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Abstract: With increasing emphasis on enhancing classroom engagement and 
learning outcomes, efficient and accurate assessment of student behavioral 
engagement has become essential. Traditional methods such as classroom 
observations and self-reports are often subjective, time-consuming, and lack 
scalability. To address these limitations, this study proposes a computer vision-based 
approach for automatically assessing student behavioral engagement in classroom 
environment. Specifically, an improved VGG16-Attn model is proposed by integrating 
attention mechanisms to enhance feature extraction and boost behavior recognition 
performance. Our results indicate that the proposed method not only accurately detects 
student behavior types but also, by further aggregating and calculating these 
behaviors, objectively and effectively captures the dynamic evolution of behavioral 
engagement. This method offers a promising solution for educators to gain actionable 
insights into student engagement, ultimately contributing to more personalized and 
effective teaching strategies. 
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1. Introduction 
 
Student engagement can be defined as the degree to which students participate in learning 
activities, encompassing their attention, involvement, and effort (Fredricks et al., 2004). 
Research has shown a significant positive correlation between student engagement and 
academic achievement (Gunuc, 2014). Student engagement is conceptualized as a 
multidimensional construct consisting of cognitive, emotional, and behavioral components 
(Fredricks et al., 2004; Cooper, 2014), where cognitive and emotional engagement are 
relatively implicit and difficult to observe directly. In contrast, behavioral engagement is more 
easily assessed as it is directly reflected in students' observable actions, such as classroom 
interactions, answering questions, and completing assignments. Therefore, behavioral 
engagement is often the most accessible dimension to evaluate and is the most commonly 
used indicator in many studies. Traditionally, engagement has been assessed through self-
reports, teacher observations, and surveys, but these methods often suffer from subjectivity, 
lack of real-time feedback, and difficulties in scaling for large classrooms. 

Recent advancements in computer vision and deep learning have provided new avenues 
for automating the assessment of student behavioral engagement in classroom environments. 
These technologies offer the potential to capture real-time behavioral data with greater 
accuracy and consistency compared to traditional methods. A growing body of research has 
demonstrated the potential of using video-based analysis for tracking student behaviors (Ngoc 
Anh et al., 2019; Guo, 2022; Trabelsi et al., 2023). Despite these advancements, video-based 
behavioral analysis still faces several challenges in practical applications. First, the 
performance of behavior recognition models is limited by the scale and diversity of available 



datasets. Many datasets fail to adequately cover various classroom environments and 
behavior types. Second, existing research often lacks long-term tracking of student behaviors, 
which hinders a comprehensive analysis of the evolution of students’ behavioral engagement. 
Additionally, most studies primarily focus on the technical aspects of behavior recognition. 
While these studies have achieved relatively accurate recognition of student behaviors, they 
have not effectively integrated this behavioral data into a comprehensive assessment of 
behavioral engagement. 

To address the aforementioned challenges, this study constructed a large-scale, high-
quality dataset specifically designed to support the task of student behavior recognition in 
classroom contexts. On the basis of this dataset, a computer vision–driven framework was 
proposed for the quantitative assessment of students’ behavioral engagement during live 
classroom sessions. This framework integrates advanced visual analysis techniques to 
capture and interpret students’ actions, enabling a more objective and scalable measurement 
of engagement levels. The findings of this study contribute to providing teachers with accurate 
classroom feedback and offer data support for optimizing teaching strategies and 
implementing personalized education. 
 

2. Literature Review 
 

2.1 Behavioral Engagement and Its Typical Measurement 
 
The definition of classroom behavioral engagement can be categorized into two main 
perspectives: one focuses on student compliance with rules, specifically reflecting behaviors 
such as attendance rates. For instance, Finn (1989) suggests that learning engagement helps 
identify the process of students gradually becoming disengaged and alienated from school, 
thus enabling timely interventions to support students in completing their academic work. The 
other perspective examines the extent of students’ deep involvement in learning activities, 
including effort, persistence, and concentration (Fredricks et al., 2004). This is typically 
reflected in behaviors such as completing assignments, attending classes, answering 
questions, and participating in discussions. This study, building upon the foundation of prior 
research, conceptualizes behavioral engagement as the proactive and purposeful interaction 
of students with various learning resources, instructors, and peers within the classroom 
context. Such engagement encompasses actions that reflect students’ participation, 
persistence, and effort in academic tasks. By systematically observing students' behavioral 
states throughout the learning process, the degree of their engagement in classroom activities 
can be assessed. 

Traditional methods for measuring classroom behavioral engagement primarily include 
self-reports and classroom observations. Early research primarily involved learners self-
reporting their levels of engagement. This method is highly practical and provides large-scale 
data at a relatively low cost. However, self-reports are prone to subjective bias, and students 
may not always provide truthful responses. Additionally, this approach fails to offer process-
oriented analysis, making it difficult to track the dynamic changes in student engagement over 
time. Classroom observation, on the other hand, uses pre-established observation scales to 
capture students’ behavioral characteristics during the learning process, thereby assessing 
their behavioral engagement (Volpe et al., 2005). The primary limitation of this method lies in 
the substantial investment of time and effort required from researchers, rendering it impractical 
for large-scale investigations and unsuitable as a routine instrument for process-oriented 
assessment. However, the advent of computer vision technology has introduced new 
opportunities to enhance and transform traditional classroom observation approaches. 
Leveraging cameras, sensors, and sophisticated algorithms, computer vision systems are 
capable of capturing and processing visual data in real time, thereby offering researchers 
granular and dynamic insights into student behaviors and interactions. In particular, recent 
advancements in deep learning have significantly expanded the analytical capabilities of these 
systems, enabling more accurate, scalable, and automated behavioral analysis. As a result, 
research integrating computer vision with educational observation has attracted growing 



scholarly interest in recent years, paving the way for more efficient and data-rich methods of 
studying classroom engagement. 
 

