Learning Support System to Facilitate
Redesigning for Understanding
Software Design Patterns

Hiroki OOE ®, Tomoko KOJIRI®, Kazuhisa SETA
%Graduate School of Science and Engineering, Kadsaiersity, Japan
PFaculty of System Science and Engineering, Kansaidysity, Japan
“Graduate School of Science, Osaka Prefecture Usityedapan

*k773152@kansai-u.ac.jp

Abstract: Design patterns are good designs in object-orieqedjramming and are
generated experientially by predecessors. We peopdsarning method of understanding
design patterns by transforming a program with sigie pattern into that without one
(alternative solution). We also develop a suppgdtean that encourages learners of
generating appropriate alternative solution. Expental results proved that the proposed
method was effective for a deep understanding sigdepatterns.

Keywords: experiential knowledge, design patterns learningopsut, generating
alternative solution, vicarious experience support

1. Introduction

Experiential knowledge is knowledge acquired thiougxperience [1]. Experiential
knowledge addressed in this study is design patténat are a collection of good
object-oriented designs. Design patterns are pemtiubrough generation of various
programs by our predecessors. To obtain desigerpattit is necessary to understand not
only their meaning but also the appropriate angpnapriate conditions to apply. For
grasping such conditions, to follow predecessarggation process which is to transform
programs with design patterns into those withowigie patterns (alternative solution) is
effective. However, it is difficult for learners toodify a program into a reasonable one.

We propose a learning method of reliving predems$sexperience by producing
alternative solutions. Additionally, we construcswgpport system to encourage learners of
generating alternative solutions. Based on the atktlearners can develop the ability of
acquiring experienced knowledge, even if new depajterns are given.

Many studies support the learning of programmi2$ However, they cannot
consider the conditions for applying the structuiB&ephen introduces target problem to
learners and makes them derive the design pattetheinselves as predecessors did [3].
However, in this method, some learners may notlbe @ derive the design pattern. In
this study, in order for all learners to consideedecessors’ trial and error easily, the
learning method is proposed in which transformimg ¢lass diagram of the program using
design patterns into alternative solution. We hawestructed a learning support system in
which the class diagram of the program can be foamgd. In addition, the advising
mechanism for supporting generation of the altéraatolution is introduced.

61

2. Framework of Design Pattern

Design patterns are produced by experts of progiamihrough their experiences of
designing programs repeatedly for similar probledssign patterns are structures that
contain the benefits of object-oriented design, ditdérnative solutions do not. Therefore,
for acquisition of design patterns, to generateradtive solutions that reduce the benefits
of object-oriented design is effective to underdtéime advantages and disadvantages of
the design patterns.

Example of alternative solution is shown in FigdreThe class diagram in Figure
1(a) is the example of using thterator pattern [5]. The characteristic of this program is
that Main class does not refer to the method in concretssclsuch a8ookShelfand
BookShelflteratgrbut uses the method in tAggregatenterface andterator interface. In
this structure, even if adding or changing anothencrete class having the same
functionality as concrete class, then a programbsanpdated without changing th&in
class. The example of its alternative solutionhisven in Figure 1(b). This program does
not introduce interface ardain class refers to the concrete class directly. i gtructure,
the change of the concrete method affects toMae class. Therefore, this alternative
solution reduces the reusability and flexibilitytbé original design.

Iterator Pattern

Mai <<interface>> |Creates®[< <interface> >
I_am_l Aggregate Iterator | Main |
Usesp |t$rator4 I > plgitN ext | Usesp
:)

BookShelf l——[Bookshelflterator Bookshelf _l«—<{BookShelfTterator
getBookAt hasNext getBookAt hasNext
appendBook next appendBook next
getLength getLength
iterator . iterator

\ yaY J
l public Iterator iterator(){) 3 public Iterator iterator(){
Book return) Book return _
new BookShelfIterator(this); new BookShelfIterator(this);
getName L) getName ¥
(a) Class diagram of the solution using (b)sSldiagram of good alternative solution
the lterator pattern of (a) waith using the Iterator pattern

Figure 1. Example of solution

In this study, learners transform the class diagta the program structure of the
same meaning as alternative solution of the depajtern. To make learners generate
good alternative solutions, we have proposed a @tipgystem which evaluates the
learner’s class diagram of alternative solution geserates advice, if necessary. The
system presents class diagrams of target desigermatthat learners want to learn.
Learners change the class diagram and design aitensolution without the design
pattern. The system evaluates an inputted claggaiiimas the good alternative solution.
The system gives advice to promote to the derigatioan appropriate alternative solution
if the learners’ alternative solutions are inappiate. Learners change the class diagram
by referring to advice and finish learning if thggnerate a good alternative solution.

