
Kashihara, A. et al. (Eds.) (2024). Proceedings of the 32nd International Conference on Computers in

Education. Asia-Pacific Society for Computers in Education

Designing an LLM-Based Dialogue
Tutoring System for Novice Programming

Julieto PEREZab* & Ethel ONGb

aMSU-Iligan Institute of Technology, Philippines
bDe La Salle University, Philippines

*julieto_perez@dlsu.edu.ph

Abstract: In this paper, we present the design of a dialogue-based tutoring system
called DT4-Coding to help novice programmers understand their misconceptions about
programming concepts and work towards correcting them. The error or misconception
detection and correction are based on Ohlsson's Theory of Learning from Performance
Error, which suggests that a mentor (in this case, a software tutor) is necessary to help
learners detect these errors and provide feedback to repair faulty knowledge. We
utilized the constraint-based model (CBM) for domain and knowledge modeling, which
allows human experts to represent knowledge as a constraint. These constraints were
used to assess student answers and to generate LLM-based feedback via a question-
answer form of dialogue. By incorporating human-written domain knowledge, the
system could potentially reduce the problem of LLMs in generating solutions that may
be factually incorrect.

Keywords: dialogue-based tutoring systems, constraint-based tutor, LLM-based
tutoring system

1. Introduction

Large Language Models (LLMs) have significantly transformed teaching and learning,
including programming education, by providing easy access to code generation. However,
researchers have raised concerns about LLMs' possible detrimental effects on programming
instruction since they were introduced (Prather et al., 2024). For instance, LLMs may offer
misleading feedback on logic and semantic errors, necessitating teacher involvement to guide
students effectively (Kiesler et al., 2023). Moreover, studies have shown that LLMs can be
unreliable, sometimes making the same mistakes as students (Hellas et al., 2023). Despite
these issues, LLMs' zero-shot language understanding and generation capabilities make them
appealing to educational systems (Zhu et al., 2024). However, these systems often rely on
prompts that lack a theoretical basis, leading to problems like hallucinations (Chowdhury et
al., 2024). Although LLMs can provide personalized and immediate feedback, they may
produce incorrect solutions and fail to reveal students' understanding of programming
principles.

We proposed a dialogue-based approach to programming instruction to maximize the
potential benefits while addressing the limitations of LLMs as a software tutor. This method
encourages natural language dialogue, promoting activities such as self-reflection and self-
explanation, which help students construct knowledge and identify misconceptions (Chi et al.,
1994; Nye et al., 2014; Weerasinghe & Mitrovic, 2006). Currently, we rely on LLMs' zero-shot
language understanding capability for assessment. While LLMs have resolved scalability
issues in feedback generation, Stamper et al. (2024) argue that many systems overlook crucial
aspects of instructional design in the design process. They recommend incorporating insights
from learning science into LLM-based intelligent tutoring systems (ITS). To address this, our
system uses a Constraint-based Model (CBM) for student and domain modeling, employing
expert-encoded knowledge as constraints. This approach may reduce the likelihood of LLMs
generating incorrect information by guiding prompts with expert knowledge.

2. Related Studies

Programming is a complex activity that requires various skills, such as problem-solving,
abstraction, mathematical logic, testing, and debugging (Ben-Ari, 1998). Dialogue-based
tutoring (DTS) has proven to be an effective approach to assisting learners with these
challenges (VanLEHN, 2011), as evidenced by systems like the AutoTutor family of software
tutors (Nye et al., 2014). Early dialogue systems, such as PROPL (Lane & VanLehn, 2004),
relied on handcrafted rules for natural language understanding (NLU) and generation, but this
changed with the rise of machine learning, which became the main method for handling natural
language processing (NLP) tasks.

With recent advances in deep learning and the introduction of Large Language Models
(LLMs), the approach to assessment and feedback generation in programming education has
shifted. LLMs' in-context learning capabilities allow feedback generation without the traditional
assessment methods, simply by prompting (Matelsky et al., 2023). While LLMs have been
increasingly used for assessing programming assignments and helping learners write code
(Liffiton et al., 2023; Reeves et al., 2023), few studies have explored dialogue-based
approaches that truly understand student learning in programming (Ym et al., 2023).

Stamper et al. (2024) noted that many of these systems overlook key aspects of
instructional design and the evaluation of feedback's impact on learning. Traditional intelligent
tutors use two main learner modeling approaches: the constraint-based model (CBM), which
is suited for ill-defined problems like programming and is based on Ohlsson's theory of learning
from performance error (Ohlsson, 1996), and the production rules model, inspired by
Anderson's ACT-R theory (Anderson, 1996). CBM is particularly advantageous because it
doesn't require a bug library; instead, it checks a student's solution against constraints, with
any violation indicating a misconception.

