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Abstract: It is important to reuse knowledge acquired through problem-solving in 

programming. To reuse knowledge, it is effective to first understand differences between 

knowledge items and then to organize that knowledge. Therefore, we propose a method and 

develop a support system for facilitating knowledge organization in programming. We further 

examine a model of parts and problem-solving process of parts based on function–behavior–

structure aspects. In this paper, we expand a previously developed system to propose an 

improved system that provides support based on feedback from these models. The aim of this 

system is to allow learners to consider behavior rather than thinking directly from function to 

structure. 
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1. Introduction 
 

It is important to reuse knowledge acquired through problem-solving in programming. To reuse 

knowledge, it is effective to first understand the differences between knowledge items and then to 

organize that knowledge. Therefore, one of the goals in learning to program is to organize knowledge 

for reuse at an appropriate time. 

Recently, the demand for programming education is increasing worldwide. Enhancing intelligent 

tutoring systems (ITSs) in programming education is therefore very important. For a computer to 

intelligently support such learning, it is desirable that it be adaptive to individual learning. In ITS 

research, learning effectiveness is characterized by (A) controlling features of the question or problem 

to be asked by indexing based on characteristics of target domains (e.g. Hirashima, Kashihara, & 

Toyoda, 1992; Horiguchi, Tomoto, & Hirashima, 2015), or by (B) making appropriate interventions 

such as feedback by grasping problem-solving processes based on explainable problem-solving models 

(e.g. Hirashima et al., 1992; Hirashima, Kashihara, & Toyoda, 1995). 

Regarding (A), assuming that problem solving is directed toward acquisition of knowledge 

required for a solution, descriptions of the programming knowledge itself lead to indexing of the 

problem. Some studies have utilized structure–behavior–function aspects, combining each aspect to 

handle knowledge in parts and using them for knowledge descriptions. Taking the example of 

qualitative physics, behavior can be defined as “multiple input–output relationships with causality in 

the object structure,” and function can be defined as “the terminology assigned representing the 

function to the behavior” (de Kleer & Brown, 1984). Based on this definition, qualitative physics makes 

it possible to express phenomena and problem solutions by combining and correcting parts. In ITS, 

many examples apply structure–behavior–function aspects to descriptions of learning objects (e.g. 

Kashihara, Hirashima, Toyoda, & Nakamura, 1992; Matsuda, Kashihara, Hirashima, & Toyoda, 1997). 

A premise of ontology engineering is that “all artifacts are composed of a combination of parts” 

(Sasajima, Kitamura, Ikeda, & Mizoguchi, 1996). By this, an object is defined as being composed of 

parts can be processed to convert input to output based on the user's requirements. This makes it 

possible to express part structures in terms of the relation between their smaller subparts. Furthermore, 
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ontology engineering has expanded the idea of qualitative physics, giving different definitions for 

conventional functions and behaviors. Specifically, “behavior” is defined as “state transitions of an 

object that changes with time, and the result of simulations of the object required by the user,” and 

“function” is defined as “the result of interpreting the function based on the goal of the entire system.” 

Based on these ideas from ontology engineering, we considered the problem-solving process in 

programming using these three aspects (Fig. 1) (Koike, Tomoto, Horiguchi, & Hirashima, 2018b, 

2018a). First, if the end-state is output from a given initial state of variables provided as input to the 

source code that is the structure, the difference between the input and the output provided by the 

structure can be observed as the behavior of the structure. Furthermore, the observed behavior can be 

interpreted as the function by assuming the goal (context) of the overall system. Therefore, we apply the 

concept of ontology engineering and express knowledge in programming by treating the structure–

behavior–function aspects together as parts. Thus, we proposed a method for facilitating knowledge 

organizing in programming and developed a support system for that method. 

Regarding (B), there have been many attempts to grasp problem-solving processes in 

programming in terms of the program comprehension or program understanding concepts from system 

engineering. A number of models have been proposed (e.g., Harth & Dugerdil, 2017; von Mayrhauser 

& Vans, 1995), but no models that aim at supporting learning have been proposed. In this research, by 

defining programming knowledge as parts, we approach various elements related to programming that 

have previously been considered tacit and clarify and organize each element independently of the 

programming language used. In this way, we try to construct a model of the problem-solving process 

using parts from the viewpoint of learning and formalize tacit knowledge. 

We expect realization of the following by our model of ITS for programming education: 

 Adaptive presentation of problems 

 Adaptive correction of incorrect judgments 

 Grasping of errors in the overall learning process 

 Estimation of learner knowledge states 

 Encouragement of learning by trial-and-error 

In this paper, we expand a previously developed system through these problem framings and 

propose an improved system. The proposed system has two new functions, one that provides feedback 

for grasping problem-solving processes and one for generating tasks on a criteria basis. The aim of this 

system is to allow learners to consider behavior rather than thinking directly from function to structure. 

