
Chang, M. et al. (Eds.) (2019). Proceedings of the 27th International Conference on Computers in

Education. Taiwan: Asia-Pacific Society for Computers in Education

332

Analysis of Student Behaviors in Programming

Exercises in Controlled and Natural

Environments

Thomas James TIAM-LEE* & Kaoru SUMI

Future University Hakodate, Japan

*g3117002@fun.ac.jp

Abstract: We performed an analysis of the behaviors of novice students while solving

programming exercises from data collected in two environments: a controlled laboratory

setup and an online system that could be used freely in the wild. We modeled student

behavior from raw action sequences using hidden Markov models to capture the sequential

information of the problem solving process. We found similar sequential structures between the

two environments, with students generally starting from being idle, followed by writing of

the code, followed by testing and submission, which may then transition back to an idle state

if not successful. While the models were similar, we found evidences of less persistence in

solving the problems on students using the online system compared to those in the controlled

setup.

Keywords: Student modelling, learning analytics, programming

1. Introduction

Tutoring is considered to be one of the most effective ways to learn (Bloom, 1984). Because of this,

there has been significant research interest in intelligent tutoring systems (ITS) that can replicate

aspects of human tutoring. A core part of these systems is being able to keep track of a student model, so

that the system is able to respond in a personalized way to the needs of the student. However, many ITS

are developed and evaluated on data from controlled laboratory experiments, and it is often difficult to

determine if findings are reproducible in natural learning environments.

A recent study on ITS design has found that findings from a controlled laboratory experiments

contradicted with those of a same experiment performed in a more natural setting (Kumar, 2019). This

is of particular interest to researchers because it is important for findings to be reproducible in order to

have a real impact in solving societal problems (Drummond, 2009). Thus, there is value in

understanding the differences between controlled and natural settings in various domains.

In this study, we focused on the specific learning domain of programming. In our previous

studies, we developed a simple intelligent programming tutor that offers guides and adjusts problems

based on the presence of confusion on the student (Tiam-Lee & Sumi, 2018) and made classifier models

to predict various student emotions in programming from face features and logs

(Tiam-Lee & Sumi, 2019). In these studies, datasets were collected from and evaluated on controlled

laboratory setups. Our motivation for this paper is to take a step towards understanding the similarities

or differences in how students interact with such systems in controlled and natural programming

environments. To achieve this, we modeled student solving behaviors from raw action sequences using

hidden Markov models using data from a controlled laboratory setup and a natural online system that

could be used freely by students. We present a comparison of the models of the student learning

behaviors between the groups, and discuss its implications in future research.

333

2. Data Collection Methodology

In this section, we describe the two programming environments from which we collected our data for

analysis. The first environment followed a controlled laboratory setup, while the second environment

was an online system that was used by students freely.

2.1 Environment 1: Controlled Laboratory Setup

For the controlled laboratory setup, we used data collected from an observational setup. We recruited 73

students who were all enrolled in a university introductory programming class at the time. Each student

was asked to participate in a simulated programming session in which they must solve several coding

exercises while a video recording of their face and their activity logs were saved for analysis.

Before the session, each student underwent a briefing phase in which details of the data

collection process was explained. The student was also informed that a video camera would be

recording their face and all of their activity logs would be saved throughout the duration of the coding

session. Thus, in this environment, each student was aware that his or her actions would be observed

and analyzed. Each student was asked to sign an informed consent form, indicating that he or she agreed

to participate in the session voluntarily.

After the briefing, the student started the programming phase. In this phase, he or she must

solve coding exercises. There are a total of nine exercises that increased in difficulty. The exercises

covered introductory programming concepts such as variables, expressions, if-else statements, loops,

and arrays. All students used the same set of exercise. In each exercise, the student must write the body

of a function that performs a specified task. For example, one of the exercises required the function to

return the area of a square, given the measurement of one of its sides as an argument.

A custom local application was developed to serve as an interface for the students to write their

programs. This application provided an interface for the students to view the exercise specifications,

write the code, test the code by providing user arguments, and submit the code for checking. Submitted

codes can automatically evaluated by running it on a set of pre-defined test cases. In addition to these,

the application also records a video of the student's face and saves all activity logs, which included

information on document changes, compilations, and submissions. A screen shot of the application is

shown in Figure 1. Each student used the system for 45 minutes or until all exercises were solved

correctly. Exercises must be solved sequentially with no option to skip.

