
Kashihara, A. et al. (Eds.) (2024). Proceedings of the 32nd International Conference on Computers in

Education. Asia-Pacific Society for Computers in Education

Novice Programmers' Saccadic Patterns in
Error Message Comprehension and Syntax

Error Identification

Caren PACOLab*, Maria Mercedes RODRIGOa & Christine Lourrine TABLATINb
aAteneo de Manila University, Philippines
bPangasinan State University, Philippines

*ambat_caren@yahoo.com

Abstract: Learning debugging is crucial for novice programmers, and as compiler error
messages play a vital role in this process, exploring how novice programmers read and
interpret these messages has become a focal point for researchers in computer
science education. Understanding how novice programmers interpret compiler error
messages is essential, as debugging skills are fundamental for their development. In
line with this, our prior works investigated how student programmers process syntax
errors embedded in Java and C++ programs and the relationship between novice
programmers’ personalities and their visual attention patterns using fixation-based
metrics. Our previous studies were limited in that they did not capture the dynamics of
the participants' eye movements. As our next step, in this study, we present saccade-
based metrics that we used to gain insights into the problem-solving strategies
employed by novice programmers. We found that high and low performing participants
demonstrate similar strategies for scanning through code and detecting errors.
Furthermore, high performing participants demonstrate longer average saccade
lengths, indicative of purposeful exploration and the gathering of more information in
each eye movement. Additionally, our findings indicate that high performing
participants exhibit a lower average regression ratio, suggesting a greater ability to
maintain focus and comprehension throughout problem-solving tasks. In future work,
integrating contextual factors such as task complexity, familiarity with programming
languages and individual learning styles into the analysis of saccade-based metrics
can help identify situational factors shaping problem-solving strategies.

Keywords: Debugging, Eye tracking, Novice programmers, Saccades

1. Introduction

Compiler error messages assist beginner programmers in identifying and correcting syntax
errors while debugging. These messages can take the form of either literal or non-literal. Literal
syntax error messages are generated by the compiler to precisely match the specific error
encountered. For instance, if the error message states 'semicolon (;) expected,' a semicolon
added to the specified line would resolve the issue if the error were literal. Conversely, a non-
literal error message does not accurately depict the actual mistake (Dy & Rodrigo, 2010). In
the same scenario, if 'semicolon (;) expected,' were a non-literal error, adding a semicolon to
the indicated line would not fix the problem since the root cause of the error lies elsewhere.

Given the significance of debugging within computer science and its related fields, along
with the crucial role compiler error messages hold in this process, there is an increasing focus
among researchers in computer science education on investigating how novice programmers
interpret and respond to these messages, and how these approaches differ based on the
proficiency level of the programmer.

This study is a continuation of a larger research project on the use of eye tracking to
determine differences between students of different ability levels and characteristics. The first
study by Tablatin and Rodrigo (Tablatin & Rodrigo, 2023) made use of eye tracking to
determine the visual attention of high- and low-performing students and found that they

differed when reading and acting upon compiler error messages. The study found that high-
performing students exerted more visual attention on the buggy lines identified by the compiler
error messages. A subsequent study by Pacol, Rodrigo, and Tablatin (2024) on the same
dataset investigated how student visual attention varied, depending on whether the error was
literal or non-literal. The study found that the type of error introduced in the program can affect
how high and low performing students visually attend to compiler error messages and error
lines. A later study by Pacol, Rodrigo, and Tablatin (2024) investigated the relationship
between novice programmers’ personalities and their visual attention patterns. They found
that students with high levels of agreeableness and conscientiousness tend to allocate
minimal visual attention to compiler error messages and error lines, respectively.

The main limitation of these prior works is that the analysis was limited to fixation counts
and fixation durations, a subset of what Sharafi et al. (2020) calls third-order data. As our next
step, we processed additional third-order data metrics, specifically related to saccades.
Studying saccade-based metrics provides valuable insights into how individuals process
visual information during problem-solving. These metrics, such as saccade counts, saccade
rates, saccade ratio, saccade length and regressions, can reveal patterns in how the eyes
move between relevant areas, such as code errors and corresponding error messages in
programming tasks. Our research questions include:

1. How do saccadic patterns to compiler error messages differ between high and low-
performing novice programmers?

2. How do saccadic patterns to error lines differ between high- and low-performing novice
programmers after their first fixation on compiler error messages?

