
Kashihara, A. et al. (Eds.) (2024). Proceedings of the 32nd International Conference on Computers in 

Education. Asia-Pacific Society for Computers in Education 

 

Exploring the Effect of Collaborative 
Programming Learning Environment on 

Student’s Computer Programming 
Competencies and Cognitive Learning  

 
 

Chia-Jung CHANGa* & Wen-Lung HUANGb 
a Department of Information Communication, Yuan Ze University, Taiwan 

b Department of Communication, Fo Guang University, Taiwan 
*ccj@saturn.yzu.edu.tw 

 
Abstract: The study aims to develop a synchronous collaborative programming 
learning environment to facilitate students’ computer programming and to explore its 
impact on programming competencies, problem-solving behaviors, and cognitive 
learning. The results showed that the environment not only improved students’ 
programming competencies, but also enhanced their high-level cognitive learning. 
Additionally, students in collaborative programming demonstrated a higher percentage 
of problem-solving behaviors in exploring and understanding, and planning and 
executing. Meanwhile, the study identified the differences between individual and 
collaborative activities on problem-solving behaviors. 

 
Keywords: collaborative learning, computer programming, self-efficacy, problem-
solving behaviors 

 
 

1. Introduction 
 
Researchers and educators have paid much attention for fostering students’ computer 
programming competencies as the competencies are regarded as one of the core 
competencies of 21st century (Hsu & Hwang, 2017). However, computer programming is a 
complex learning process which involves both the implementations of coding and problem-
solving. Students often encounter learning difficulties related to syntax, logical statements, 
and structures (Derus & Ali, 2012), which lead to high dropout rates and decreased motivation 
to learning computer programming. Hence, how to solve the difficulties students encountered 
is an imperative practical issue. 

Many studies designed various teaching and learning instructions to promote students’ 
computer programming competencies (Cheah, 2020). For example, Zhi et al. (2019) proposed 
worked example instructions to support students in understanding computer programming. In 
a study of Nainan and Balakrishnan (2019), they combined worked examples with explanation 
and debugging to help novices to aware and analyze programming problems. The results 
indicated that worked example didn’t significantly improve students’ programming skills, and 
increased their cognitive load (Zhi et al., 2019). 

Collaborative learning is considered an effective approach for enhancing student’s 
cognition and competencies through social interaction (Wu et al., 2019). Social interaction not 
only enhances the conceptual understanding, but also facilitates members monitoring and 
reflecting to develop better solutions (Dillenbourg & Traum, 2006). However, most 
programming learning environment are mainly individual-based, meaning that students cannot 
code a program together. Hence, some studies implemented collaborative learning in 
computer programming contexts. For instance, Boyer et al (2008) developed a distributed 
synchronous collaborative programming, indicating that such collaborative programming could 
benefit students’ learning motivation and retention. In a study of Wu et al (2019), they analyzed 



the discourse and epistemic network models of collaborative programming groups, showing 
that low-performing groups used guess-and-check approaches while high-performing groups 
applied systematic approach. Another similar study by Jonsson and Tholander (2022), they 
designed a co-coding with AI application which synchronized group members codes.  They 
found that students exhibited inconsistent and erroneous behaviors and suggested that the 
activity should integrate reflection and exploration into collaborative programming contexts.  

Many studies stated that programming learning is a developmental process which 
transformed mental representations of problems and solutions into executable codes (Loksa, 
Jernigan, Oleson, Mendez, & Burnett, 2016). Cheah (2020) highlighted the issue of the high 
failure in computer programming learning since students’ lack of problem-solving abilities. 
Although these studies showed the positive effect of collaborative learning in computer 
programming contexts, its impact on students’ cognition activities and learning behaviors 
remains unclear. Moreover, these studies lack the support of monitoring and reflection. 

To support students in collaborative programming, the study developed a synchronous 
collaborative programming learning environment which provided students with a shared 
workspace for joint coding. The environment also provided cognitive and metacognitive 
scaffoldings to help students understand the concepts of programming and monitor their 
learning process. Specifically, research questions are presented as follows. 
1. Does the synchronous collaborative programming learning environment facilitate students’ 

computer programming competencies? 
2. What problem-solving behaviors do students exhibit in the synchronous collaborative 

programming learning environment? 
3. What impact does the synchronous collaborative programming learning environment have 

on students’ cognitive learning? 
 

2. Method 
 

2.1 Participants 
 
The study conducted a pilot study to explore the effect of the synchronous collaborative 
programming environment on students’ programing behaviors and their perceptions of 
learning programming self-efficacy. The study involved 12 students from a private university 
in northern Taiwan.  Since they had no experience in making games using computer 
programming, they were suitable as research samples. 
 