2.2 Environment 2: Online System in the Wild

To represent data coming from an uncontrolled setup, we used data collected from an online system for

programming practice that we have deployed for freshmen students as a supplementary tool for their

introductory programming class. The data was collected over a month in the latter part of the semester,

from June 2018 to July 2018. The online system was introduced to all students enrolled in the

introductory programming class of Future University Hakodate in that month as an online tool for them

to hone their programming skills. None of the students were enforced to use the system, so all usage was

on a voluntary basis. 96 unique users used the system in total by the end of the period.

Each student was given a unique account that they could use to log into the online system. The

online system worked very similarly to the programming session application used in the controlled

observational setup discussed in the previous section. In this system, students could solve exercises in

which they have to write the body of a function that performs a specified task. The system provides an

interface to view the exercise specifications, write code, test code by providing user arguments, and

submit code for checking. Submissions are automatically checked as well.

Students could select from various categories of exercises in this system, but all of them follow

the same format of writing the body of a function to satisfy specifications. When a user successfully

solves a problem, he is taken back to the selection menu and a new one could be selected. Unlike the

controlled setup, the student could at any time give up on a problem and select a different one if he

wished to. As can be seen in a screen shot of the online system showing the interface for performing the

programming exercise in Figure 2, the online system shares an almost identical interface with the

334

application used in the controlled setup. Unlike the controlled setup, the users' video recordings were

not saved and they were not conscious their system actions were being logged.

Figure 1. Screen shot of custom application for controlled laboratory environment setup.

Figure 2. Screen shot of online application in the natural environment setup.

3. Modelling Student Behavior

In this section, we discuss how we modeled the student behaviors in solving programming exercises.

We chose a hidden Markov model (HMM) in order to capture the time-sequential nature of coding

tasks, which involve actions such as modifying the code, thinking, and compiling to test the program.

3.1 Hidden Markov Model

A hidden Markov model is a statistical Markov model that can be used to describe observable events

and hidden events. Observable events are a set of directly observable occurrences in the data, while the

hidden events are hidden factors that are considered to be casual factors for the probabilistic model. An

HMM is composed of a set of states Q = {q1, q2, …, qN}, with each state having an emission probability

for each observation O = {o1, o2, …, oT}. In this case, the observations are the individual actions in the

Markov chain, while the states are the hidden factors that cause such actions.

335

As the HMM is based on a Markov chain, it follows the Markov assumption that the probability

of a particular state qi depends only on the previous state. Furthermore, the probability of an observation

depends only on the current state and not in any other states or observations in the sequence:

P(qi | q1, ..., qi-1) = P(qi | qi-1)

P(oi | q1, ..., qi, ..., qL, o1, ..., oi, ..., oL) = P(oi | qi)

The HMM also contains a transition probability matrix containing the probabilities of

transitioning from one state to another, and an initial probability distribution for which state the model

starts in. The transition probabilities and emission probabilities can be estimated from a set of training

data where each instance in the set is a sequence of observations from O using an algorithm called the

Baum-Welch algorithm. Given an HMM, it is also possible to compute the likelihood that a given

observation sequence is generated by the model using the forward algorithm. A good summary of

hidden Markov models can be found in Appendix A of Martin & Jurafsky (2009).

3.2 Sequence Extraction from Activity Logs

We represented student coding behaviors as a sequence of actions that are performed in the process of

solving a coding exercise. We extracted these actions from the activity logs collected from the

programming environments. All events were marked with a timestamp. Figure 3 shows an example of

an action sequence extracted from the activity logs.

Figure 3. Example action sequence from student log data.

Compilations represent points in the session where the student tested the code by providing

some arguments. A compilation may result into a successful compilation (i.e., no syntax errors) or an

unsuccessful compilation (i.e., with syntax errors). A successful compilation did not necessarily mean

that the code was correct, as it was possible to have a syntactically correct code that did not accomplish

the target task. Submissions, on the other hand, represent points in the session where the student

attempted to submit the code for checking. This may result into either a “submission passed” (i.e., the

code is correct and passed all test case) or a “submission failed” (i.e., code failed at least one test case).