3. How does average saccade length differ between high and low performing novice
programmers?

4. How does average regression rate differ between high and low performing novice
programmers?

1.1 Saccades and Associated Metrics

A saccade refers to an eye movement that shifts from one fixation point to another, lasting
between 30 and 80 milliseconds (Holmqvist et al., 2011), commonly linked with visual
information exploration or navigation (McChesney & Bond, 2020). A study by Busjahn et al.
(2015) introduced two categories of saccades: regressive saccades, which denote backward
eye movements, and forward saccades (Aljehane, 2022; Busjahn et al., 2015). Forward
saccades are saccades in the direction of the target’s movement (Goettker et al., 2019). For
instance, when reading a story written in the English language, forward saccades can involve
left-to-right eye movements in horizontal saccades or downward/upward eye movements in
vertical saccades. We defined forward saccades as saccades to lines of code that were not
previously visited and regressive saccades as saccades to lines of code that were already
previously visited. Through the analysis of eye movements utilizing metrics related to
regressive saccades, we can distinguish novice programmers who exhibit a higher frequency
of regressive saccades. Moreover, an increased frequency of backward saccades could serve
as a crucial indicator of challenges and confusion in comprehending a task (Poole & Ball,
2005).

In this study, we presented saccade-based metrics by taking into account five elements:
the saccade count, saccade ratio, saccade rate, saccade length and regression ratio. We
defined these elements as follows.

Saccade count refers to the total number of rapid eye movements made within a
specified stimulus or area of interest within a stimulus.
Saccade Ratio indicates the proportion or ratio of saccades before a first fixation within the
area of interest to the total number of saccades made during stimulus processing. Dividing the
number of saccades made before the first fixation within the area of interest by the total
number of saccades made during the entire stimulus processing indicates how quickly the
student noticed the area of interest. We compute the ratio to normalize the data across
different students and stimuli. This process allowed for a fair comparison across different

stimulus conditions and accounted for variations in overall saccadic activity. The saccade ratio
directly relates to when the participant first looked at the AOI in relation to their saccadic
movements.

Saccade rate (or saccade frequency) is the number of saccadic eye movements per unit
time (Ohtani, 1971; Mahanama et al., 2022). We calculated saccade rate by dividing the
number of saccades directed towards the AOI by the total duration of time participants spent
viewing the entire stimuli. This calculation provides a measure of how often participants’ gaze
shifts towards the AOI of interest within a given time frame.

Saccade length refers to the distance between successive fixations of the participant
(Busjahn et al., 2015).

Regression ratio can be determined by counting the regressive saccades and dividing
the number of regressive saccades by the total number of saccades in the stimuli (Poole and
Ball 2005; Busjahn et al. 2011; Sharafi et al., 2020). We opted to use the terminology
'regression ratio' consistently throughout this paper to maintain internal coherence in our
analysis. It's worth noting that in some existing literature, a similar metric may be referred to
as the 'regression rate.' By adopting the term 'regression ratio' in our study, we aim to ensure
clarity and consistency in our discussion and interpretation of saccadic behavior.

2. Methodology

The study included college-level students, with a total of 63 participants: 31 from School A in
Metro Manila and 32 from School B in Pangasinan. The data from 12 participants from School
A and 6 participants from School B were excluded due to insufficient fixation recordings or
frequent head movements, resulting in inaccurate fixation data collection. Consequently, the
analysis was conducted using data from 19 students from School A and 26 students from
School B, resulting in a dataset of 45 students. While age and gender information were not
recorded, as some participants chose not to disclose these details in the survey administered
during the eye-tracking experiment, all participants had introductory programming proficiency,
having completed at least one programming course.

Two separate sets of stimuli were employed, each containing the same problems. The
stimuli, code complexity, and experimental procedure followed the guidelines outlined in
Tablatin and Rodrigo (2023). Data sources and pre-processing steps aligned with the
methodologies detailed in Tablatin and Rodrigo (2023) and Pacol et al. (2024).

2.1 Data Analysis

We classified students into high and low performers based on their total scores across
Problems 1 to 5. Participants with scores at or above the average were categorized as high
performers, and those below as low performers. School A had 12 high performers and 7 low
performers, while School B had 15 and 11, respectively.

We devised a python program to automatically calculate saccade metrics, including
count, ratio, rate, length, and regression ratio, for both compiler error messages and error lines,
as well as for the entire stimuli in each of the five programs. The program consolidates
participants' saccade data into CSV files. With five problems presented, data from participants
at School A and School B were saved in five separate CSV files. These were then summarized
into a single CSV file.