3. Mechanism for Supporting Alternative Solution Geneation

The system holds the data for class diagrams optthlelems and class diagrams of good
alternative solutions. Good alternative solutiora de expressed by the difference
between class diagrams of the problem and claggaiiies of alternative solutions. An
alternative solution is created by adding/deletbgects/relations from the given problem.
Modification of existing objects/relations is eqaient to adding modified

62

objects/relations after deleting the original os@,it can be represented by a combination
of addition and deletion. In this study, the systboids alternative solution data as
added/deleted object and type of its change, sachddition or deletion. In addition, a
good alternative solution is intended to reduceltheefits of object-oriented design. The
system must hold benefits of corresponding alt@éreaolution with class diagram data.

Alternative solution data for Figure 1(b) is shownTable 1. Since it reduces the
reusability and flexibility, “reusability and flelility” are described as the target benefits
of object-oriented design. Additionally, it deletds relation betweeiMain class and
Aggregateinterface, so such deletion and its type are natetD |. In the same way, all
differences are listed.

Table 1. Alternative solution data of Figure 1(b)

Iﬂ

Relation (Depend: Uses) : Main class=>Aggregate interface Deletion

]I Relation (Depend: Uses) : Main class=BookShelf class Addition

m Relation (Depend : Uses) : Main class=>Iterator interface Deletion

\') Relation (Depend : Uses) : Main class=>BookShelflterator class Addition

Reusability and flexibility v Class : Aggregate interface Deletion

VI Class : Iterator interface Deletion

VI Relation (Depend: Creates) : Aggregate interface=>Iterator interface Deletion

Vi Relation (Implement) : BookShelf class=>Aggregate interface Deletion

IX Relation(Implement) : BookShelflterator class=>Iterator interface Deletion

The alternative solution inputted by the learneraliso transformed to this form. The
system compares the lists of problem and altereasimution in the system with the
learner’s alternative solution and generates adthe¢ helps learners to derive correct
alternative solutions if the learner’s diagramnigppropriate.

The advice is derived depending on the types appnopriateness in the learner’s
class diagram. Learners who generated inappropsa@tdions do not understand one of
the following factors:

» Factor 1. Benefits of object-oriented design tlmaiusd be reduced from the given

class diagram

» Factor 2. The way of changing the class diagraredace benefits of

object-oriented design

If learners add/delete unnecessary classes/retattbry might not understand factor 2.
Such learners can generate correct class diagrm gystem points out existence of the
unnecessary addition/deletion. However, if therleardoes not perform the necessary
addition/deletion, they might stumble in both fastd and 2. Therefore, the system first
tells learners the benefits of the object-oriendedign and the part of the inappropriate
solution that they should specifically address. $iistem advises a correct change to let
them understand factor 2 if the learner still cdngenerate a correct class diagram. The
advice templates are shown in Table 2, where <Aspeorresponds to the benefit of
object-oriented design, and <Object> represenss@arelation to be added/deleted.

Table 2. Advice template

Type of inappropriateness Advice template

Lack of necessary additior | First advice: “Focus on <Object> for reducipng
<Aspect>.” The Second advice: “Add <Object> for
reducing <Aspect>
Lack of necessary deletio First advice: “Focus on <Object> for reducipng

<Aspect>.”

Second advic “Delete <Object> for <Aspect>
Extra addition “Extra Change: delete <Object:
Extra deletion “Extra Change: add <Object:

63

4. Prototype System

We implemented the proposed system using Microdeftal C++. The user interface is
presented in Figure 2. The class diagram is displat the class diagram display unit. At
the beginning of learning, the class diagram of pineblem is shown, and learner’s
solution is displayed during the learning. The peab selection unit holds a list of
learnable design patterns and learners can seledram it.

The entity edit unit represents a list of entitibsit exist in the class diagram.
Learners can add and delete the entity from tektisi The relation edit unit represents a
list of relations. Learners can also add, and defleém. The redraw button is used for
reflecting the class diagram that is inputted i entity edit unit and relation edit unit. The
advice generation button is used for evaluatingdlass diagram created by the learner
and for asking advice. When its button is clickedrenthan once, the former advice is
replaced by the new advice. Figure 2 shows an ebeawipthe provided advice. This
advice shows “deleting the unnecessary ate&swvhose field ishiroki and whose methods
arekansaj university andosakd.

