on specific 
mastery learning criteria, this paper provides a novel way to identify wheel-spinning in 
self-regulated learning solely based on activity monitoring. The study investigates the 
free and unsupervised engagement of junior high school students in solving 
mathematics exercises during summer vacation. During this period, a pool of exercises 
was provided on the LEAF online learning platform. Additionally, the students receive 
adaptive exercise recommendations as an add-on. Guided by the basic idea of wheel-
spinning as persistent engagement without learning progression, we have designed a 
mathematical model and a graphical representation to capture and gauge the individual 
learning progression. Based on an expert questionnaire survey, we considered how 
this novel representation can serve as a basis to analytically characterize learning 
progression and specifically to identify wheel-spinning.  
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1. Introduction 
 
The term “wheel-spinning” has been introduced to characterize a situation in which a learner 
spends excessive time and effort in a learning environment without mastering the intended 
learning goals (Beck & Gong, 2013). Wheel-spinning as a form of unproductive persistence 
has been discussed and studied in the context of intelligent tutoring systems (Wang et al., 
2020; Zhang et al., 2019) as well as in game-based learning (Owen et al., 2019). Most of these 
studies rely on specific mastery learning criteria (Pelánek, 2018). In contrast, we plead for 
characterizing learning progression on the basis of behavioral data in the form of action logs. 
This a both a more general approach (not only targeting wheel-spinning) and it can be more 
flexibly applied to many real learning settings.  
 In our study, we conceive wheel-spinning as ongoing engagement and activity without 
positive progression, not necessarily only related to repeated failure. As a first step, we have 
tackled the issue of capturing learning progress in a way that allows for comparing and 
interpreting individual learning trajectories. This brought us to generating “learning progress 
graphs” (LPGs) from the action logs. Although useful for many different purposes, the graphs 
can also be used specifically to identify wheel-spinning. 
 In the investigated scenario, junior high school students use an online platform for self-
regulated learning (SRL) with mathematics exercises during their summer vacation. The data 
are from students in three different grades from the same school with an overall of 345 



participants. The system environment provides a pool of exercises selected by the teachers 
in combination with an adaptive recommendation mechanism for additional exercises and links 
to textbook pages. 
 The studied learning setting can be characterized as an extreme form of SRL (Owen 
et al., 2019) in which the students’ engagement is based on free choice without any kind of 
supervision or instruction during the learning period. Analyzing and measuring SRL has been 
identified as an important research challenge (Sacks & Leijen, 2014; Winne, 2010). We see 
the work reported here as a contribution to meeting this challenge. 

 In our approach, we have targeted two aspects to evaluate the quality of LPGs for 
characterizing learning progression and specifically for identifying wheel-spinning. The first 
one is “expressiveness” as the information-richness of the model representation. I.e., does the 
LPG representation transmit the information that is relevant for characterizing the 
corresponding learning sequence? Secondly, “adequacy” addresses the question in how far 
the model-based interpretation corresponds to human expert judgement of the cases.  To 
evaluate the properties of LPG in terms of expressiveness and adequacy, we have 
conducted an expert study with example LPGs based on real student data.   
 
 

2. Background and Related Work 
 
Our aim in this research is to find a way of interpreting “wheel-spinning” in the context of 
unguided self-regulated learning (SRL).  

SRL is typically defined as self-generated thoughts, feelings, and behaviors that are 
planned and cyclically adapted to achieve personal learning goals (Zimmerman, 2000). Self-
regulation involves the capacity to cultivate knowledge, skills, and attitudes that are applicable 
across various learning environments and can be adapted from contexts in which they were 
learned to both leisure and professional settings (Boekaerts, 1999). The field of learning 
analytics, which focuses on interventions and learning processes, provides good opportunities 
to analyze SRL and bring good insights (Roll & Winne, 2015). SRL activity consists of the 
sequence which has (1) activation of perceptions through goal setting, (2) metacognitive 
awareness through monitoring SRL processes, (3) control of the various aspects of the self, 
and (4) reflections on the self (Pintrich, 2000).  