We have included in our counting of saccades the following categories: Vertical Next,
which refers to forward saccades that move one line down (Busjahn et al., 2015); Vertical
Later, pertaining to forward saccades that either stay on the same line or move down any
number of lines (Busjahn et al., 2015); and Horizontal Later, defined as forward saccades
within a line (Busjahn et al., 2015). Additionally, we included in our analysis Horizontal Earlier,
described as backward saccades within a line (McChesney & Bond, 2020); Vertical Previous,
referring to backward saccades that move one line up (McChesney & Bond, 2020); and
Vertical Earlier, which McChesney & Bond (2020) defined as backward saccades that move
up any number of lines. We presented the saccade metrics that we used to answer each of

the four research questions in the following subsections. The calculations of the saccade
metrics are described and illustrated using Figure 1. Given Figure 1, the yellow dots are the
fixations while the red lines are the saccades. The labels of the dots represent the sequence
of visits and fixation durations while the labels of the lines represent the saccade lengths. The
sequence of visits is A B C D E F.

Figure 1. Visualization of saccade metrics.

2.1.1 Saccadic Patterns to Compiler Error Messages of High and Low Performers

Programming teachers train students to comprehend and deal with compiler error messages
to quickly identify and address issues in their code, leading to more efficient programming. At
the very least, one would think that more proficient student programmers would pay attention
to the compiler error message before finding the line containing the syntax error (error line) in
the program. To determine if this hypothesis is true, we counted the saccades before a first
fixation on the compiler error message in each of the five programs and determined when the
participant first looked at the compiler error message using Equation 1. Saccades referred to
in this case are saccades on other lines in the program other than the compiler error message.
A higher saccade ratio on compiler error messages may suggest that participants are actively
searching or exploring the stimuli. This behavior may indicate an initial stage of visual scanning
and exploration to locate relevant information. We calculated the saccade rate on compiler
error messages using Equation 2 to measure how frequently participants' gazes shifted
towards them. A higher saccade rate suggests that the compiler error message is perceived
as salient during bug-finding. We also averaged the saccade ratio, saccade rate, and
regression ratio on compiler error messages in all five programs.

Eq. 1. Saccade Ratio (Compiler Error Message) = saccade counts before a first fixation
on compiler error message / total saccade counts in the entire slide
Eq. 2. Saccade Rate (Compiler Error Message) = number of saccades to compiler
error message / total durations of viewing the entire slide

As illustrated in Figure 1, there are 2 saccades before a fixation to the compiler error
message and these are A-B and B-C. A-B, B-C, and C-D are forward saccades while D-E and
E-F are regressive saccades. The saccade ratio for compiler error messages is calculated by
dividing the two saccades before fixation to the compiler error message by the total number
of saccades, equivalent to five. This calculation yields a ratio of 0.40. The saccade rate for a
compiler error message is calculated by dividing the number of saccades to the compiler error
message, which is equivalent to 2, by the total viewing time of the entire program. This viewing
time is computed by subtracting the beginning timestamp (134.7) from the end timestamp

(153.84) of the stimuli. Thus, the saccade rate for compiler error messages is 0.10 saccades
per second.

2.1.2 Saccadic Patterns to Error Lines of High and Low Performers

We examined how novice programmers respond to compiler error messages by counting the
saccades before their first fixation on the error line after their first fixation on a compiler error
message. This saccade count helped us calculate the saccade ratio (Equation 3) and saccade
rate (Equation 4) for error lines. We then averaged these metrics across all five programs.
High performers are expected to show a higher saccade rate and lower saccade ratio,
suggesting efficient visual processing, with fewer unnecessary fixations around the error lines.

Eq. 3. Saccade Ratio (error lines after first fixation on compiler error message) = saccade counts before
a first fixation on error line after first fixation on compiler error message / total saccade
counts in the entire slide after a first fixation on the compiler error message
Eq. 4. Saccade Rate (error lines after first fixation on compiler error message) = number of saccades
on error line / total duration of viewing the entire slide after a first fixation on the
compiler error message

In Figure 1, when considering L9 as the error line, the number of saccades before fixation
to the error line after the first fixation on the compiler error message is 1 (C-D). After the first
fixation on the compiler error message, the total saccade count to the error line is 3.
Consequently, the saccade ratio for the error line after the first fixation on the compiler error
message is 0.33.