- Entity edit unit

* [Class diagram el o e
display unit ki Relation edit unit]
Redraw button " = -

A

(- |Problem selection unitl Wi _‘"""'P_
pe [o s

B O 1

l — = kdwce generation| *|Advising'unit|
button

Figure 2. User interface

Advice shown in advising unit

- Extra Ghange: delste the entity, <<Classr>ooe [hirckil -
kansai/university fosaka -

5. Experiments

We conducted an experiment to verify the effectegsnof the proposed methods. Subjects
were six graduate and undergraduate students whadtdearned design patterns, or who
were unable to apply design patterns to the probkmst, subjects were asked to take a
pretest to confirm their understanding of desigtigoas. The pretest has three questions:
guestion 1 was used to create an alternative saldtom the given class diagram with
design pattern; question 2 asks the reason fotedtedternative solution in question 1;
and question 3 asks the role of the focused ckatibn in the design patterns. After
explaining the manipulation method of the systeuhjexts were asked to create a class
diagram of alternative solution using the systerfteiAthat, subjects took a posttest to
verify the change of understanding of design pasteThe format of the posttest is the
same as that of the pretest, but the target dgzgtern is different. Additionally, we
prepared a questionnaire to evaluate the perforenahthis learning method.

Results of the pretest and the posttest are showrable 3, which presents the
number of subjects for each situation. In the @tet@ost subjects could not answer all the
guestions correctly. In contrast, all subjects wadrke to answer question 1 and numerous
subjects were able to derive answers for questbbasd 3 in the posttest. Since many
subjects were able to understand the benefits pfctbriented design, our system is
effective for learning design patterns.

64

Table 3. Results of pretest and posttest
Cuestion Fesult Pretest | Posttest
6

Created appropriate alternative solution

1 Created inappropriate alternative solution
Could not create at all
Explained correctly

L= ==

2 Explained incorrectly
Could not ex plain at all
Explained correctly

Explained incorrectly
Could not explain at all

Lad

[Py e s N
[T PN N

=3 =

Questions of the questionnaire and the resultstawevn in Table 4. They were asked
to select one from 1 (strongly disagree) to 5 (ajhp agree). The table shows the number
of subjects who select each evaluation value foh emestion. From questions 1 and 2, it
seems clear that subjects can create the solutanthat they cannot understand the
meaning of created alternative solution. We shoeise the advising mechanism to make
learners understand the meaning of the createchaliee solution. Results of questions 3
and 4 show that subjects were able to understaadettect of the learning through
creating alternative solution. However, only hdltttem want to use this learning method.
The complexity of manipulating our system makesjettb feel this learning method is
inconvenient. Therefore, it is necessary to imprthee system usability. Additionally, we
need further evaluation to prove the effectiversdssur system with more subjects.

Table 4. Questions and results of questionnaire

. Evaluation
Quesion T2 [3]%]5
1. Did youunderstand the meaning of alternative solution which vou created? 0|2 1 1| 2
2. Did youthink ziven advices were appropriate? L]0 |4 |10
3. Do you understand the importance of creafing alternative solufion? 0o 0] 3|1
4. Do you want to create alternative solufion inlearming new design pattems? 021121

6. Conclusion

In this paper, we proposed a design pattern legrsuipport system by creating alternative
solutions. In the future, the advising method stida¢ improved to make explain the role
of the target classes and relations deeply. Aduhlly, the system interface must be
modified to edit the class diagram more smoothly.

References

[1] Polanyi, M. (2003). The Tacit Dimension, tratsao, T.,Thikuma Library(in Japanese).

[2] Hwang, W., et al. (2008). A Web-based PrograngmLearning Environment to Support Cognitive
Development|nteracting with Computer0(6), 524-534.

[3] Stephen, W. (2005). Teaching Design Pattesqnstealth,Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Educaigiil), 492-494.

[4] Seta, K., et al. (2010). Presentation-basedlaBorative Learning Support System to Facilitate
Meta-cognitively Aware Learning Communicatioithe Journal of Information and Systems in
Education 9(1), 3-14.

[5] Erich, G., et al. (1994). Design Patterns: Elemeonfs Reusable Object-Oriented Software,
Addison-Wesley Professional

65