 

 
Figure 1. Problem-solving process in programming. 

 

 

2. Method for Supporting Knowledge Organization and the Developed System 
 

This section introduces the expandable modular statements (EMS) method, a learning method directed 

at knowledge organization that we previously proposed, and a newly developed knowledge 

organization support system for this method. Furthermore, we show a system configuration that 

addresses issues in the previous system. 



 

390 

 

2.1 Expandable Modular Statements Method 
 

EMS has two aspects: construction and expansion (Fig. 2). First, parts that learners should construct are 

presented as a task, and the learners write code to construct chunks that include meaningful series as 

parts. Next, parts including the constructed parts are presented as a task, and learners construct larger 

parts that reuse the previously constructed parts. 

In the example shown in Fig. 2, the “swap” parts are constructed by learner writing and 

combining “c = a,” “a = b,” and “b = c” in the “make swap” task. Then, in the “make sort” task, learner 

adding “if a > b” to the previously created “swap” expands the “sort” as larger parts. By repeating the 

construction, reuse, and expansion of such parts in this learning method, the learner is directed toward 

awareness of relations between each parts, and training for reuse. 

 

 
Figure 2. An example of EMS. 

 

2.2 Previous Knowledge Organization Support System 
 

We previously developed a system that supports the organization of knowledge use and EMS. Figure 3 

shows the user interface of the previous system. In this user interface, the learner learns based on the 

EMS method through system assistance. Evaluations of this system showed that it significantly 

supports learning and code reuse (Koike, Tomoto, Horiguchi, & Hirashima, 2019). 

 

 
Figure 3. User interface of the previous system. 
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Figure 4(a) shows the configuration of the previous system, in which problems are presented 

stepwise in a certain task sequence, and the learner learns according to that sequence. When responding 

to tasks or pressing the hint button, the system provides feedback to direct the learner. The previous 

system, however, presents only task sequences that we have subjectively determined. Furthermore, the 

provided feedback only compares the structure of learner answers with the correct answer to point out 

deficiencies and excesses. 

Therefore, we examined the definition of a parts model as knowledge and a model of the 

problem-solving process as related to the acquisition and expansion of parts, so that the system can 

better grasp and support learning (see Section 3). In the newly proposed system, these models are 

implemented in the previous system to address some issues in that system. 

Figure 4(b) shows the configuration of the proposed system, in which tasks can be generated from 

a system parts database and task sequences can be automatically generated while considering 

differences between tasks. Based on the problem-solving process, learners can grasp in which processes 

errors occur when parts are incorrectly constructed or consider which part elements are insufficiently 

understood. This should provide more adaptive feedback. 

 

 
Figure 4. System configurations of the previous and proposed systems. 

 

 

3. Parts Model and Problem-Solving Process Model 
 

This section outlines the proposed parts model and a model for problem-solving processes based on that 

parts model. 
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3.1 Parts Model 
 

To reuse a meaningful series of code as parts, learners must associate stored source code and its 

behavior. Source code behavior can be categorized as overall behavior or meaning attached to a target 

behavior according to the code’s purpose. For example, in the source code “c = a,” “a = b,” and “b = c” 

in “swap,” there are state transitions such as “change variable c to the value of a,” “change variable a to 

the value of b,” and “change variable b to the value of a.” However, only the latter two commands are 

interpreted as the meaning of the “swap” function, and the behavior “change variable c to the value of a” 

is not focused upon. 

Therefore, in this research we define “structure” as source code, “behavior” as the overall source 

code behavior, and “function” as meaning attached to behaviors toward the intended purpose. Figure 5 

shows the relations between these three elements. 

 

 
Figure 5. Parts model. 

 

3.2 Problem-Solving Process Model 
 

Figure 6 shows a model of the problem-solving process based on the parts definition. In this research, 

the problem-solving process related to parts is divided into two processes: “decomposition of required 

functions” performed as a representation of learners, and “composition of required functions” 

performed in the real world. In particular, we focus on the decomposition process with the aim of 

grasping the process by which learner answers are derived in the real world. Therefore, in this model, 

how each part element is derived in the decomposition process is modeled as a problem-solving 

process. 