2.1.3 Saccade Lengths of High and Low Performers

We calculated the saccade length between two consecutive fixations given their x and y
coordinates using Euclidean distance formula. We first computed the difference in x and y
coordinates using Equations 5 and 6. Then we calculated the Euclidean distance using
Equation 7 to yield the saccade length. Next, we used Equation 8 to calculate average
saccade length in the entire program. Finally, we computed the average of average saccade
lengths in all five programs.

Eq. 5. Δx = x2 − x1
Eq. 6. Δy = y2 − y1
Eq. 7. Saccade Length = √(Δx^2+Δy^2)

Eq. 8. Average Saccade Length = ∑saccade lengths / number of consecutive fixations

In Figure 1, the average saccade length of all saccades made in the stimuli is 38.65 pixels.

2.1.4 Regression Ratio of High and Low Performers

We counted regressive saccades based on the number of revisits in each line. High performing
novice programmers are expected to have a lower regression ratio than their low performing
counterparts. We calculated the regression ratio using Equation 9. We calculated the average
regression ratio of participants in all five programs.

Eq. 9. Regression ratio = number of regressive saccades / total number of saccades in
the stimuli

In Figure 1, the regression ratio is determined by dividing the number of regressive

saccades, which in this case is 2 (D-E and E-F), by the total number of saccades made in
response to the stimuli, resulting in a ratio of 0.40.

2.1.5 Statistical Analysis Conducted on the Saccade Data

To select suitable statistical tests for analysis, we conducted the Shapiro-Wilk test to assess

the normality of the data sets. Table 1 displays the results of the normal distribution tests
conducted on the saccade metrics of compiler error messages, error lines, and entire stimuli,
for both high and low performing participants.

Table 1. Results of Normal Distribution Tests on Saccade Metrics

 Average Saccade
Ratio

Average Saccade
Rate

AOI Class Result Class Result

Compiler
Error
Messages

High Not Normal High Not Normal

Compiler
Error
Messages

Low Normal Low Not Normal

Error Lines High Normal High Not Normal
Error Lines Low Normal Low Not Normal

 Average Saccade
Length

 Average
Regression
Ratio

Entire Stimuli High Not Normal High Normal
Entire Stimuli Low Normal Low Not normal

We employed Welch’s t-tests for normally distributed datasets and Mann-Whitney U tests for
non-normally distributed datasets to determine whether significant differences exist in
saccadic patterns of high and low performing novice programmers.

3. Results and Discussion

3.1 Difference of Saccadic Patterns to Compiler Error Messages of High and Low
Performers

We observed no significant difference in the average saccade ratio on compiler error
messages between high and low performing participants. Additionally, there was no significant
difference in the average saccade rate on compiler error messages between the two groups
of participants. The result of our analysis is summarized in Table 2.

Table 2. Saccadic Patterns of High and Low Performing Novice Programmers (Compiler
Error Messages)

Saccade Metrics High (N=27) Low (N=18) Mann-
Whitney
U test

 M SD M SD U p

Average Saccade
Ratio

0.18 0.15 0.15 0.09 246.5 0.94

Average Saccade
Rate

0.10 0.07 0.11 0.14 276.0 0.45

 Note: p < 0.05 indicates statistical significance.

The lack of a significant difference in the average saccade ratio between high and low
performing participants implies that both groups tend to exhibit similar patterns of eye
movements when encountering compiler error messages. This could be an indication that both

high and low performing participants utilize similar strategies for quickly scanning code and
identifying potential errors. Our finding is aligned with that of Uwano et al. (2006) that
programmers during code reviews tended to initially scan through the entire lines of code
briefly before focusing on specific portions. Also, the absence of a significant difference in the
average saccade rate suggests that, despite differences in performance level, both groups
were equally efficient in visual processing and navigating through code containing error
messages and that regardless of performance level, novice programmers allocate comparable
attention to the compiler error messages during debugging.

3.2 Difference of Saccadic Patterns to Error Lines of High and Low Performers

High performing participants did not exhibit a statistically significant difference in average
saccade ratio on error lines compared to their low performing counterparts. Similarly, we found
no significant difference in the average saccade rate on error lines of high and low performing
participants. The findings of our analysis are outlined in Table 3.

Table 3. Saccadic Patterns of High and Low Performing Novice Programmers (Error Lines)

Saccade Metrics High (N=27) Low (N=18) t-test

 M SD M SD t p

Average Saccade
Ratio

0.18 0.11 0.17 0.12 0.21 0.83

 High (N=27) Low (N=18) Mann-Whitney
U test

 M SD M SD U p

Average Saccade
Rate

0.08 0.06 0.07 0.06 281.5 0.38

 Note: p < 0.05 indicates statistical significance.

