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Abstract: This study will explore and experiment with various combinations of methods 
to handle data imbalance in order to address the common issue of insufficient minority 
samples in at-risk student prediction. Additionally, we will examine the purpose of 
applying computer tools to educational issues and emphasize the necessity of adhering 
to models with high transparency and explainability, ensuring that the decision-making 
process can be transparent and comprehensive in the context of learning analytics. 
After comparing model performance, we selected the logistic regression model 
combined with correlation analysis and threshold adjustment, which showed 
outstanding performance in UAR, G-means, and other evaluation metrics. We will 
analyze the reasons behind students' academic performance based on the feature 
importance ranking from the model, thereby establishing a high-performance and high-
transparency benchmark model for the LBLS593 dataset. 
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1. Introduction 
 
Identifying at-risk students is a recurring issue in learning analytics(LA). To recognize the 
behavioral tendencies of at-risk students in the early stage and assist teachers in developing 
intervention strategies, we continuously collected students’ learning data on different learning 
platforms. This year, a dataset named LBLS593 has been released and is being used for 
research in learning analytics. 
This study is going to establish a model using the data collected in 2023 of 467 students as a 
training dataset and take the newly updated data from 126 students as a predicting target by 
comparing the performance of different machine learning models and data preprocessing 
methods, establishing a new accuracy benchmark, and finally identifying the features with 
more significant influence on the final prediction. Different from before, we have realized the 
deficiencies in utilizing explainable AI methods (XAI). Despite the high applicability of XAI 
models such as SHAP and Lime, XAI methods can provide unfaithful and insufficient 
explanations, failing to clarify the black box model's computations (Rudin, 2019). For instance, 
explaining the SHAP model can be highly complicated while tackling a high-dimensional 
dataset. With an increasing number of features, the complexity of the distribution of Shapley 
value is rising simultaneously, leading to difficulty for teachers in comprehending and making 
use of the result  (Ortigossa et al., 2024). Likewise, it is notable that the XAI model exhibits a 
certain amount of instabilities even if the base model is stable (Dai et al., 2022). If the 
explanation provided by the XAI method fluctuates and differs over multiple runs, the reliability 
is questionable and potentially causes partial decisions or treatments. 

 Besides the potential issues that may arise from the computational process of the XAI 
model, with higher demands of transparency in the model decision process, accuracy and 
recall rate are not the only indicators to evaluate the models’ performance. The explainability 
of the machine learning models themselves is gaining more attention. Explanations of models 
are not merely a matter of ethics and fairness but also necessary information for teachers to 



formulate intervention strategies, especially in education that emphasizes context and 
individuality. Therefore, to maintain the explainability of the model, we aim to use only simple 
machine learning models like logistic regression, decision trees, and other models based on 
simple algorithms instead of deep learning models like support vector machines and neural 
networks. In this study, we will answer the following two research questions: 

 
RQ1: To balance the explainability and accuracy of the model, what method can be 
applied in the context of learning analytics? 
RQ2: What are the key factors that influence students’ performance? 

 

2. Literature Review 
 
Several educational institutions collect students' behavioural data on digital learning platforms, 
aiming to help the teaching faculties to track students' situations and provide on-time 
assistance, especially in computer science education, in which quantitative data collection is 
more accessible thanks to the emergence of various online learning platforms. That is also 
why learning analytics applications primarily focus on computer programming classes or 
computer science subjects. Learning datasets used by research like this include features like 
assignment submission time (Falkner et al., 2012), learning activities during weekends, class 
attendance,  and how long they spend on the learning platform. Some datasets even contain 
data outside of class, such as travel distance to the university and grades of other courses 
(Azcona et al., 2019). Collecting these data aims to discover subtle or apparent factors that 
affect students' academic performance. The features in LBLS datasets include learning 
activities and numerous self-regulated learning and learning strategy-inventory measurement 
results reflecting students' attitudes, motivations, and learning styles(Lu et al., 2022), which 
are proven to impact the learning process significantly by learning theories (Rößling et al., 
2008) 

When it comes to defining at-risk students, we have drawn on a wide range of related 
research and have categorized them into two types. The first type is based on behaviors. For 
instance, according to Falkner et al. (2012), at-risk students are those with poor assignment 
submission status. In Azcona et al. (2019) and Al-Shabandar et al. (2019), successful 
behavioural patterns have been established by tracking past behavioural trajectories. 
Students who deviate from these expected study patterns are identified as at-risk. The second 
type is based on score criteria, such as low GPA or grades in mid-term and final exams. In our 
study, we will adopt the latter approach and define at-risk students as those whose final scores 
fall within the bottom 3% of the class due to the deficiency of legacy data.   