Interdisciplinary cooperation between the fields of learning science, learning analytics, 
and AI is essential to solving the combination of data-driven approaches and theory-driven 
verification metrics (Molenaar et al., 2023). The context that we focus on in this study is the 
ultimate form of self-regulated learning, compared to self-directed learning, in that students 
work on the teacher-prescribed tasks and additional problems given to them during their 
school’s summer holidays in a completely free environment (Sacks & Leijen, 2014). In this 
study, we used self-regulated learning context that is assessed in terms of whether the goals 
set are too high or too low, based on activity monitoring that assess students’ self-reports of 
the problems they solve. We do not distinguish internal elements of the SRL process but rely 
on analyzing the dynamics of student activity. 

The notion of wheel-spinning refers to a situation in which learners spend considerable 
time learning a topic without actually achieving mastery (Beck & Gong, 2013) or substantial 
progression. This concept has been applied to the studying-learning interaction with intelligent 
tutoring systems where students may be stuck in the mastery learning cycle without achieving 
mastery criteria (Beck & Rodrigo, 2014). In the educational context, we have a number of prior 
definitions and thresholds of mastery and wheel-spinning. Previous studies define mastery 
prior to wheel-spinning (Beck & Gong, 2013; Beck & Rodrigo, 2014; Kai et al., 2018; Owen et 
al, 2019; Palalog et al., 2016; Park, 2023). Beck & Gong (2013) and Park (2023) set the wheel-
spinning threshold as the status of that student who practiced the same skill set over 10 times 
but failed to mastery. Beck & Rodrigo declared wheel-spinning as students who fail to master 
a skill in a computer tutor promptly. Kai et al. (2018) watched the number of students solving 
the exercises in the border of wheel-spinning, which is defined as those who tried to 10 or 
more problems and on either following status while not reaching the mastery status or on the 
mastery status but not accomplished the test. In a game-based learning environment, Palalog 



et al. (2016) set a different definition of mastery as the situation in which students clear the 
level at each of two considered levels, and defined wheel-spinning as not clear the lower level 
even for 15-minute attempt or the attempt of not reaching the higher level after achieving the 
lower level. Owen et al. (2015) aimed to detect whether students are on productive persistence 
or wheel-spinning, and the border of them is determined by a model created concerning the 
number of activities, the ratio of skills mastered, rate of mastery, student age, average activity 
duration, and more. Most studies focused on wheel-spinning as the attempts/effort without 
mastery, while no other papers research wheel-spinning in the environment of no instructional 
guidance that does not have a specific mastery. In this research, first, we defined progression 
based on each exercise’s difficulty and wheel-spinning as no positive change of progression. 
Our approach aims to putting wheel-spinning in the broader context of identifying and 
quantifying learning progression through monitoring behavioral dynamics (see Figure 1). 
Combined with a specific visualizing method, this provides a new way to characterize wheel-
spinning. 

 
Figure 1. Comparison of research on wheel-spinning 

 
 

3. Method 
 
3.1 System environment and context 
 
The experimental setting for our empirical research makes use of the digital learning platform 
LEAF (Flanagan & Ogata, 2018). System users first enter the environment by logging in to the 
Moodle LMS, and then proceed to the BookRoll platform which includes an analysis tool called 
LogPalette. All logs both at BookRoll and at LogPalette are collected in a learning record store 
(LRS), and the systems can also use these logs for analysis. The BookRoll system gives 
access to pooled exercises. Regarding the exercise materials, there are three types of pooled 
materials. One type consists of the exercises prescribed by teachers, another type comprises 
the exercises that students take on as additional exercises, and the other consists of the 
textbook pages that help to solve these exercises. Each learning material page was labeled 
one unit by publishers or mathematical teachers in advance based on the Japanese 
mathematical curriculum declared by MEXT (Ministry of Education, Culture, Sports, Science 
and Technology). 