Our result on average saccade ratio implies that before fixation, both groups tend to
exhibit similar scanning behaviors when encountering error lines. The lack of significant
difference on average saccade rate on error lines could suggest that the ability to spot errors
is not strongly correlated with saccade rate alone.

3.3 Difference of Saccade Lengths of High and Low Performers

We found that the high performing participants had significantly longer average saccade
lengths compared to the low performing participants. Our findings support the notion proposed
in the work of Busjahn et al. (2015) that experts can make larger jumps during reading to focus
on important source code elements. This suggests that high performers may possess a similar
ability to expert readers, allowing them to efficiently navigate through code by making larger
and more purposeful eye movements to focus on significant elements in the program. Our
analysis findings are shown in Table 4. In Figure 2, the distribution and skewness of average
saccade length is illustrated. High performers exhibited a significantly higher median average
saccade length compared to low performers.

Table 4. Average Saccade Lengths of High and Low Performing Novice Programmers

Saccade Metrics High (N=27) Low (N=18) Mann-Whitney
U test

 M SD M SD U p

Average Saccade
Lengths

134.31 28.52 107.84 14.96 390.0 0.005*

Note: p < 0.05 indicates statistical significance.

Figure 2. High and Low Performers’ Average Saccade Length.

3.4 Difference of Regression Ratio of High and Low Performers

We found that high performing participants had significantly lower average regression ratio
than their low-performing counterparts. Our findings support the conclusions drawn in previous
studies, such as those by Goldberg and Kotval (1999) and Poole and Ball (2005), which
reported that higher regression rates indicate increased difficulty in executing and completing
a task. Bednarik and colleagues (2012) also discovered that repetitive gaze patterns, which
may involve regressive saccades, in some context, were linked to lower levels of expertise
among students debugging Java programs using a program visualization system. This
suggests that high performers may encounter fewer challenges that require revisiting
previously examined areas, leading to more efficient task execution and completion. We
summarized the result of our analysis in Table 5. Figure 3 depicts the distribution and
skewness of the average regression ratio. High performers demonstrated a significantly lower
median average regression ratio in comparison to low performers.

Table 5. Average Regression Ratio of High and Low Performing Novice Programmers

Saccade Metrics High (N=27) Low (N=18) Mann-Whitney
U test

 M SD M SD U p

Average
Regression Ratio

0.71 0.09 0.81 0.09 99.0 <.001*

Note: p < 0.05 indicates statistical significance.

Figure 3. High and Low Performers’ Average Regression Ratio.

4. Conclusion and Future Work

This study aimed to find insights into problem solving strategies employed by novice
programmers using saccade-based metrics. Our findings suggest that the code reading
strategies of the high and low performing participants may not be primarily driven by variations
in initial scanning behaviors or the speed of eye movements when encountering compiler error
messages. Instead, both high and low performing participants employ similar strategies for
scanning through code and detecting potential errors. The longer average saccade lengths in
high performing participants demonstrate a strategic navigation pattern wherein there is
purposeful exploration of the code allowing high performers to gather more information in each
eye movement. The lower average regression ratio in high performing participants suggests
that they may demonstrate a greater ability to maintain focus and comprehension throughout
the problem-solving task, resulting in fewer instances of regression.

Our findings in this study have some implications for developing teaching strategies in
programming. The absence of significant differences in average saccade ratio and saccade
rate suggests that teaching strategies should focus on promoting deep understanding,
individualized support, and diverse instructional methods to enhance learning outcomes for all
students. Educators may create interventions tailored to student needs, offering additional
support to those with frequent regressive saccades, which may indicate difficulty in
maintaining focus. Creating exercises focused on interpreting both literal and non-literal
compiler error messages will help students become more comfortable with different types of
errors. Teaching strategies should encourage students to adopt strategic code reading
techniques, including lessons on systematically scanning and interpreting code, focusing on
key elements first. Students can be taught techniques to reduce unnecessary regression while
reading code, such as maintaining focus, minimizing backtracking, and breaking down
complex problems into smaller and manageable parts.

A limitation of the study is the lack of integration of contextual factors such as task
complexity, familiarity with programming languages, and individual learning styles into the
analysis of saccade-based metrics. These factors could help identify situational influences on
problem-solving strategies, and this will be considered in future work.