While exploring the prediction of at-risk students, we discovered a frequent issue of 
imbalanced datasets. Since at-risk students are normally anomalous within the course, even 
though the accuracy of classifiers can be very high, the low recall rate indicates that the models 
fail to detect the anomalies. Haixiang et al. (2017) have provided an overview of frequently 
applied methods like re-sampling, feature extraction, cost-sensitive, ensemble methods, and 
algorithmic classifier modifications, and elucidate the features of dataset and scenarios for 
which these methods are most appropriately suited. The combined use of these methods can 
as well be discovered in learning analytics. Barros et al. (2019) utilized balanced bagging and 
tested various performance evaluation metrics to address the fact that students-dropout are 
significantly fewer than those who persist in their studies in a research of predicting student 
dropout. To deal with a similar issue Thammasiri et al. (2014) compare the efficiency of 
multiple re-sampling methods; Hlosta et al. (2017) however, used a class weight adjustment 
method the feature. Owing to the dynamic feature of their dataset, students’ behavior and data 
distribution are constantly changing, indicating an one-off re-sampling methods for static 
dataset is not applicable in this scenario. in Severson et al. (2007) with their dataset contained 
the students’ behavioural data on virtual leanring platform that has a similar dynamic features, 
the research  applied threshold adjustment methods to influence the output, intervening during 
the model predicting stage. The aforementioned studies have affirmed the the necessity of 
selecting appropriate strategies based on the characteristics of imbalanced datasets. We 
classify these methods into three categories based on the different stages of the experiment 



where the techniques are applied: data preprocessing, model training, imbalance handling, 
and model post-processing. The methods used in different stage should be confirmed after 
identifying the characteristics of our dataset.  

The purpose of at-risk students' prediction is not simply labelling. Instead, it is to let 
teachers provide on-time assistance when students encounter issues in their learning 
progress. In advance of any intervention, the required information is the explanation of the 
prediction. 'Any generalization or theory constructed without deep understanding, not 
grounded in the concrete and particular, is vacuous' (Birhane, 2021). The over-generalization 
of the machine learning process can potentially result in issues of students' individuality being 
overlooked, along with bias and discrimination (Scholes, 2016). We assert that the 
explainability and transparency in at-risk student prediction must not be compromised. 
Therefore, choosing the model and imbalanced handling methods will be the primary 
consideration in determining whether the method aligns with the context and needs of at-risk 
student prediction. For example, we will avoid using feature extraction techniques that can 
reduce explainability, such as PCA (Principal components analysis). Substantially, teachers 
need to understand the key factors influencing student performance; therefore, we prioritize 
interpretable models over complex deep learning models. Also, we avoid oversampling 
methods like SMOTE (Synthesized Minority Oversampling Technique), which addresses the 
imbalance by generating synthetic data points. This approach ensures that the results reflect 
students' learning conditions based on real-world data in the model interpretation stage. 
 

3. Methods 
 

3.1 LBLS593 
 

This study utilizes a dataset named LBLS593. The dataset was collected from a long-running 
university programming course and includes a total of 593 students across 12 classes. Each 
dataset contains 18 weeks of students' BookRoll e-book reading behaviors, VisCode 
programming editing behaviors, self-regulated learning strategies, language learning 
strategies, and their final exam scores. 

 

3.2 Data Balancing 
 

After missing value cleaning and normalization, 242 students’ data are in the training dataset. 
Only nine students are labelled as ‘at-risk’, with scores ranging from 3 to 76 The table below 
presents the model performance without any imbalance handling methods involved. Despite 
both models achieving high accuracy rates of 0.938 and 0.800, the F1-scores for class 1 (at-
risk) are 0.33 and 0.00, respectively. Logistic Regression demonstrated that only 50% of the 
predictions for the minority class were correct, and it captured merely 25% of the actual 
minority class samples. Contrarily, Decision Tree struggled significantly with the minority class, 
showing no successful identification of 'at-risk' students (precision and recall both 0.00), 
indicating that none of the actual minority class samples were correctly classified. 