We took some logs to trace each student’s behavior related to the recommendation 
system in the LEAF platform. The system recommended exercises with applied explanations 
according to their solving log. There are three types of explanations as follows: 

● Because the student solved the exercise incorrectly, they should try it again. 
● Because the recommended exercise was related to the one that the students solved 

incorrectly, they should understand the unit well through the recommended exercise. 
● Because the students incorrectly solved exercises in the same unit successively, they 

should understand the basis on the unit through the textbook page related to the unit 
rather than solving the other exercises. 

The recommender system considered the order of the displayed exercise based on the 
collected log data as well. There are two specific logs related to the system: “Displayed” and 



“Clicked”. “Displayed” is recorded when the student accesses the recommender system and 
recommended materials are displayed automatically. The log contains what and when 
recommended materials were displayed to the student with what explanations. “Clicked” is 
recorded when the student access clicks on the link of recommended materials. The log 
contains what and when recommended materials were clicked by the student. The 
recommendation system also showed the list of assignments with the link to each exercise, 
and the students could see how many people in the same grade had taken on each exercise 
and how many students had reached the correct answer. 
 

3.2 Provision of exercises and recommendations 

 
This research was conducted in a Japanese junior high school with 358 participants from 
grades 7-9 (12-15 years old). They were all on summer vacation during the research (from 
July 21 to August 23, 2023). They were provided with teacher’s customized exercises through 
BookRoll as an assignment and the results were recorded in the LRS. This activity can be 
categorized as self-regulated learning, since the students’ activity was based on free initiative, 
and they did not receive any additional instructions during the respective period (Sacks & 
Leijen, 2014). 

For the general exercise activity, students reported the result of solved exercises by 
entering whether their answers were correct or incorrect on the selective form, referred to 
Figure 2. 
 

 
Figure 2. User interface for viewing and answering exercises on BookRoll 

 
Students are not forced to work on the prescribed exercises, i.e., whether they are 

taken up and completed or not depends on the free choice of the students. Exercises are also 
recommended by the system, either drawing from the pool of additional exercises or as new 
attempts with exercises that were not completed correctly and without using help information 
previously. In addition, the system also recommends textbook pages to the students in case 
of repeated failure. They could solve other exercises by themselves as self-regulated learning 
on the system, or even without the system. They all could use the recommendation system 
when they want to do so, and they use the system as a self-regulated learning, for example, 
to reflect on an assignment or to solve additional exercises with an exercise book. We show 
the information of material context and how students and the system treat them in Figure 3. 

When a student reports the exercise result through BookRoll, the recommendation 
system updates recommendations based on input and displays a new set of materials, each 
of which is with the explanation to describe the reason of recommendation of the materials. 
The materials on the display had a link to the material page on the BookRoll, and the student 
could continue solving additional exercises. 

Exercise PDF Self-reporting form

Title of the exercise

Option 1
(Successfully solved it 

all on my own)

Option 2
(Successfully solved it 

with help)

Option 3
(Had no idea at all)



 
Figure 3. Student access to exercise material in the learning setting 

 

3.3 Operationalizing, quantifying, and visualizing learning progression 
 
Following our aim to describe learning progression conforming to the free SRL context, we 
have defined “engagement” as a basic term, and specified two formulae for the “difficulty” of 
exercises and for quantifying “learning progression”.   

To trace the student behavior through the activity, we took the activity logs of each 
student. In this research, the attribute “engaged” means the corresponding student has 
delivered (i.e., viewed and reported on) at least one exercise. 

For each exercise 𝑄𝑖 in the exercises, we defined the difficulty 𝐷𝑄𝑖 as follows: 

𝐷𝑄𝑖 =
𝑁𝑐̅ + 1

(𝑁𝐶 + 1) + (𝑁𝐶̅ + 1)
 

 
where 𝑁𝐶 or 𝑁𝐶̅ represents the number of people whose initial answer of the 𝑄𝑖 is correct or 
incorrect, respectively. As the more people give the incorrect to the exercise, the more difficult 
the exercise is. This definition derives from the number of correct or incorrect students plus 1; 
this is the smoothing whose value will be calculated as 0.5 when nobody is trying to answer 
the exercise. 

