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Abstract: While digital learning offers advantages, it also presents challenges, 
including distractions from irrelevant websites. Such distractions characterize the 
personal learning environment (PLE), posing difficulties for learners and educators. 
Flow, an intrinsic motivation, is positively associated with learning outcomes, keeping 
learners engrossed and less influenced by external factors. Nevertheless, most prior 
research on flow has relied on surveys, and has overlooked the physiological aspect 
of flow during online learning. This study investigates the physiological signals of 
galvanic skin response (GSR) during flow experience in PLE. Using a natural online 
learning experiment, this study employed multimodal learning analytics to measure 
learners’ cognitive processes objectively. The GSR, an indicator of cognitive load, was 
specifically used to measure and visualize physiological changes with different flow 
experiences in PLE. The results indicated that individuals with a high flow experience 
exhibited more stable emotional and stress responses than those with low flow 
tendency. This study is among the first to uncover the physiological shifts and stress 
reactions with flow experiences during the online learning process, offering a fresh 
perspective on flow theory via multimodal learning analytics. 
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1. Introduction 
 
Only by understanding the relationship between psychological phenomena and physiological 
responses can timely and accurate interventions provide support. The association between 
these two signals has been scientifically proven (Cacioppo & Tassinary, 1990). Physiological 
mechanisms such as heart rate, body temperature, and sweating produced by the autonomic 
nervous system are indeed closely related to emotions (Kreibig, 2010). Moreover, emotions 
influence human cognitive processes, affecting learners' learning experiences (Tyng, et al., 
2017). Hence, learners would likely exhibit corresponding physiological signals during different 
learning and cognitive processes. However, there is still insufficient literature exploring 
physiological changes in learners during their learning process, especially within the PLEs. 

This study utilized non-invasive galvanic skin response (GSR) sensors to measure 
learners’ skin conductance changes during their natural experiment of online information 
search tasks. The developed scale confirmed learners' flow experiences during the 
experiment. Guided questioning and online information search tasks were used to simulate 
learners' learning within the personal learning environments, aiming to examine learners' flow 
tendencies and differences with their physiological signal responses.   
 
 



2. Literature Review 
 

2.1 Flow Experience 
 
The theory of "Flow," also known as "Flow Experience" or "Optimal Experience," was 
established by Hungarian-American psychologist Csikszentmihalyi (Csikszentmihalyi, 2014). 
This experience is similar to a seamless and effortless state of mind, termed "Flow" (Nakamura 
& Csikszentmihalyi, 2001). Flow is considered as an intrinsic motivation. It's a dynamic system 
involving both the individual and the environment, and it's a subjective sensation 
(Csikszentmihalyi, 2014). In other words, each person only experiences flow when engaging 
in activities they find interesting and skilled in, and the balance of those factors is not the same 
for all individuals. The previous flow assessment predominantly relied on post-event interviews 
and questionnaires (Tian, 2017). However, as individuals were no longer in a state of Flow 
during these assessments, researchers started exploring the direction of physiological signals. 
This approach aims to understand the physiological changes that occur during the flow state, 
comprehending deeper into its effects on the body and allowing researchers to confirm 
whether participants experienced Flow during experiments more accurately. 
 

2.2 Galvanic Skin Response (GSR) and Emotion 
 
Galvanic Skin Response (GSR), a highly sensitive physiological indicator in psychology, has 
been used for about a century. Its principle is that when humans experience tension or stress, 
the sympathetic cholinergic nerves become active, stimulating sweat glands and leading to 
sweating in the hands, subsequently affecting skin conductance (Montagu & Coles, 1966). 
Therefore, GSR can be used not only as an indicator of stress but also to measure cognitive 
load (Nourbakhsh et al., 2012; Shi et al., 2017). In online learning environments, researchers 
found that inappropriate multimedia content might increase learners’ extraneous cognitive 
load (Bian et al., 2016), especially within PLE that contains social media and irrelevant 
websites which lead to digital distraction (Wu, 2015). 
 