2.2 Game making programming learning activity 
 
The study developed a collaborative programming learning environment which provided 
students with a shared workspace of real-time code editor and compiler for code execution. 
Group members’ codes also were immediately synchronized in a shared workspace. In order 
to support group discussion, the environment allowed group communication via an online text-
based chatroom. Moreover, the environment tracked and displayed each member's cursor, 
and synchronously remarks on all members' screens to support group monitoring of their 
programming actions. Since students lacked the experience in programming games, the study 
integrated problem-solving processes into the environment, including exploring and 
understanding, representing and formulating, planning and executing, and monitoring and 
reflecting, to guide them through game programming.  

Two game-making learning activities were designed within the environment: an 
individual activity and a collaborative activity. Each activity was divided into sub-tasks based 
on the four phases of problem-solving process. In the exploring and understanding phase 
(E&U), students experience and understand the goals of each sub-task by interacting with a 
manipulable game. In the representing and formulating phase (R&F), it provides basic 
concepts and syntax necessary for creating game functions. In the planning and executing 
phase (P&E), students used an online programming editor and compiler, and received 
procedural and structured scaffolding to support task completion. The monitoring and 



reflecting phase (M&R), the metacognitive questions were designed to help students 
monitoring and reflecting learning process. 
 

2.3 Procedure 
 
Students first participated in the individual activity, followed by the collaboration activity. The 
individual and collaborative activities both lasted for three 50-minute sessions. Before the 
activities, researchers introduced the interface of the programming learning environment and 
game making learning task with the four problem-solving phases. After each activity, a 
computer programming self-efficacy scale (CPSES) was used to measure students’ 
perception of programming learning. Moreover, students were required to answer a reflective 
question. 
 

2.4 Data collection and analysis 
 
The computer programming self-efficacy scale developed by Tsai, Wang, and Hsu (2018) was 
used to measure students’ perception of programming learning in the individual and 
collaborative activities. The Cronbach’s alpha of the scales was 0.97 and 0.94, indicating that 
the scale was sufficiently reliable. The responses to the scales were analyzed by Wilcoxon 
signed-rank test. Besides, students’ learning behaviors in the environment were automatically 
recorded as logfiles. Their learning behaviors in the individual and collaborative activities were 
counted and compared using a chi-square test. Besides, students’ responses to question were 
analyzed by two researchers based on revised Bloom’s taxonomy (Krathwohl, 2002). The 
Cohen’s kappa value of interrater reliability was 0.81, indicating that two researchers had a 
high-level agreement. 
 

3. Result and Discussion 
 

3.1 Learning computer programming self-efficacy  
 
Table 1 presents the results of students’ computer programming self-efficacy using Wilcoxon 
sign rank test. The results indicated that students perceived a significantly higher level of 
programming competencies on logical thinking (z=-2.31, p<.05), algorithm (z=-1.92, p=.05), 
and debug (z=-2.06, p<.05) in collaborative activity than did they in individual activity. There 
was no significant difference in control, showing that students perceived a similar level of 
control competency in the individual and collaborative activities. The results suggested that 
the collaborative activity improved their programming competencies in constructing logical 
statements, designing algorithm to solve problems, and finding and fixing error codes. 
 
Table 1. The result of students’ computer programming self0efficacy in the two activities 

 Individual Collaboration Z-score 

 Mean SD Mean SD 

Logical thinking 3.67 1.13 4.48 1.41 -2.31* 

Algorithm 2.92 1.29 3.53 1.13 -1.92* 

Debug 3.83 1.21 4.44 1.52 -2.06* 

Control 4.69 1.09 4.17 1.57 -0.53 

*<.05 
 

3.2 The problem-solving behaviors 
 
Table 2 shows the results of the frequency and percentage of students’ learning behaviors in 
the two activities. There was a significant difference between the two activities. Compared to 
individual activity, students in collaborative activity exhibited a higher percentage of behaviors 



in ‘planning and executing’ and ‘exploring and understanding’. However, the percentage of 
behaviors in ‘representing and formulating’ and ‘monitoring and reflecting’ decreased. 
 