The model in Fig. 6 expresses the problem-solving process in a case assuming that the task “sort 

two variables (sort)” will be accomplished by expanding the previously coded “replace two variables 

(swap).” First, we derive the behavior required to achieve the “sort” function. In other words, to code 

the function, the state transition to be performed is derived based on input given explicitly or assumed 

by the learner. In state transitions, the state is denoted by S and the input is denoted by d. When 

transitioning from S0 to the next state, transition conditions and operations are expressed in Fig. 6 as a 

rectangle on the edge between the current state and the next state Sn. The expression in the rectangle 

represents “transition condition: operation,” and “λ” indicates no operation. For example, the state 

transition S0 → S1 is performed only when da > db, while the state transition S1 → S2 in the K(swap) 

operation is performed unconditionally. Here, K(swap) is the meaning of the index that recalls. the 

“replace two variables” structure and is used to omit the behavior to be represented by reusing the 

learner’s existing knowledge. A learner not having this knowledge cannot achieve this task without 

assuming the detailed operation shown in the gray part in the upper right. But if the parts of swap are 

known in advance, it is not necessary to consider detailed behaviors. 

Once the required behavior is realized, the “Structure Construction” block then constructs the 

structure by combining parts to express the desired behavior. Parts corresponding to each behavior are 

combined, but “λ: K (swap)” reuses a structure from the learner’s existing knowledge based on the swap 

index. 

Next, the “Composition Process” block writes out the solved structure in the real world and 

verifies its behavior. If the structure behavior satisfies the function, the learner assigns the function to 

the structure and acquires it as knowledge. The learner’s knowledge state can thus be expressed as a set 

of parts (Fig. 7). For example, in constructing the structure in the decomposition process in Fig. 6, the 

structure is recalled by indexing the parts from which the K(swap) function is created from the learner’s 

existing knowledge. Furthermore, “sorting of two variables” added to the process in Fig. 6 is newly 
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added to knowledge as K(2var_sort). In the process in Fig. 8, a learner who has acquired “sorting of two 

variables” from the process in Fig. 6 next aims at coding “determine the minimum value in the array.” In 

this way, knowledge is organized by expanding parts in stages. 

The function name K(name) used for the index is only a label for distinguishing parts among 

learners; it has no other meaning. 

 

 
Figure 6. Model of the parts-based problem-solving process (the example of 2var_sort). 

 

 
Figure 7. Expression of learner knowledge states. 
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Figure 8. Model of the parts-based problem-solving process (the example of search_min_value). 

 

4. Evaluation of Explanations Generated by the Model 
 

We have developed a learning support system with a learning method that promotes acquisition of parts 

and confirmed its effectiveness. We also verified that system feedback effectively promotes learning. 

However, the previous system was unable to grasp behaviors. The previous system handles parts as 

knowledge only within the structure–function correspondence relationship, and system feedback could 

only point out insufficient points by comparing the structure developed by the learner and that of the 

correct answer. We consider that adding behavior elements to parts based on the proposed model 

enables feedback that was impossible in the previous system. 

To verify the effectiveness of feedback from the proposed model, we performed an evaluation 

experiment for comparison with feedback from the conventional system. 

 

4.1 Evaluation Method 
 

Participants were 17 undergraduate and graduate students who have studied programming for at least 

three years in programming lectures. All participants had acquired basic concepts such as “for” and “if” 

statements, sorting algorithms, and functions. 

The experiment first suggests possible learner errors and two possible explanations for that error 

(Table 1). The detail of explanation sets is omitted due to space limitations. Each set of explanations 

was evaluated by five questions (Table 2). One explanation is that from the previous system, and the 

other is obtained from the proposed model. 

The method was evaluated by having participants answer questions using a five-scale response, 

with the explanation from the previous system as 1 and the model explanation as 5. Participants were 

also asked to describe the reason for their answers. 

 

Table 1 Example Explanation Set 

Explanation Set 3 

Problem Make a function that sorts and outputs two variables 

Possible learner error 

if a > b   a = b 

   b = a 

print a 

print b 

Explanation from previous 

system 
In line 2, “c = a” is the correct answer. 
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Model explanation 

This function is a combination of “sort two variables” and “output two variables.” 

Therefore, “output two variables” is correct, but in “sort two variables,” it is 

necessary to assign the value of a to a temporary variable before assigning the 

value of b to a in the second line. 

 

Table 2 Evaluation Questions 

Questions 

(Understanding) When describing a learner’s error, which explanation do you think would provide deeper 

understanding of the program? 

(Develop) When describing a learner’s error, which explanation do you think would best help the learner develop 

programs in the future? 

(Explore) When describing a learner’s error, which explanation do you think would best help learners identify 

errors in the future? 

(Appropriate) When describing a learner’s error, which explanation do you think is most appropriate for 

beginners? 

(Difficult) When describing a learner’s error, which explanation do you think is easiest to understand? 