Acknowledgements

We thank Ateneo de Manila University and Pangasinan State University administration for

allowing us to conduct the experiment for this study.

References

Aljehane, S. (2022). Eye Movements Characterizing for the Assessment of Expertise in Source Code

Reading, August 2022. http://rave.ohiolink.edu/etdc/view?acc_num=kent1658417479599309
Bednarik, R. (2012). “Expertise-dependent visual attention strategies develop over time during

debugging with multiple code representations,” International Journal of Human-Computer
Studies, vol. 70, no. 2, pp. 143–155, Feb. 2012

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., Sharif, B., & Tamm, S.
(2015). Eye Movements in Code Reading: Relaxing the Linear Order. 2015 IEEE 23rd
International Conference on Program Comprehension, 255–265.
https://doi.org/10.1109/ICPC.2015.36

Busjahn, T., Schulte, C., Busjahn, A. (2011). Analysis of code reading to gain more insight in program
comprehension. In: Proceedings of the 11th Koli Calling International Conference on Computing
Education Research, ACM, New York, Koli Calling ’11, pp 1–9.
https://doi.org/10.1145/2094131.2094133

Dy, T. and Rodrigo, M. M. (2010). A detector for non-literal java errors. In Koli Calling ’10, Koli,
Finland, October28–31, 2010. ACM.

Goldberg, J.H. and Kotval, X.P. (1999). Computer interface evaluation using eye movements:
methods and constructs. Int J Ind Ergon 24(6):631–645

Goettker, A., Brenner, E., Gegenfurtner, K.R., de la Malla, C. (2019). Corrective saccades influence
velocity judgments and interception. Sci Rep. 2019 Apr 1;9(1):5395. doi: 10.1038/s41598-019-
41857-z. PMID: 30931972; PMCID: PMC6443687.

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H. and Van de Weijer, J. (2011).
Eye tracking: A comprehensive guide to methods and measures. OUP Oxford.

Mahanama, B., Jayawardana, Y., Rengarajan, S., Jayawardena, G., Chukoskie, L., Snider, J. and
Jayarathna, S. (2022). Eye Movement and Pupil Measures: A Review. Frontiers in Computer
Science. Sec. Human-Media Interaction Volume 3 - 2021 available:
https://doi.org/10.3389/fcomp.2021.733531

McChesney, I. and Bond, R. (2020). Observations on the Linear Order of Program Code Reading
Patterns in Programmers with Dyslexia. Association for Computing Machinery.
https://doi.org/10.1145/3383219.3383228

Ohtani, A. (1971). An Analysis of Eye Movements during a Visual Task. Ergonomics 14, 167–174.
doi:10.1080/00140137108931235

Pacol, C., Rodrigo, M. M. and Tablatin, C. L. (2024). A Comparative Study of High and Low Performing
Students’ Visual Effort and Attention when Identifying Syntax Errors. In: Schmorrow, D.D.,
Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2024. Lecture Notes in Computer Science(),
vol 14694. Springer, Cham. https://doi.org/10.1007/978-3-031-61569-6_6

Pacol, C., Rodrigo, M. M. and Tablatin, C. L. (in press). Exploring the Relationship of Personality
Domains and Visual Attention Patterns in Novice Programmers. International Conference on
Computers in Education (ICCE 2024).

Poole, A., & Ball, L. J. (2005). Eye Tracking in Human-Computer Interaction and Usability Research:
Current Status and Future. Prospects”, Chapter in C. Ghaoui (Ed.): Encyclopedia of Human-
Computer Interaction. Pennsylvania: Idea Group, Inc.

Sharafi, Z., Sharif, B., Guéhéneuc, Y-G., Begel, A., Bednarik, R., and Crosby, M. (2020). A practical
guide on conducting eye tracking studies in software engineering. Empirical Software Engineering,
25, 3128-3174

Tablatin, C. L. and Rodrigo, M. M. (2023). “Visual Attention Patterns in Processing Compiler Error
Messages”, Proceedings of the 31st International Conference on Computers in Education. Asia-
Pacific Society for Computers in Education

Uwano, H., Nakamura, M., Monden, A., and Matsumoto, K.-i. (2006). “Analyzing individual
performance of source code review using reviewers’ eye movement,” in Proc. of the Symposium
on Eye Tracking Research & Applications, San Diego, California: ACM, 2006, pp. 133–140