Table 2. The distribution of students’ problem-solving behaviors in the two activities 

Activity E&U R&F P&E M&R Total 𝑥2 

Individual 
233 

(4.33%) 

1316 

(24.44%) 

3100 

(57.57%) 

736 

(13.67%) 

5385 

(100%) 

345.2.*** 

Collaboration 
589 

(6.84%) 

1582 

(18.36%) 

5537 

(64.26%) 

909 

(10.55%) 

8617 

(100%) 

Total 822 2898 8637 1645 14002 

*<.05, **<.01, ***<.001 
 

3.3 Students’ responses to programming learning 
 
Students’ response to learning programming based on Bloom cognitive domain were analyzed 
as shown in Figure 1. The results indicated that students in individual activity mainly exhibited 
a high level of cognitive learning in application (39.02%), remember (26.83%), and understand 
(19.51%), and low level of cognitive learning in analysis, evaluation and create. Regarding to 
collaborative activity, students exhibited high level of cognitive learning in application 
(39.13%), evaluation (23.91%), and remember (21.74%), and low level of cognitive learning 
in understand, analysis, and create.  

Specifically, the main differences between the two activities were that students in 
collaborative activity demonstrated a higher level of cognitive learning in evaluation (23.91%) 
and create (8.70%) while students in individual activity demonstrated a higher percentage in 
understand (19.51%) and a lower percentage in evaluation (0%) and create (2.44%). The 
results imply that collaborative activity may be helpful for enhancing high level of cognitive 
learning in evaluation and create. Besides, the results suggested that students in the both 
activities may be difficulties in analysis learning. 

 

 
Figure 1. The distribution of cognitive level of learning programming in the individual and 
collaborative activities 
 
4. Conclusion and Future 
 
The findings indicated that the environment not only improved students’ computer 
programming competencies but also enhanced high-level cognitive activities. However, due 
to the limitation of small sample size and experimental design, the results cannot be over-

remember understand application analysis evaluation create others

Individual 26.83% 19.51% 39.02% 2.44% 0.00% 2.44% 9.76%

collaboration 21.74% 0.00% 39.13% 2.17% 23.91% 8.70% 4.35%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

Cognitive level of learning programming 

Individual collaboration



generalized. Future studies could employ large sample size and quasi-experiment to verify 
the results of this study. 
 

Acknowledgements 
 
The research is partially funded by National Science and Technology Council of Taiwan under 
NSTC 113-2410-H-155-009- and 113-2410-H-431-006-MY2. 
 

References 
 
Boyer, K. E., Dwight, A. A., Fondren, R. T., Vouk, M. A., & Lester, J. C. (2008, June). A development 

environment for distributed synchronous collaborative programming. In Proceedings of the 13th 
annual conference on Innovation and technology in computer science education (pp. 158-162). 

Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning of computer 
programming: A literature review. Contemporary Educational Technology, 12(2), ep272. 

Derus, S. R. M. & Ali, A. Z.M (2012). Difficulties in learning programming: Views of learners. The 
proceeding of 1st International Conference on Current Issues in Education, Yogyakarta, Indonesia 

Dillenbourg, P., & Traum, D. (2006). Sharing solutions: Persistence and grounding in multimodal 
collaborative problem solving. The Journal of the Learning Sciences, 15(1), 121-151. 

Hsu, T. C., & Hwang, G. J. (2017). Effects of a structured resource-based web issue-quest approach 
on students’ learning performances in computer programming courses. Journal of Educational 
Technology & Society, 20(3), 82-94. 

Jonsson, M., & Tholander, J. (2022, June). Cracking the code: Co-coding with AI in creative 
programming education. In Proceedings of the 14th Conference on Creativity and Cognition (pp. 
5-14). 

Krathwohl, D. R. (2002). A revision of Bloom's taxonomy: An overview. Theory into practice, 41(4), 212-
218. 

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., & Burnett, M. M. (2016, May). 
Programming, problem solving, and self-awareness: Effects of explicit guidance. In Proceedings 
of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 1449-1461). 

Nainan, M., & Balakrishnan, B. (2019). Design and Evaluation of Worked Examples for Teaching and 
Learning Introductory Programming at Tertiary Level. Malaysian Online Journal of Educational 
Technology, 7(4), 30-44. 

Tsai, M. J., Wang, C. Y., & Hsu, P. F. (2019). Developing the computer programming self-efficacy scale 
for computer literacy education. Journal of Educational Computing Research, 56(8), 1345-1360. 

Wei, X., Lin, L., Meng, N., Tan, W., & Kong, S. C. (2021). The effectiveness of partial pair programming 
on elementary school students’ computational thinking skills and self-efficacy. Computers & 
education, 160, 104023. 

Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational thinking in collaborative 
programming: A quantitative ethnography approach. Journal of Computer Assisted Learning, 
35(3), 421-434. 

Zhi, R., Price, T. W., Marwan, S., Milliken, A., Barnes, T., & Chi, M. (2019, February). Exploring the 
impact of worked examples in a novice programming environment. In Proceedings of the 50th acm 
technical symposium on computer science education (pp. 98-104). 