2.3 The Multimodal Learning Analytics with GSR signals 
 
Learning analytics studies mostly used behavioral logs to build predictive models. These 
models aimed to understand the relationship between the learning process and achievement 
outcomes, forming the basis for interventions and improvements in learning (Wu, 2021). 
However, learning is a dynamic processes involving diverse functioning. These processes are 
difficult to capture solely through a homogeneous data source (Liao & Wu, 2022). In recent 
years, educational researchers have attempted to analyze learners' physiological signals as a 
form of multimodal learning analytics to objectively understand learners' cognition and learning 
processes (Noroozi et al., 2019). Research employed Galvanic Skin Response (GSR) for 
multimodal learning analytics to understand cognitive load and stress during the learning 
process (Nourbakhsh et al., 2012; Larmuseau et al., 2020). 

Past literature has shown GSR to be an effective indicator of learning arousal. Thus, this 
study employs multimodal learning analysis with GSR by examining learners' flow experiences 
in their PLEs objectively. 
 
 

3. Methods 
 

3.1 Natural Experimentation Design 
 
This study aims to investigate the flow experiences of learners in their PLE, utilizing digital 
technology as a learning assistant tool. Therefore, the emphasis of the experimental design 
relies on creating appropriate contexts that induce learners to enter a state of flow while also 



collecting results through a Galvanic Skin Response (GSR) device. This research achieves 
this objective through guided tests involving information search and exploration. 
 
3.1.1 Inquiry Guided Test Design 
 
The test comprises two progressively challenging open-ended questions. The questions 
primarily delve into topics of a more specialized nature, requiring argumentation. This 
approach aims to trigger participants' autonomous online information search and engagement. 
Each question has a time limit of 15 minutes to allow participants to enter the online learning 
state. To answer them, participants must search for relevant information on the Internet, 
including blogs or social media.  
 
3.1.2 Experimentation Process 
 
Our institution's Institutional Review Board (IRB) completed this study's ethical review. 
Participants were initially given approximately 10 minutes to read and complete the informed 
consent form. They were then equipped with a Galvanic Skin Response (GSR) device. 
Afterward, participants were granted a 10-minute period of free activity, allowing them to use 
the laboratory's computer equipment as they pleased. This was done to simulate the scenario 
of digital learners frequently having unrelated websites open simultaneously (Wu & Xie, 2018). 

Following this, participants engaged in a formal test session lasting about 30 minutes. 
Open-ended questions guided participants in autonomously searching for relevant information 
and organizing their findings. After completing the task, participants completed the 
Dispositional Flow Scale-2 (DFS-2; Jackson & Eklund, 2002).  
 

3.2 Participants 
 
This study recruited undergraduate and postgraduate students attending universities in the 
northern region of Taiwan through student Facebook groups. Interested individuals registered 
through a Google Form, and participants were randomly selected from the registrants. We 
recruited a total of 19 participants as valid samples in this study, including 9 males (47.4%) 
and 10 females (52.5%). Their academic levels ranged from sophomore to doctoral students, 
with a majority being third-year undergraduates (N=5) and second-year master's students 
(N=4). The participants' fields of study spanned 8 out of 18 academic disciplines, with 
engineering being the most common (N=8). 
 
 

4. Instrument and Measurement 
 

4.1 Shimmer Consensys and Kits 
 
The physiological signals of participants were collected using a wearable Galvanic Skin 
Response (GSR) device (Shimmer Discovery in Motion, 2021). In the past two years, this 
device has been used in collaboration with 30 research institutions globally for experiments, 
and over 300 journal papers and conference proceedings have been employed, indicating a 
certain level of safety and harmlessness to the human body. 

Consensys is the software that accompanies the Shimmer GSR sensor. It processes 
GSR data using specialized equations for signal processing, including signal collection, noise 
reduction, signal transformation, analysis, synthesis, filtering, evaluation, and identification 
(Shimmer Discovery in Motion, 2021). In this study we utilized the low-pass filter to extract the 
signals that below 0.5 Hz. 
 

4.2 Dispositional Flow Scale-2 (DFS-2) 
 
After completing the experiment, participants were asked to provide feedback on their learning 



experience during the experimental process by filling out the Flow State Scale (DFS-2), which 
was developed by Jackson & Eklund (2002). The complete scale consists of 36 items, 
encompassing 8 factors defined by Csikszentmihalyi as elements contributing to the 
experience of flow: Merging of Action and Awareness (MAA), Clear Goals (CG), Unambiguous 
Feedback (UF), Concentration on Task at Hand (CTH), Sense of Control (SC), Loss of Self-
Consciousness (LSC), Time Transformation (TT), and Autotelic Experience (AE). 
 