For each user’s 𝑛th answering result 𝑅𝑛 (which equals 1 if the answer is a success, 0 
otherwise) of the exercises with difficulty 𝐷𝑄𝑛, we can calculate the progression status 𝑃𝑛+1 

with the previous progression status 𝑃𝑛 as follows: 
 

Δ𝑃𝑛 = 𝑃𝑛 − 𝑃𝑛−1 =

{
  
 

  
 
0 (if 𝑄𝑛 is repeated with most recent 

occurence 𝑄𝑘  and 𝑅𝑛 = 𝑅𝑘)

(1 − 𝑃𝑛−1)𝐷𝑄𝑛
2

 (else if 𝑅𝑛 = 1)

−
𝑃𝑛−1(1 − 𝐷𝑄𝑛)

2
 (else if 𝑅𝑛 = 0)

 

 

Based on this stepwise calculation of differences, an LPG is constructed as a graph 
(or plot) with linear segments that accumulate the ΔPn successively. Note that 𝑃0 = 0 and 𝑃1 is 
defined as 𝐷𝑄1, the difficulty of the first exercise 𝑄1 that the student reported its success. 

The formula meets two important basic requirements: All 𝑃𝑛 would be between 0 and 
1, and failure on a more difficult exercise should be less negative than failure on easier 
exercise. LPGs can be easily interpreted as indicators of learning progression based on the 
line gradients increasing, decreasing, or stable. As to be expected, the gradient is affected 
more by the result of a newer exercise, and a more difficult exercise generates less decrease 
(proportional to (1 − 𝐷)) in the negative case but higher increase (proportional to 𝐷) in the 
positive case than an easier one. 

Visual methods in education are gaining popularity, yet additional research is required 
to evaluate their enhanced contributions in terms of effectiveness, efficiency, and other 
learning-related criteria (Klerkx et al., 2014). Although we are not interested in content 
visualization, one study suggests the visualization of a timeline with learning events, which 
can organize the complicated multiple classroom events more easily (Dillenbourg et al., 2018). 
Applying visualization in the SRL context is also conducted by previous research, which makes 
the process clearer with the graph path (Zheng et al., 2021). 



Our approach introduces a new graph visualization for grasping students’ learning 
progression and possibly wheel-spinning behavior based on engagement sequences with the 
difficulty of the exercises using line diagrams with additional markers. Figure 4 shows one 
example of a student’s engagement sequence graph. The x-axis of the graph represents 
incremental discrete steps of activity (such as self-reporting the results by working on learning 
materials and clicking the link to the recommended materials or the exercises on the 
assignment list) that we call “engagement steps.” The y-axis of the graph represents the 
difficulty of each exercise as explained above. The markers represent the engagement on the 
exercise. The number attached to the marker represents the ID of the learning material. The 
color of the marker represents whether the student reported success (green) or failure (red). 
Green curves across the graph represents the connection of the points of 𝑃𝑛 at each step of 

the solution of each exercise. The gradient of the curve represents learning progression Δ𝑃𝑛. 
As a linear plot is useful and good to represent a trend, it is also good to use a learning process 
that represents a student's “trend” (Kirk, 2019). 

For the holiday scenario from which our data were harvested, proportional scaling of 
the events over a timeline is not adequate since there would be long phases of inactivity and 
very short and dense bursts of engagement with the exercises. Our choice focuses on the 
sequences of actions and their evolution for individual students. For classroom scenarios 
within the time limitations of a lesson, a proportional timeline could be used. 

 

 
Figure 4. Example of a graph that shows the sequence of a student’s entire engagement 

 
 

4. Results and Discussion 
 
4.1 Case-based analysis 
 
There are a total of 191,003 logs in the subjective course during the experiment. For 
preprocessing the data, we omit the data that are created not by students or the data that 
show looking at one material page for less than 60 seconds without any other recorded logs 
on BookRoll. We observed any logs collected on the BookRoll and LogPalette, such as 
Open/Close the material pages, Correct/Incorrect the exercises’ answers, and click on the 
star-drawn green recommend button in the BookRoll. We first collected the behavior of the 
student based on the log. There are a total of 12,153 taking-exercise logs and 4,168 exercise 
self-reporting logs by all students among the three grades. Table 1 shows the information on 
engagement, including the overall number of students, the number of engaged students during 
the summer vacation, the number of assignments the teacher compelled students to solve, 
the average of viewed exercises (this equals the total number of times the page of the 
educational material was viewed for more than 60 seconds), an average of answered 
exercises as “delivered exercises” with delivered correct/incorrect answers per student. 
 