3. System Design

To attain the tutoring system’s instructional purpose, it is designed to utilize CBM for student
and domain modeling. CBM is based on the Theory of Learning from Performance Errors,
which holds that learning undergoes two phases: error detection and correction (Ohlsson,
1996). To help students understand their errors, we employ a Question-Answer strategy. This
strategy will expose the student’s misconceptions through their reasoning in an answer to a
question. Feedback is given to repair the faulty knowledge, allowing the students to integrate
the new knowledge, thereby correcting their errors or misconceptions. Graesser’s five-step
tutoring frame facilitates such a strategy (Graesser et al., 2000.). Figure 1 shows the key
components of the dialogue system necessary to facilitate interaction. Each of these
components is described in the succeeding sections.

Figure 1. Components of the Dialogue Tutor

3.1 Constraints

The Theory of Learning from Performance Error paved the way for developing a Constraint-
based Model (CBM) for student and domain modeling in intelligent tutoring systems (Ohlsson,

1994; Mitrovic & Ohlsson, 1999). A constraint can be considered a unit of declarative
knowledge that evaluates the outcomes of tentative actions taken without sufficient reasons,
which means it encodes prescriptive rather than descriptive knowledge. The type of constraint
used in CBM has the general form: When such-and-such conditions are the case, then such-
and-such other conditions ought to be the case as well (or else something has gone wrong)
(Ohlsson, 2016). Two types of constraints in this work were adopted from the work of Holland
et al. (2009): syntactic and semantic constraints. The syntactic constraints capture the rules
of syntax in a certain programming language. For example, “Each assignment must contain a
valid expression on the right-hand side.” The semantic constraints contain the encoded logical
component of the solution. An example is, “If the problem requires a function to be applied to
a range of values, the solution must contain a loop.”

This work differs from previous works utilizing CBM, emphasizing conversational
tutoring through a question-answer approach. The evaluative nature of constraints makes it
well-suited for assessing students' responses to questions, providing an opportunity to gauge
their understanding of the domain. This is why, when creating a problem, the constraint is
used as a reference answer. This allows corresponding feedback to be given to align faulty
student knowledge manifested in their incorrect responses.

3.2 Dialog Manager

To decide on what and how to respond to a student's answer to a question, the dialog manager
controls the flow of the dialogue by prompting the LLM. There are four types of prompts: a
prompt for assessing a student's answer, a prompt to generate feedback for a correct answer,
a prompt to produce feedback for an incorrect answer, and a prompt for generating the
question for a partially correct answer.
 When the student responds to a question, the software tutor will prompt the LLM to
compare the student’s answer to the reference answer (which is a constraint). The question
referred to was created during the authoring stage. It is designed to cover a constraint and
should elicit an answer indicating whether it is entailed or violated. Given an example
presented in Listing 1, although the student's answer is incomplete, this can be entailed from
the constraint. The student answer checker works for this purpose, as discussed in Section
3.3. The answer is considered correct when the student's answer is an entailment. Thus, a
prompt for producing positive feedback is executed. If the answer is incorrect, the LLM will be
prompted to generate feedback addressing the misconception following the format presented
in Listing 2. After an entailment or violation is detected, the dialog manager will prompt the
LLM to retrieve the list of concepts not covered by the student’s answer and generate a
question focusing on the identified concept, thereby initiating a multi-turn conversation. This
is further discussed in Section 3.4.

A pre-defined question, a constraint, and a student’s answer are given as follows:

• Question: Why does the error occur?

• Reference Answer (Constraint): “A variable must be declared with a specific data
type before it can be used”.

• Student’s answer: “The variable was not declared”.

Listing 1. Example list of inputs in a tutoring session.

3.3 Student Answer Checker

When the dialog manager calls for assessment, a zero-shot prompting to LLM is initiated to
check whether a student’s answer is an entailment or a violation with respect to the constraint.
For example, given the scenario in Listing 1, the student’s answer is correct with respect to
the question. The answer is in a negative statement form and entails a violation of the
constraint. A prompt is written to check the student’s answer using the format presented in
Listing 2. The result of the assessment determines the next action to be taken.

• Description: Determine whether a student’s answer is either an entailment
(positive statement form), a violation (negative statement form), or an out-of-topic
with respect to the constraint.

• Input indicator: Student answer: “Input text”, Constraint: “input text”,

• Output indicator: Assertion, Classification, Reason

Listing 2. Prompt format for incorrect feedback.

