

Learning Support System to Facilitate
Redesigning for Understanding

Software Design Patterns

Hiroki OOE a* , Tomoko KOJIRI b, Kazuhisa SETAc
aGraduate School of Science and Engineering, Kansai University, Japan
bFaculty of System Science and Engineering, Kansai University, Japan

cGraduate School of Science, Osaka Prefecture University, Japan
*k773152@kansai-u.ac.jp

Abstract: Design patterns are good designs in object-oriented programming and are
generated experientially by predecessors. We propose a learning method of understanding
design patterns by transforming a program with a design pattern into that without one
(alternative solution). We also develop a support system that encourages learners of
generating appropriate alternative solution. Experimental results proved that the proposed
method was effective for a deep understanding of design patterns.

Keywords: experiential knowledge, design patterns learning support, generating
alternative solution, vicarious experience support

1. Introduction

Experiential knowledge is knowledge acquired through experience [1]. Experiential
knowledge addressed in this study is design patterns that are a collection of good
object-oriented designs. Design patterns are produced through generation of various
programs by our predecessors. To obtain design patterns, it is necessary to understand not
only their meaning but also the appropriate and inappropriate conditions to apply. For
grasping such conditions, to follow predecessors’ generation process which is to transform
programs with design patterns into those without design patterns (alternative solution) is
effective. However, it is difficult for learners to modify a program into a reasonable one.
 We propose a learning method of reliving predecessors’ experience by producing
alternative solutions. Additionally, we construct a support system to encourage learners of
generating alternative solutions. Based on the method, learners can develop the ability of
acquiring experienced knowledge, even if new design patterns are given.
 Many studies support the learning of programming [2]. However, they cannot
consider the conditions for applying the structure. Stephen introduces target problem to
learners and makes them derive the design pattern by themselves as predecessors did [3].
However, in this method, some learners may not be able to derive the design pattern. In
this study, in order for all learners to consider predecessors’ trial and error easily, the
learning method is proposed in which transforming the class diagram of the program using
design patterns into alternative solution. We have constructed a learning support system in
which the class diagram of the program can be transformed. In addition, the advising
mechanism for supporting generation of the alternative solution is introduced.

61

2. Framework of Design Pattern

Design patterns are produced by experts of programming through their experiences of
designing programs repeatedly for similar problems. Design patterns are structures that
contain the benefits of object-oriented design, but alternative solutions do not. Therefore,
for acquisition of design patterns, to generate alternative solutions that reduce the benefits
of object-oriented design is effective to understand the advantages and disadvantages of
the design patterns.
 Example of alternative solution is shown in Figure 1. The class diagram in Figure
1(a) is the example of using the Iterator pattern [5]. The characteristic of this program is
that Main class does not refer to the method in concrete class, such as BookShelf and
BookShelfIterator, but uses the method in the Aggregate interface and Iterator interface. In
this structure, even if adding or changing another concrete class having the same
functionality as concrete class, then a program can be updated without changing the Main
class. The example of its alternative solution is shown in Figure 1(b). This program does
not introduce interface and Main class refers to the concrete class directly. In this structure,
the change of the concrete method affects to the Main class. Therefore, this alternative
solution reduces the reusability and flexibility of the original design.

 (a) Class diagram of the solution using (b) Class diagram of good alternative solution

the Iterator pattern of (a) without using the Iterator pattern
Figure 1. Example of solution

 In this study, learners transform the class diagram to the program structure of the
same meaning as alternative solution of the design pattern. To make learners generate
good alternative solutions, we have proposed a support system which evaluates the
learner’s class diagram of alternative solution and generates advice, if necessary. The
system presents class diagrams of target design patterns that learners want to learn.
Learners change the class diagram and design alternative solution without the design
pattern. The system evaluates an inputted class diagram as the good alternative solution.
The system gives advice to promote to the derivation of an appropriate alternative solution
if the learners’ alternative solutions are inappropriate. Learners change the class diagram
by referring to advice and finish learning if they generate a good alternative solution.

3. Mechanism for Supporting Alternative Solution Generation

The system holds the data for class diagrams of the problems and class diagrams of good
alternative solutions. Good alternative solutions can be expressed by the difference
between class diagrams of the problem and class diagrams of alternative solutions. An
alternative solution is created by adding/deleting objects/relations from the given problem.
Modification of existing objects/relations is equivalent to adding modified

62

objects/relations after deleting the original one, so it can be represented by a combination
of addition and deletion. In this study, the system holds alternative solution data as
added/deleted object and type of its change, such as addition or deletion. In addition, a
good alternative solution is intended to reduce the benefits of object-oriented design. The
system must hold benefits of corresponding alternative solution with class diagram data.
 Alternative solution data for Figure 1(b) is shown in Table 1. Since it reduces the
reusability and flexibility, “reusability and flexibility” are described as the target benefits
of object-oriented design. Additionally, it deletes the relation between Main class and
Aggregate interface, so such deletion and its type are noted as ID I. In the same way, all
differences are listed.