Table 1. The result of student taking exercises during the summer vacation 

grade num of engaged students 
(overall num of students) 

num of 
assignments 

num of viewed exercises per person 
(num of delivered exercises per person) 

7th 120 (120) 24 38.74 (18.17) 

8th 111 (120) 29 33.73 (10.90) 

9th 114 (118) 27 32.98 (6.82) 



 
We tried to see where the students weren’t progressing in their learning behaviors, so 

we set red areas in the graph if there is three-successive 0 or less gain in 𝑃𝑛, which can work 
as one of the wheel-spinning criteria. One example in Figure 5 describes a student’s learning 
progression with the green vertical dotted lines, which represents the student “Clicked” 
recommended exercises. In the figure, there are four red areas, and three clicks to the 
recommended exercises which are resulted both in a delivered exercise and in a non-delivered 
exercise. Here the recommended exercise number pointed out by the red arrow represents 
the ones that are delivered. As we see in the graph, there was a period of wheel-spinning just 
until the recommended exercises were delivered, and after taking on the recommended 
exercises, the student appeared to overcome the wheel-spinning. This result of the sequence 
is one result of the recommendations that were helpful for the student to overcome the wheel-
spinning.  
 

 
Figure 5. Example of an LPG with red areas indicating possible wheel-spinning 

 
Through this research, we could explore the new SRL research field that assesses 

SRL with the behavioral data throughout students’ activity (Molenaar et al., 2023). We 
overserved learning progression in SRL focusing on behavioral dynamics, which is the 
activities over time. The long-term learning analysis has different results according to the 
patterns of the students’ time usage in the SRL (Rienties et al., 2019). This research would 
contribute to giving a new idea to analyze SRL activities in the long span. According to the 
idea of progression curves of the visualization we proposed, there is no instruction or 
intervention during the monitoring period. Another perspective of this research is that student’s 
performance will be better if they do self-reporting even in the SRL context (Oudman et al., 
2022). 
 

4.2 Questionnaire-based expert evaluation 
 
To test the adequacy and interpretability of the wheel-spinning visualization, we took a 
questionnaire survey. The context of the questionnaire survey is as follows: 

• Ten researchers specializing in educational technology participated in, who are skillful 
researchers familiar with online learning educational technology and data analysis. 

• We presented participants with randomly selected six examples including ones that have 
wheel-spinning area and the others don’t have it.  

• We first gave a definition of wheel-spinning and how to read the graph with randomly 
selected six examples using a wheel-spinning criteria above (it is treated as “working 
hypothesis”), and then they were asked to complete six questions about the wheel-
spinning area of the graph with confidence of the answer. 

• We also asked to describe adequacy and interpretability of the graph. 
Table 2 shows all questions of the questionnaires with the answer of them. In the table, 

we show the quiz number, target area of example questions, the number of those who 
recognized the wheel-spinning area or non-wheel-spinning area with confidence, and the 



model’s answer (working hypothesis referred in section 4.1). 
According to the survey results, adequacy is almost enough for participants because 

the correct answer is more than wrong answers for four questions, where Q3 and Q4-C is not. 
For Q3, there is no progression in that area, but half of the participants recognized it as non-
wheel-spinning area. On the other hand, for Q4-C, there is positive Δ𝑃𝑛 and thus there is not 
wheel-spinning, but over the half of the participant recognized it differently. While this graph 
representation doesn’t have numerical problem, for visual interpretation it has a saturation 
effect, which is the Δ𝑃𝑛 is too small to see a change of it when the too easy problem was solved 
correctly, so we should reconsider about the problem to increase adequacy of the graph. 