 

4.2 Evaluation Results 
 

Table 3 summarizes the experimental results. The number of N indicates the total of each evaluation in 

four explanation sets by 17 participants. Table 3 showing that the model was highly evaluated in all 

responses to explanation sets 1 to 4. 

Table 4 shows each explanation set and its average value. The number of N indicates participants 

in each evaluation. In the results for each explanation, the model explanation is generally highly 

evaluated in all questions. 

These results suggest that the proposed model can provide more appropriate feedback that can be 

realized in the system, suggesting that effective support can be realized through learning of parts under 

the proposed model. However, this evaluation has mainly two limitations. One is unclear the 

reproducibility of learners' emotions in the actual learning environment. Another one is unclear the 

effect on learner skill. 

 

Table 3 Overview of Results (1: Conventional Explanation – 5: Model Explanation) 

N = 68 Understanding Develop Explore Appropriate Difficult 

Average 4.26 4.38 4.37 4.13 4.06 

Positive 55 56 58 48 50 

Negative 9 6 7 7 11 

 

Table 4 Results of each Explanation Set (ES) 

N = 17 Understanding Develop Explore Appropriate Difficult 

ES-1 4.12 4.59 4.24 4.12 4.12 

ES-2 4.47 4.47 4.59 4.06 3.65 

ES-3 4.41 4.18 4.12 4.12 4.12 

ES-4 4.06 4.29 4.53 4.24 4.35 

 

 

5. Proposed Knowledge Organization Support System 
 

5.1 Overview 
 

As described in Section 2, we proposed a system for knowledge organization and have developed a 

support system for it. This section extends this support system and proposes a system that implements 

the model outlined in Section 3 (Fig. 9). 
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Figure 9. Interface of the proposed system and operation examples. 

 

The proposed system generates behaviors from learner-constructed parts by grasping models of 

parts and problem-solving processes and furthermore deriving correct behaviors from the structure of 

parts contained in the system. It is thus possible to provide explicit feedback regarding behavior of the 

learner’s structure and differences with the correct behavior. The goal is to make learners more 

conscious of implicit behavior and to organize knowledge based on knowledge differences. 

In addition, this system improves the fixed task sequence of the previous system, and can 

adaptively generate task sequences based on the inclusion relation of parts. Consequently, task 

presentations that were previously subjective are now based on certain criteria. 

 

 

5.2 Learning and Feedback 
 

This section describes the specific learning flow, using the interface of the proposed system shown on 

the left side of Fig. 9 as an example. In that example, the learner has already learned how to swap 

values. First, a problem statement is presented to the learner, and the learner constructs the target 

structure by combining parts in the parts list in the construction area while following the constraints 

indicated by the conditions. When the behavior confirmation button is pressed, behavior of the learner’s 

structure is generated as feedback, and errors are indicated in comparison with the behavior generated 

from the structure of the correct parts, which are stored in the system. When the correct behavior button 

is pressed, the correct behavior with blank parts in some datasets is presented as shown at the lower 

right of Fig. 9. These two forms of feedback give learners an opportunity to think about how their own 

structure should behave.  

In the previous system, learning was linked only to the relation between function and structure. 

The proposed system, however, is expected to transform learning by including behavior from this 

feedback. 

 

5.3 Task Presentation 
 

As shown at the upper right of Fig. 9, tasks in the proposed system are presented stepwise, aiming 

toward a final goal for parts based on inclusion relations in a parts database stored in the system. If parts 

from other sequences are to be synthesized as subsequent parts, the system presents a task from the root 

of that sequence, promoting the acquisition of other parts to be synthesized. For example, after solving 

"Sort two variables" task shown the left side of Fig. 9, "Search max in array" task is presented shown the 

Fig. 10. 

However, this research aimed at organizing knowledge already stored for reuse. Therefore, there 

is no acquisition of primitive parts that the system considers unnecessary, as shown by the dotted line at 

the upper right of Fig. 9. 
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Figure 10. An example of task presenting in the proposed system. 

 

 

6. Discussion and Future Works 
 

We supported knowledge organization by previously proposing a knowledge organization method 

aiming at improved reusability of knowledge and by developing and evaluating that system. However, 

there were issues in problem presentation and feedback in that system. Therefore, we aimed at 

improvement by using models for parts and for the examined problem-solving process. 

This paper proposed a system that improves task presentation and feedback functions by 

implementing these models in the system. Specifically, we added functions for generating sequences 

based on certain criteria from a parts database and for suggesting and teaching behaviors. The proposed 

system can be expected to support knowledge organization while allowing learners to focus on part 

behaviors. 

In future work, we will implement the proposed system and perform evaluation experiments 

using that system. 
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