Table 1. Alternative solution data of Figure 1(b)

The alternative solution inputted by the learner is also transformed to this form. The
system compares the lists of problem and alternative solution in the system with the
learner’s alternative solution and generates advice that helps learners to derive correct
alternative solutions if the learner’s diagram is inappropriate.
 The advice is derived depending on the types of inappropriateness in the learner’s
class diagram. Learners who generated inappropriate solutions do not understand one of
the following factors:

• Factor 1. Benefits of object-oriented design that should be reduced from the given
class diagram

• Factor 2. The way of changing the class diagram to reduce benefits of
object-oriented design

If learners add/delete unnecessary classes/relations, they might not understand factor 2.
Such learners can generate correct class diagram if the system points out existence of the
unnecessary addition/deletion. However, if the learner does not perform the necessary
addition/deletion, they might stumble in both factors 1 and 2. Therefore, the system first
tells learners the benefits of the object-oriented design and the part of the inappropriate
solution that they should specifically address. The system advises a correct change to let
them understand factor 2 if the learner still cannot generate a correct class diagram. The
advice templates are shown in Table 2, where <Aspect> corresponds to the benefit of
object-oriented design, and <Object> represents class or relation to be added/deleted.

Table 2. Advice template

Type of inappropriateness Advice template

Lack of necessary addition First advice: “Focus on <Object> for reducing
<Aspect>.” The Second advice: “Add <Object> for
reducing <Aspect>.”

Lack of necessary deletion First advice: “Focus on <Object> for reducing
<Aspect>.”
Second advice: “Delete <Object> for <Aspect>.”

Extra addition “Extra Change: delete <Object>.”
Extra deletion “Extra Change: add <Object>.”

63

4. Prototype System

We implemented the proposed system using Microsoft Visual C++. The user interface is
presented in Figure 2. The class diagram is displayed at the class diagram display unit. At
the beginning of learning, the class diagram of the problem is shown, and learner’s
solution is displayed during the learning. The problem selection unit holds a list of
learnable design patterns and learners can select one from it.
 The entity edit unit represents a list of entities that exist in the class diagram.
Learners can add and delete the entity from text fields. The relation edit unit represents a
list of relations. Learners can also add, and delete them. The redraw button is used for
reflecting the class diagram that is inputted in the entity edit unit and relation edit unit. The
advice generation button is used for evaluating the class diagram created by the learner
and for asking advice. When its button is clicked more than once, the former advice is
replaced by the new advice. Figure 2 shows an example of the provided advice. This
advice shows “deleting the unnecessary class ooe whose field is hiroki and whose methods
are kansai, university, and osaka”.

Figure 2. User interface

5. Experiments

We conducted an experiment to verify the effectiveness of the proposed methods. Subjects
were six graduate and undergraduate students who had not learned design patterns, or who
were unable to apply design patterns to the problem. First, subjects were asked to take a
pretest to confirm their understanding of design patterns. The pretest has three questions:
question 1 was used to create an alternative solution from the given class diagram with
design pattern; question 2 asks the reason for created alternative solution in question 1;
and question 3 asks the role of the focused class/relation in the design patterns. After
explaining the manipulation method of the system, subjects were asked to create a class
diagram of alternative solution using the system. After that, subjects took a posttest to
verify the change of understanding of design patterns. The format of the posttest is the
same as that of the pretest, but the target design pattern is different. Additionally, we
prepared a questionnaire to evaluate the performance of this learning method.
 Results of the pretest and the posttest are shown in Table 3, which presents the
number of subjects for each situation. In the pretest, most subjects could not answer all the
questions correctly. In contrast, all subjects were able to answer question 1 and numerous
subjects were able to derive answers for questions 2 and 3 in the posttest. Since many
subjects were able to understand the benefits of object-oriented design, our system is
effective for learning design patterns.

Advice shown in advising unit

64

Table 3. Results of pretest and posttest

 Questions of the questionnaire and the results are shown in Table 4. They were asked
to select one from 1 (strongly disagree) to 5 (strongly agree). The table shows the number
of subjects who select each evaluation value for each question. From questions 1 and 2, it
seems clear that subjects can create the solution, but that they cannot understand the
meaning of created alternative solution. We should revise the advising mechanism to make
learners understand the meaning of the created alternative solution. Results of questions 3
and 4 show that subjects were able to understand the effect of the learning through
creating alternative solution. However, only half of them want to use this learning method.
The complexity of manipulating our system makes subjects feel this learning method is
inconvenient. Therefore, it is necessary to improve the system usability. Additionally, we
need further evaluation to prove the effectiveness of our system with more subjects.

Table 4. Questions and results of questionnaire

6. Conclusion

In this paper, we proposed a design pattern learning support system by creating alternative
solutions. In the future, the advising method should be improved to make explain the role
of the target classes and relations deeply. Additionally, the system interface must be
modified to edit the class diagram more smoothly.

References

[1] Polanyi, M. (2003). The Tacit Dimension, trans. Isao, T., Thikuma Library (in Japanese).
[2] Hwang, W., et al. (2008). A Web-based Programming Learning Environment to Support Cognitive

Development, Interacting with Computers, 20(6), 524-534.
[3] Stephen, W. (2005). Teaching Design Patterns by Stealth, Proceedings of the 36th SIGCSE Technical

Symposium on Computer Science Education, 37(1), 492-494.
[4] Seta, K., et al. (2010). Presentation-based Collaborative Learning Support System to Facilitate

Meta-cognitively Aware Learning Communication, The Journal of Information and Systems in
Education, 9(1), 3-14.

[5] Erich, G., et al. (1994). Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional.

65