3.4 Feedback for Correct and Incorrect Answers

Feedback is a mechanism used to repair students’ errors or misconceptions when detected
during reasoning in a dialogue. Aligned with the CBM approach, the format used by popular
constraint-based tutors was adopted because it has been reported to help learners. The
approach suggested that when an error or misconception is detected, effective feedback
should tell the student where the error is and what constitutes the error and re-iterate the
domain principle violated by the student. For example, the feedback message might say, “The
error lies in the condition of the if-statement, and the comparison operator causes a logical
error. Remember that the condition in an if-statement must evaluate to true for the block
statement to be executed”. When the assessment is completely correct, positive feedback is
given by first generating positive backchannel feedback (e.g., That’s right!), followed by the
same format described above.

3.5 Feedback for Partially Correct Answer

When positive feedback is generated after a correct answer, another prompt will be initiated
to check whether the student’s answer has covered all the information in the constraint.
Feedback in the form of a question will be initiated to cover the missing information in a
student’s answer. For example, given an example described in Listing 1, although the
student’s answer can be entailed from the reference answer, it is incomplete because of the
missing phrase “with a specific data type”. To elicit this information, a sub-question will be
automatically generated by prompting the LLM. The same process of checking the answer to
this sub-question is used, as described in Section 3.3. When a student's answer is correct, the
same feedback will be provided; otherwise, the system will generate a pump, and the loop
continues. Positive feedback will be generated if the correct answer is provided after the pump.
Otherwise, the system will provide the correct solution and end the dialogue.
 It is possible to have multiple missing information in a student’s answer. The tutor will

tackle each of these, making a multi-turn conversation.

3.6 Software Interface

Figure 2 shows the interface of the system, which we call DT4-Coding. This view has three
sections: the problem description, the conversation, and the code area. Teachers author the
problems; thus, they must be predefined along with the main questions and the corresponding
code. The tutor initiates the conversation by posing a question. The student then responds by
typing an answer, which the tutor evaluates. Based on this assessment, the tutor provides
appropriate feedback, as outlined in the previous sections.

In Graesser’s tutoring frame, the fifth step is assessing the student's understanding
after receiving help. In this case, an assessment is done through code modification to verify if
students understand or learn from their previous mistakes. The student must have corrected
the faulty knowledge about the domain by incorporating knowledge gained from feedback.

Hence, the system must allow students to modify a given code. A log of all interactions will be

captured for each session, which will be used further to assess the system's impact on
students’ learning experiences.

Figure 2. Interface of DT4-Coding

4. Further Work

Hallucination remains a significant problem in LLM-based applications, impacting the quality
of both language understanding and generation tasks. To address this problem, the system
needs to have a certain level of controllability. In the context of this study, the quality of the
feedback generated depends on the quality of the student's answer being assessed. When
utilizing zero-shot language understanding capabilities, LLMs must accurately break down
entailments for each student's answer to ensure correct classification results. During the initial
exploration, zero-shot prompting can yield acceptable results after several iterations and
careful crafting of the prompts. However, this process requires manual effort and may lead to
suboptimal solutions. Thus, it is important to utilize automatic prompting techniques like
Automatic Chain of Thought (Auto-CoT) to achieve the best results for this intricate task. This
will entail comparing other automatic prompting techniques to determine the most effective
solution.

The Retrieval-Augmented Generation (RAG) technique influences the constraint-
augmented feedback generation method. In retrieving information from the collected
documents about selected tutoring topics, the human written constraint is used as a query to
retrieve patterns from the LLM. Hence, a method for evaluating the quality of feedback must
follow RAG metrics. In the context of RAG, the quality of LLM outputs relies on the quality of
the two components: the retriever and the generator. In this study, the evaluation must include
both the quality of the assessment output and the quality of the generated feedback given the
constraint. The quality of feedback must be checked against the following criteria: faithfulness,
answer relevancy, contextual precision, contextual recall, and contextual relevancy.

To properly understand the implications of this LLM-based software tutor, in addition
to the direct assessment following the fifth step of the tutoring frame, an acid test will be
conducted to assess further the potential benefits and impact of DT4-Coding on students’
learning experiences. This will include identifying patterns emerging in students’ usage of the
software tutor, which can be observed in the dialogue history, and a semester-long field
evaluation study involving students enrolled in introductory programming courses.
Furthermore, participants will undergo a pre-test assessment to form the basis for dividing
them into two groups. The control group will utilize traditional learning methods without the
software tutor, while the experimental group will utilize the software tutor as their primary
learning tool. While recognizing that various factors influence student performance, a
comparative analysis of the final grade to assess learning outcomes can offer insights into the
potential benefits of the software tutor.