We can also discuss the interpretability of the graph through the confidence and 
description of the questionnaire. In the survey, low confidence indicates a “lack of 
interpretability”, which may be related to problems with the LPG but may also come from 
ambiguous situations. One of the participants stated that “I agree, to assess repeating the 
same exercises again and again (whether green or red) can be categorized as wheel spinning. 
but failing exercises and needing several attempts, might be very helpful for learning - do you 
make such a distinction, or is all wheel spinning and negative? Might the duration of missing 
progress be important to judge something as problematic wheel spinning?” and another stated 
“In the annotated wheel-spinning domain, except for the challenge of extremely difficult 
problems, the problem seems to be solved in some stepwise manner, and in this respect, we 
felt that identification as wheel-spinning was not appropriate.” Although the graph conveys 
wheel-spinning area well, we should reconsider the wheel-spinning phenomenon in the 
context of successive failure. 

For the summary, we learned following from the questionnaire results: 

• Adequacy: the survey indicates most answers are corresponding to that of hypothesis, 
but graph adequacy suffers from saturation in visual interpretation. 

• Interpretability: Low interpretability derives from how to deal with student’s “failure” activity, 
which concludes that reconsidering of "wheel-spinning" is needed. 

 
 

5. Conclusion 
 
This research discusses the concept of “learning progression” in the context of no-instruction 
learning among junior high school students using an online math exercise platform during their 
summer holidays. To address the challenge of capturing learning progression, the study 
introduces “learning progression graphs” (LPGs) generated from action logs. 

The literature on SRL introduces a “richer” context, with different phases, scaffolding 
and feedback (Edisherashvili et al., 2022; Pintrich, 2000).  However, this research based on 
observational data was conducted under specific restrictions with an extremely free form of 
SRL in the absence of teacher intervention and feedback during the activity period. It might be 
argued that this was different for the system-generated additional recommendation however 
these were used only very rarely. 

Regarding the learning outcomes, this experiment only relies on students’ self-
assessment in terms of self-declared success or failure. The results of solving exercises had 
to be analyzed based on topics of the study materials that we use for the recommendations. 
However, we only see very scarce use of recommendations and there are not enough logs to 
verify the effectiveness of the recommendations. Still, a few examples indicate the 
effectiveness of the recommendations as observed through the LPG graphs. In addition, the 
survey results indicate that the current LPG graph layout should be revised to mitigate the 
"saturation effect". In general, we can re-consider the wheel-spinning definition for unguided 
learning under the aspect of interpretability, as suggested by the high correspondence of the 
answers to that of hypothesis could be seen. 

For students, LPGs can be used as feedback on individual learning activities, allowing 
them to review their own learning activities. That is, if there are a series of errors in their 
answers, they may work on easier questions or go back to material such as textbooks. 
Teachers can monitor their students’ efforts with LPG; they can refer to difficulty to see which 



questions students are struggling with. They also can use this to plan what to teach and how 
to teach questions. In addition to educators, this visualization algorithm can also be integrated 
into educational recommendation systems and open learner models (Bull & Kay, 2010). By 
checking the difficulty of an exercise and the learning progression of a student, it will be 
possible to recommend easier or new exercises. In fact, in the current experiment, a system 
for detecting wheel spinning can be integrated into the recommender system to create learning 
progression for students by recommending questions according to the situation. In addition, 
as this visualization is created based on students’ self-reporting, it can be introducing patterns 
of wheel-spinning in combination with self-reports. 

 
Table 2. Results of the questionnaire 

# Target area 
Num of people 
(average confidence) 

Answer 
based on 
working 

hypothesis Yes No 

Q1 

 

3  
(3.67) 

7  
(3.43) 

No 

Q2 

 

3  
(3.67) 

7  
(4.14) 

No 

Q3 

 

5  
(3.00) 

5  
(3.33) 

Yes 

Q4-
A 

 

6  
(3.67) 

4  
(4.25) 

Yes 

Q4-
B 

0 
10  

(3.90) 
No 

Q4-
C 

6  
(3.80) 

4  
(3.50) 

No 
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