 
Table 1. Performance Comparison of Logistic Regression and Decision Tree Models Without 
Data Balancing 

Evaluation Metrics Logistic Regression Decision Tree 

Accuracy 0.938 0.800 

F1 Score 0.33 0.000 

Precision (Class 0) 0.95 0.93 

Recall (Class 0) 0.98 0.85 

F1 Score (Class 0) 0.97 0.89 

Precision (Class 1) 0.50 0.00 

Recall (Class 1) 0.25 0.00 

F1 Score (Class 1) 0.33 0.00 

 



To improve this situation, we will employ various method combinations, and 
determining the most effective combination requires empirical validation through 
experimentation. We classify methods for handling data imbalance into three categories based 
on the different stages of the experiment where the techniques are applied: data 
preprocessing, model training, imbalance handling, and model post-processing. We have 
noticed that some method combinations may have the issue of overlapped work; for example, 
the combined use of cost-sensitive and class adjustment results in certain feature weights 
being repeatedly reinforced or weakened. Therefore, eleven method combinations were 
established after assessing each method's principles and applicable stages. 
 
Table 2. Categorization of Imbalance Handling Techniques Based on Application Stages 

Data Preprocessing Model Training Imbalance Handling Model Post-
Processing 

• Down-Sampling 
• Correlation 

Analysis 

• Lasso-
Regression 

• Random Forest 
Classifier 

• Logistic 
Regression 

• Decision Tree 
Classifier 

Class Adjustment Threshold 
Adjustment 

 
Table 3. Classification of Model Combinations by Imbalance Handling Strategy 

 Categorization Description 

1 Based on Sampling 
Strategy 

Down-sampling + Random Forest Classifier 

2 Down-sampling + Lasso Regression 

3 Down-sampling + Logistic Regression 

4 Down-sampling + Decision Tree Classifier 

5 Based on Feature 
Selection or 

Correlation Analysis 
(Pearson correlation 

coefficient) 

Correlation Analysis + Random Forest Classifier 

6 Correlation Analysis + Logistic Regression 

7 Correlation Analysis + Lasso Regression 

8 Correlation Analysis + Logistic Regression + Threshold 
Adjustment 

9 Based on Class 
Adjustment & 

Threshold 
Adjustment 

Class Adjustment + Random Forest Classifier + Threshold 
Adjustment 

10 Class Adjustment + Logistic Regression + Threshold 
Adjustment 

11 Class Adjustment + Decision Tree Classifier + Threshold 
Adjustment 

 
Regarding the model performance evaluation, in addition to accuracy, recall rate and 

F1 score, we will use evaluation metrics which are more sensitive to imbalance datasets, such 
as Geometric Mean (G-mean) and Unweighted Average Recall (UAR), to avoid accuracy 
paradox and capture the model's sensitivity to the minority class (Barros et al., 2019; Chachoui 
et al., 2024). UAR is primarily used in multiclass classification problems. It is calculated by 
averaging the recall rates across all classes, without considering the number of samples in 
each class, making UAR useful for handling class imbalance issues in binary classification 
problems as well. On the other hand, G-means combines sensitivity (recall) and specificity 
(true negative rate). Both offer robust metrics for evaluating model performance, especially in 
scenarios involving class imbalance.  
 
 
 
 



3.3 Model Explanation 
 

The model explanation will be demonstrated using the rank of feature importance. By 
extracting the coefficient of every feature, we can see the strength and direction of feature 
influence. This is also the reason for using simple machine learning models; during the 
interpretation phase of predictions, they can most accurately and straightforwardly reflect the 
reasons behind the model's decisions. This approach provides insights into the model's overall 
feature influence and allows for understanding individual data points, enabling teachers to 
grasp and comprehend students' learning conditions more easily. 
 

4. Results 
 

4.1 Reply RQ1 
 
The table below presents the performance evaluation of various method combinations in 
handling imbalanced data, focusing on metrics such as Accuracy, F1 Score, UAR, and G-
means. The "Correlation Analysis + Logistic Regression + Threshold Adjustment" combination 
outperformed others on all the metrics, achieving the highest F1 Score (0.75), UAR (0.87), 
and G-means (0.86), showing the best performance in balancing sensitivity and specificity. 
Conversely, "Down-sampling + Lasso Regression" and "Correlation Analysis + Lasso 
Regression" performed poorly, with F1 Scores and G-means of 0.0, indicating a failure to 
recognize most minority classes. The analysis suggests that feature selection combined with 
threshold adjustment, particularly when paired with logistic regression, performs more 
consistently and effectively across all metrics. We will use this combination as the model for 
subsequent interpretation. 
 