Typing information is captured with the “insert” and “remove” actions. We considered a typing

sequence as a series of document changes with intervals of at most 3 seconds in between. Typing action

was classified as “insert” or “remove” based on how many characters were inserted and deleted within

the typing sequence. If there were more characters inserted, we considered the action as the student

adding more to the code. If there were more characters deleted, we considered the action as the student

removing parts of the code. Ties are resolved in favor of the “insert” classification. Although this metric

has limitations as it does not capture the semantic information of the code, it is a good enough heuristic

for the general type of action being performed in this analysis.

Finally, an “idle” action is added when the student did not perform any actions in the system for

at least 10 seconds. These actions represented long pauses in the action sequence, which may represent

the student thinking, reading the problem, or even being unfocused. Only a single “idle” action is added

to the sequence regardless of the length of inactivity.

336

3.3 Model Training

We trained an HMM with a fully-connected structure for each of the two datasets (laboratory-controlled

and natural environments) using the Baum-Welch algorithm. Our HMM model is defined by the set of

states Q = {q1, q2, ..., qN} and the set of observations O = {idle, insert, remove, compile error, compile

no error, submit failed, submit passed}. The average number of observations in each sequence is 39.09

in the laboratory environment and 11.83 in the online environment.

We selected the number of hidden states N based on a ten-fold cross validation that maximizes

the likelihood computed using the forward algorithm. We first divided the set of observation sequences

into ten groups. In each fold, one group served as the validation set while the others served as the

training set. We trained an HMM using the training set from randomly initialized values. To account for

the randomness, each training process was repeated 5 times, each time having different random values,

and the model that maximizes the probability of the training set to be generated by the model was

selected. Once the model was trained, we computed the likelihood of the validation set being generated

by the model, and got the average across all the folds. We computed this for N = 2, 3, ..., 10 hidden

states and selected the best number of states based that information. Figure 4 shows the mean

log-likelihood score across folds across different values of N.

We selected N = 5 as the number of hidden states for both the laboratory and online datasets

since the improvement in the log-likelihood significantly decreases beyond N = 5. We generally prefer

to have less states for easier visualization and understanding of the model. From this, we estimated the

model parameters from the training data using N = 5 using the Baum-Welch algorithm.

Figure 4. Log-likelihood score for different values of N.

4. Results

In this section, we discuss the resulting HMMs trained from our datasets. Figures 5 and 6 show

graphical representations of the HMMs trained from the action sequences extracted from the controlled

laboratory environment setup and the online system natural environment setup, respectively. Each node

in the graph represents a single state in the model. The directed edges represent the transition

probabilities from one state to another. While an HMM normally has a non-zero probability to transition

from every pair of states, only transitions with substantial probabilities over 15% are shown for clarity.

In each state, the emission probabilities for each of the coding actions are shown when the model is in

that particular state. All values are rounded off to 2 decimal places. We manually placed a loose label to

describe each state based on the emission probabilities, shown on the lower-left corner of each node.

This helps in getting a contextual understanding of the model as well as for easier discussion in this

paper.

4.1 HMM for Controlled Laboratory Setup

The states in the HMM for the controlled laboratory setup appeared to represent different parts of the

coding process. In the “mostly idle” state, the most probable action is being idle (72%). This state

represents moments of inactivity in terms of interaction with the system. In the “building code” state,

the most probable action is inserting characters into the code (80%), and likely represents moments

where the student building modules of the code. On the other hand, the “modifying code” state contains

337

a mixture of character insertions (65%) and removals (18%), with a small chance of idle (8%) actions.

This state likely represents modifying parts of the code. The “testing” state has a mixture of

compilations and typing actions. It could represent moments of testing the code, or finding and fixing

bugs revealed by running tests on the code. Finally, the “testing and submitting” state has relatively high

emissions for compilations and submission actions, which could represent moments of verifying the

correctness of the code and submitting it.