5. Result 
 

5.1 Descriptive Statistical Analysis 
 
The skewness and kurtosis fall within the mean of ±3, indicating a normal data distribution. 
Only the kurtosis of UF1 is slightly outside the acceptable range. The reliabilities of all factors 
demonstrate a high score consistency (All Cronbach αs ≥ .76). The composite scores are 
suitable for the follow-up statistical analysis. 
 

5.2 Independent Sample t-test 
 
The composite score of DFS-2 was used to indicate participants' flow tendencies during the 
information search experiment. Based on their scores, participants were divided into two 
groups: the high-flow group, consisting of the top 1/3 scorers, and the low-flow group, 
consisting of the bottom 1/3 scorers. Each group included 6 participants. The average flow 
score for the high-flow group was 4.39, while the average flow score for the low-flow group 
was 2.91. The results of the t-test analysis revealed a significant difference in flow scores 
between the two groups (t=8.13, p<.001). 

 
5.3 GSR Waveforms with Different Flow Tendencies 
 
This study further examined the waveform differences through graphical observation to gain 
a more specific understanding of the skin conductance changes in learners within PLEs. From 
the results depicted in the graph below, it can be observed that the high-flow group exhibited 
a stable, higher stressful state in terms of skin conductance. In contrast, the low-flow group 
displayed significant fluctuations in lower skin conductance throughout the experiment. 

 

 
Figure 1. The GSR signals through a low-pass filter with varying flow tendencies through 

different filters. The grey line on the top represents the group of high flow tendency 
(MFlow=4.39, N=6); the dark grey line on the bottom represents the group of low flow 

tendency (MFlow=2.91, N=6); the black line in the middle represents the average of all the 
subjects (MFlow=3.72, N=19). 

 
 
 
 
 



6. Discussion 
 
This study designed a natural experiment of online information searching to simulate learners' 
PLE scenarios. The study used the questionnaire and skin conductance response (GSR) 
measurements to assess participants' flow experience and physiological responses in a PLE. 
The findings revealed that the guided open-ended questions, which gradually increased 
complexity, effectively triggered students to experience flow. Additionally, the design of time-
limited questions for 15 minutes each was a crucial factor in enhancing learners' focus (Wu & 
Xie, 2018). The t-test results indicated a significant difference in flow tendencies between two 
groups. the low-flow group displayed more significant fluctuations, suggesting that learners in 
the high-flow group were in a stable high-pressure state (Bakker et al., 2011). 

According to Csikszentmihalyi’s description of the flow experience (Csikszentmihalyi, 
2014), it should evoke feelings of being immersed and effortless. However, study's GSR 
results showed that individuals with a high flow tendency were in a stable, high-pressure state. 
This objective physiological signal result seemed contradictory to the subjective experience, 
marking a significant breakthrough in the study of flow experience. In other words, even though 
the flow experience subjectively makes one feel relaxed and joyful, the physiological state 
during flow is characterized by a controlled state of heightened pressure.  
 
 
7. Conclusion 
 
GSR signals have proven effective tools for studying learning processes (Liu et al., 2022; 
Nourbakhsh et al., 2012). Therefore, this study designed a natural experiment coupled with 
wearable GSR signal devices to explore learners' flow experiences from a physiological 
perspective. The study innovatively visualized GSR data through time-domain waveform 
graphs, revealing that learners with a high flow tendency exhibited higher and more stable 
skin conductance. From this, it can be inferred that the flow experience involves a state of high 
concentration and pressure, even if subjective feelings of pressure are absent. This approach 
breaks away from traditional research centered around questionnaires and interviews. It 
confirms the physiological impact of flow experiences and demonstrates the 
interconnectedness of physiological stress and perceived concentration levels. 

In the future, with the accumulation of a larger sample size and the application of more 
rigorous experimental manipulations and machine learning techniques. According to 
Csikszentmihalyi's theory, this approach would offer a more concrete perspective on flow and 
its physiological effects. Ultimately, this research could aid learners in more readily achieving 
flow experiences. 
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