Table 4. Performance Metrics Comparison Across Different Model Combinations for 
Imbalance Handling 

Combination Accuracy F1 Score UAR G-means 

Down-sampling + Random Forest 
Classifier 

0.95 0.57 0.74 0.70 

Down-sampling + Lasso Regression 0.94 0.00 0.50 0.00 

Down-sampling + Logistic Regression 0.94 0.50 0.73 0.70 

Down-sampling + Decision Tree 
Classifier 

0.64 0.08 0.46 0.41 

Correlation Analysis + Random Forest 
Classifier 

0.91 0.25 0.60 0.49 

Correlation Analysis + Logistic 
Regression 

0.97 0.67 0.75 0.70 

Correlation Analysis + Lasso 
Regression 

0.94 0.00 0.50 0.00 

Correlation Analysis + Logistic 
Regression + Threshold Adjustment 

0.97 0.75 0.87 0.86 

Class Adjustment + Random Forest 
Classifier + Threshold Adjustment 

0.89 0.22 0.59 0.48 

Class Adjustment + Logistic Regression 
+ Threshold Adjustment 

0.92 0.44 0.73 0.69 

Class Adjustment + Decision Tree 
Classifier + Threshold Adjustment 

0.92 0.29 0.61 0.49 

 
In addition to the four metrics, we use Receiver Operating Characteristic Curve (ROC) 

curves to help us get a more intuitive and easier way to interpret the model performance. ROC 
curve is a graphical tool for evaluating the performance of binary classification models, 
illustrating the model's trade-off between True Positive Rate and False Positive Rate under 
different thresholds. The diagonal line in the graph represents the performance of a random 



guessing model, and the Area Under Curve (AUC) represents the model's performance. A 
figure closer to 1 indicates that the model can flawlessly execute classification work. On the 
other hand, closer to 0 means the model's classification ability is worse than random guessing. 
The ‘Correlation Analysis + Logistic Regression + Threshold Adjustment’ combination reached 
the highest AUC of 0.99, and its curve is very close to the top-left corner at 1.0, showing that 
it can perform accurate classification tasks, which aligns with the metrics on the above table. 
 

 
Figure 1. ROC curves for eleven combinations 

 

4.2 Reply RQ2 
 
After using the 'Correlation Analysis + Logistic Regression + Threshold Adjustment' 
combination, we listed the top ten features that have the greatest impact on the prediction 
results in the logistic regression model. These include srl_m_29 (SRL Measurement: 'I take 
tests thinking of the consequences of failing.'), PREV (Students' BookRoll activities: 'Went to 
the previous page.'), srl_m_30 (SRL Measurement: 'I have an uneasy, upset feeling when I 
take an exam.'), indicating that students' anxiety and frustration regarding exams may be 
significant factors influencing their academic performance. Additionally, the frequency of 
repeatedly returning to the previous page in BookRoll activities could indicate the frequency 
of review, which may also have a substantial impact on their learning outcomes. 
 

 
Figure 2. Top 10 feature importance in logistic regression model 



 

5. Conclusion 
 
The dilemma between model accuracy and explainability is manifested in the issue of at-risk 
student prediction. Due to the lack of anomaly samples, the model's explainability is often 
compromised in pursuit of accuracy. However, this approach does not align with the context 
of educational issues, especially when using computer tools for human-centred issues; the 
entire process should align with human understanding since the establishment of a prediction 
model does not ask for high accuracy. Instead, it allows teachers to understand the student's 
situation. A model with interpretability is essential in educational practice and necessary to 
ensure that students' individuality is noticed due to the overgeneralization often seen in 
machine learning. Moreover, the widely held belief that "accurate models must be highly 
complex" has been challenged by numerous studies. We have demonstrated in this study that 
even with simple models, significant performance improvements can be achieved through 
appropriately handling imbalanced data, establishing a new benchmark for the LBLS593 
dataset: a highly effective, highly interpretable, and a model low in complexity. 
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