The initial probability distribution for this HMM puts the probability of starting in the “mostly

idle” state at 96%. This was expected, as the students mostly take the time to read the problem

specifications first before writing any code. From the “mostly idle” state, students likely transition to

the “building code” state. Students may move between the “building code” and “modifying code” states

back and forth. Both “building code” and “modifying code” states are relatively persistent states, having

a fairly large probability of spanning through several actions (i.e., transitioning to itself). From these

states, the student may transition to the “testing” state and eventually the “testing and submitting” state,

which represent actions wherein the students are evaluating the correctness of the code that they have

built. There are also strong transitions from these states back to the idle state, likely because students

take the time to process the result of a compilation or submission (e.g., thinking about why results were

unexpected).

Figure 5. Hidden Markov model for online system natural environment setup showing emission

probabilities and transition probabilities at least 15%. All values are rounded off to two

decimal places.

4.2 HMM for Online System in the Wild

Interestingly, the HMM trained from the action sequences extracted from the online system dataset

yielded similar states to the HMM trained from the laboratory setup, despite being both trained from

random initial model parameters. One state appears to be a “mostly idle” state, with a high emission

probability for the idle action (85%). There are two similar states, which we both labelled as “building

code” states, in which high emission probabilities for character insertion could be observed (88% and

81%). There appears to be not as much removal actions in this model compared to the previous one,

which suggests that modifications of the code did not occur as strongly as it did in the laboratory setup.

Similar to the previous model, however, there was also a state that likely represented “testing” of the

code, with emissions of compilations and typing actions, as well as a state the likely represented “testing

and submission” of the code, with emissions for compilation and submission actions.

Similar to the laboratory setup, the initial probability distribution of this model has a high

probability (71%) of starting on the “mostly idle” state. However, there was a fairly high chance (23%)

338

of starting on the “building code (2)” state as well. This suggests that unlike the laboratory setup,

students don't take as much time reading the problem before starting to execute some typing actions.

While the states' emission probabilities suggest similar hidden events for both of the

environments, one noticeable difference is on the transition probabilities of the model. While both

“building code” states are similarly persistent to their counterparts in the laboratory setup model, there

is a noticeable lack of strong transitions from these states to the “testing” state. This reveals that in the

online system, there was weaker evidence found that students moved towards the testing and

submission phase.

Figure 6. Hidden Markov model for online system natural environment setup showing emission

probabilities and transition probabilities at least 15%. All values are rounded off to two

decimal places.

4.3 Usage Statistics

The online system was used in substantially more sessions than the laboratory setup (note that the

number of participants in the latter is fixed). In the laboratory setup, we recruited a total of 73 students

which yielded a total of 468 sessions. In this case, a session refers to a single problem attempted by a

student. On the other hand, the online system was used by 96 unique users with a total of 2,259 sessions.

Although the HMMs capture sequential information of the coding sessions, it does not provide

information on the length of the sequences. In order to further investigate the differences between the

controlled laboratory and online system setups, we analyzed the number of actions in each sequence for

each of the two environments. Figure 7 shows a side by side boxplot comparing the sequence lengths.

For the controlled laboratory setup, the mean is 39.09 actions and the median is 19 actions, while for the

online system the mean is 11.83 actions and the median is 7 actions.

Figure 7. Number of actions in the sequences collected from the two environments.

Despite being used in more sessions, the number of actions performed in a single session was

noticeably less in general in the online system compared to the controlled laboratory setup. This is also

339

likely related to why there was a weaker transition to the testing states in the HMM for the online

system, as students tend to give up and quit earlier resulting into generally shorter sessions.

Another interesting data to look at is the distribution of the number of sessions for each unique

student that used the online system. This is shown in Figure 8. Majority of the users only used the

system for one time or only a few times. On the other hand, there are fewer students used the system

constantly and did a lot of sessions. This reveals differences on students' motivations to use a system in

settings where they are not enforced to do so.

Figure 8. Distribution showing the number of sessions done by each unique user in the system.

5. Discussion

In this section, we discuss the main findings in this study and its implications in education-related

research.