References

Anderson, J. R. (1996). ACT: A simple theory of complex cognition. Am. Psychol., 51(4), 355–365.
https://doi.org/10.1037/0003-066x.51.4.355

Ben-Ari, M. (1998). Constructivism in computer science education. Technical Symposium on Computer
Science Education. https://api.semanticscholar.org/CorpusID:60449159

Chi, M. T. H., Leeuw, N. D., Chiu, M.-H., & Lavancher, C. (1994). Eliciting self-explanations improves
understanding. Cognitive Science, 18(3), 439–477. https://doi.org/10.1016/0364-
0213(94)90016-7

Chowdhury, S. P., Zouhar, V., & Sachan, M. (2024). Scaling the authoring of AutoTutors with Large
Language Models.

Graesser, A. C., Person, N., & Harter, D. (n.d.). Teaching Tactics in AutoTutor.
Hellas, A., Leinonen, J., Sarsa, S., Koutcheme, C., Kujanpää, L., & Sorva, J. (2023). Exploring the

Responses of Large Language Models to Beginner Programmers’ Help Requests. Proceedings
of the 2023 ACM Conference on International Computing Education Research - Volume 1, 93–
105. https://doi.org/10.1145/3568813.3600139

Holland, J., Mitrovic, A., & Martin, B. (2009). J-Latte: A Constraint-Based Tutor for Java.
Kiesler, N., Lohr, D., & Keuning, H. (2023). Exploring the Potential of Large Language Models to

Generate Formative Programming Feedback. https://doi.org/10.48550/arXiv.2309.00029
Lane, H. C., & VanLehn, K. (2004). A Dialogue-Based Tutoring System for Beginning Programming.

The Florida AI Research Society. https://api.semanticscholar.org/CorpusID:262370016
Liffiton, M., Sheese, B., Savelka, J., & Denny, P. (2023). CodeHelp: Using large language models with

guardrails for scalable support in programming classes.
Matelsky, J. K., Parodi, F., Liu, T., Lange, R. D., & Kording, K. P. (2023). A large language model-

assisted education tool to provide feedback on open-ended responses.
Nye, B., Graesser, A., & Hu, X. (2014). AutoTutor and Family: A Review of 17 Years of Natural

Language Tutoring. International Journal of Artificial Intelligence in Education, 24.
https://doi.org/10.1007/s40593-014-0029-5

Ohlsson, S. (1996). Learning from performance errors. Psychol. Rev., 103(2), 241–262.
https://doi.org/10.1037/0033-295x.103.2.241

Ohlsson, S. (2016). Constraint-Based Modeling: From Cognitive Theory to Computer Tutoring – and
Back Again. International Journal of Artificial Intelligence in Education, 26(1), 457–473.
https://doi.org/10.1007/s40593-015-0075-7

Prather, J., Denny, P., Leinonen, J., Smith IV, D. H., Reeves, B. N., MacNeil, S., Becker, B. A., Luxton-
Reilly, A., Amarouche, T., & Kimmel, B. (2024). Interactions with Prompt Problems: A New Way
to Teach Programming with Large Language Models. ArXiv, 1.

Reeves, B., Sarsa, S., Prather, J., Denny, P., Becker, B. A., Hellas, A., Kimmel, B., Powell, G., &
Leinonen, J. (2023, June 29). Evaluating the performance of code generation models for solving
parsons problems with small prompt variations. Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education V. 1, New York, NY, USA.
https://doi.org/10.1145/3587102.3588805

Stamper, J., Xiao, R., & Hou, X. (2024). Enhancing LLM-based feedback: Insights from Intelligent
Tutoring Systems and the learning sciences.

VanLEHN, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and
other tutoring systems. Educ. Psychol., 46(4), 197–221.
https://doi.org/10.1080/00461520.2011.611369

Weerasinghe, A., & Mitrovic, A. (2006). Facilitating deep learning through self-explanation in an open-
ended domain. KES Journal, 10, 3–19. https://doi.org/10.3233/KES-2006-10101

Ym, P., Ganesan, V., Arumugam, D. K., Gupta, M., Shadagopan, N., Dixit, T., Segal, S., Kumar, P.,
Jain, M., & Rajamani, S. (2023). PwR: Exploring the role of representations in conversational
programming.

Zhu, Z., Cheng, X., An, H., Wang, Z., Chen, D., & Huang, Z. (2024). Zero-Shot Spoken Language
Understanding via Large Language Models: A Preliminary Study. In N. Calzolari, M.-Y. Kan, V.
Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024) (pp. 17877–17883). ELRA and ICCL. https://aclanthology.org/2024.lrec-
main.1554