We have used HMMs to model freshmen students' coding behaviors while solving introductory

programming exercises. These models can be used to gain an understanding of the general trajectories

of actions undertaken by students when solving exercises. In the HMM models, the problem solving

process were broken into logical states such as building the code, testing the code, and being idle. From

the models produced, we could understand that a problem solving session usually starts with an idle

state, followed by a moment of building the code, followed by a moment of testing or debugging, which

may either result in a correct submission or move back to the idle state.

Such models can also have applications in artificial intelligence in education. For example, a

series of actions could be mapped to sequence of states using an algorithm like the viterbi algorithm.

The viterbi algorithm takes in an observation sequence as input and estimates the most probable

sequence of hidden states that generated that sequence. Using this algorithm, contextual information

could be estimated from raw action sequences, allowing for a better a student model. This contextual

information could then be used to improve how intelligent programming tutors provide personalized

feedback while the student is solving programming exercises. Currently, we only focused on action

sequences and solving behaviors, but there is a possibility of using other modalities such as facial

information to model emotions while doing programming exercises, thus allowing for the development

of affective programming tutors that can respond emotionally to students without special and often

invasive equipment.

In this study, we have also performed a comparison of students' coding behaviors between a

controlled laboratory setup and an online system that could be used freely. Although there were many

similarities between the two models, there were some transitions that were weaker in the online setup.

In particular, students appeared to be less persistent in solving the problems and thus did not make as

much effort to modify, test, and submit their code. This finding has implications on research being done

in the field.

Researchers should always consider that students' behavior in controlled laboratory setups may

not always be exactly the same when studies are reproduced in an uncontrolled natural environment. In

this particular study, there are certain conditions that are present in the laboratory setup which were not

present in the online system environment. The students were conscious that their actions were being

340

recorded in the laboratory setup. Furthermore, students who participated in the laboratory setup

voluntarily committed to participate for a set duration of time, as opposed to those who used the online

system who could use the system freely as they wished. Students were also allowed to complete the

exercises in the order they wished in the online system, while exercises had to be solved sequentially in

the controlled laboratory setup. These differences are often overlooked when drawing conclusions from

studies that are performed in controlled environments. Thus, when student models are trained heavily

on data from controlled laboratory setups, researchers must consider those models are acceptably

representative of students in natural environments as well.

6. Conclusion and Future Work

In this paper, we presented an analysis of student behaviors in programming exercises using HMMs,

and compared models trained from data in a controlled laboratory setup with that trained from data in a

natural environment. Our findings show that while the models are similar, there are evidences of less

persistence in solving the problems in the online setting. Such differences highlight the need for

researchers to consider the reproducibility of findings from controlled setups to more natural

environments. Currently, we have only used simple units of actions in this study to analyze the behavior

of students in programming activities in this study. More in-depth features such as types of errors and

the classification of different phases and events during the programming sessions could be done as next

steps for those who are interested in a more detailed analysis of the session data.

Acknowledgements

The authors would like to thank Mr. Fritz Kevin Flores, Mr. Manuel Carl Toleran, and Mr. Kayle

Anjelo Tiu for assisting in the facilitation of the data collection process in the Philippines.

References

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as one-to-one

tutoring. Educational researcher, 13(6), 4-16.

Drummond, C. (2009). Replicability is not reproducibility: nor is it good science.

Kumar, A. N. (2019, June). Providing the Option to Skip Feedback–A Reproducibility Study. In International

Conference on Intelligent Tutoring Systems (pp. 180-185). Springer, Cham.

Martin, J. H., & Jurafsky, D. (2009). Appendix A. Speech and language processing: An introduction to natural

language processing, computational linguistics, and speech recognition. Upper Saddle River:

Pearson/Prentice Hall. Retrieved from https://web.stanford.edu/~jurafsky/slp3/A.pdf

Tiam-Lee, T. J., & Sumi, K. (2018, June). Adaptive feedback based on student emotion in a system for

programming practice. In International Conference on Intelligent Tutoring Systems (pp. 243-255). Springer,

Cham.

Tiam-Lee, T. J., & Sumi, K. (2019, June). Analysis and Prediction of Student Emotions While Doing

Programming Exercises. In International Conference on Intelligent Tutoring Systems (pp. 24-33). Springer,

Cham.