2.2 Classroom Behavioral Engagement Recognition via Computer Vision 
 
Computer vision technology aims to detect, recognize, track, and understand objects through 
the processing and analysis of image or video data. Researchers can utilize this technology 
to perform fine-grained recognition of students' body movements in classroom videos, 
enabling the automated assessment of behavioral engagement. Early studies in this field 
primarily focused on using traditional machine learning methods to recognize classroom 
engagement (Karimah & Hasegawa, 2022). For instance, Zaletelj et al. (2017) trained a 
classifier to automatically assess students' attention levels in the classroom by extracting 
features from facial expressions and body posture, and combining them with various traditional 
machine learning algorithms. The results indicated that the three-level attention classifier 
achieved a moderate accuracy of 75.3%. The advantage of traditional machine learning 
methods lies in their relatively simple model structures, lower computational requirements, 
and suitability for smaller datasets. However, these methods are highly dependent on manual 
feature extraction and have limited effectiveness in handling complex and dynamic student 
behaviors. 

With the advancement of artificial intelligence, deep learning methods have 
demonstrated their superiority in image recognition tasks. The end-to-end learning process 
not only simplifies the workflow of traditional machine learning tasks but also enhances the 
capability of deep neural networks through a hierarchical feature extraction process. 
Consequently, in recent years, an increasing number of studies on student behavior 
recognition have adopted deep learning methods. For example, Li et al. (2023) used 
classroom videos from a smart classroom to generate an image dataset containing seven 
typical learning behaviors. Based on this dataset, they developed a behavior recognition 
network model, which includes a backbone network (SlowFast R-101) for feature extraction, 
a target detector (Faster R-CNN), and an action classifier composed of fully connected layers. 
Ikram et al. (2023) employed a VGGNet16 model based on transfer learning to calculate 
students' learning engagement levels in real classroom settings by extracting external 
behavioral features. Additionally, Xiong et al. (2024) proposed a CNN-Transformer model that 
simultaneously captures both coarse- and fine-grained information, significantly improving the 
accuracy of learning engagement recognition in classroom contexts. 

In summary, research on classroom behavioral engagement recognition based on 
computer vision has evolved from traditional methods based on handcrafted features to deep 
learning approaches. Although deep learning methods are widely favored for their ability to 
provide more accurate recognition of student behavior, they often suffer from lower 
interpretability and typically require large amounts of labeled data for training. Existing 
datasets in current research are relatively limited in size, which can lead to overfitting issues. 
Furthermore, due to privacy concerns and other factors, acquiring datasets from external 
institutions presents significant challenges. In response to these issues, this study has 
constructed a large-scale student behavior dataset by collecting real classroom videos and 
has conducted an in-depth analysis of engagement levels based on behavior recognition 
results. 
 

3. Methodology 
 

3.1 Student Behavior Dataset 
 
Due to the absence of publicly available datasets tailored to real-world classroom settings, we 
constructed a large-scale student behavior dataset to support behavior recognition model 
development and evaluation. The dataset includes 152,823 annotated images extracted from 
actual classroom videos, each labeled with one of nine representative behaviors: listening, 
reading, writing, raising hand, standing, leaning the body, looking around, lying on desk, and 
other, Figure 1 shows example images. These categories were selected for their pedagogical 



relevance and importance in evaluating student engagement. The dataset captures diverse 
classroom environments, camera angles, postures, and occlusion conditions, making it highly 
representative. This resource provides a solid foundation for advancing computer vision-
based behavior analysis in education. 
 

 

 

  
writing reading listening looking around 

    
raising hand standing leaning the body lying on desk 

Figure 1. Example images from the behavior dataset. 
 

3.2 Data Augmentation 
 
The annotated behavior dataset exhibits class imbalance, which may lead to biased 
predictions if directly used to train deep learning models. In such cases, the model is likely to 
favor the majority class, resulting in poor recognition performance for the minority classes. To 
expand and balance the image dataset, this study employed various data augmentation (DA) 
techniques, including rotation, flipping, noise addition, and blurring, as shown in Figure 2. After 
applying these augmentation methods, the final dataset used to train the behavior recognition 
model contained 312,459 images. 
 

     

Original Image Flipping Rotation Noise Addition Blurring 
Figure 2. Some examples of DA. 

 

3.3 Improved VGGNet16 for Recognizing Student Behavior 
 
Although VGGNet16 (Simonyan & Zisserman, 2019) is a classic convolutional neural network 
with strong performance in image classification, it lacks the ability to adaptively focus on 
important spatial and channel-wise features. This limitation reduces its effectiveness in 
distinguishing key behavioral cues from complex classroom backgrounds, potentially lowering 
recognition accuracy. 

To overcome this, we propose an improved model, referred to as VGG16-Attn, by 
embedding a Convolutional Block Attention Module (CBAM) at the end of each convolutional 
block in the original VGGNet16 (see Figure 3). The CBAM module introduces a two-stage 
attention mechanism: the channel attention sub-module emphasizes meaningful feature 
channels by learning inter-channel relationships, while the spatial attention sub-module high-
lights relevant regions in the feature map by learning spatial dependencies. Structurally, the 
modified model retains the five convolutional blocks of VGGNet16, each followed by a CBAM 
module, and ends with three fully connected layers for classification. This enhancement 



enables the network to better capture discriminative features relevant to student behavior, 
improving both accuracy and robustness. 
 

 
Figure 3. Network architecture of the VGG16-Attn model. 

 

3.4 Behavioral Engagement Analysis 
 
Chi and Wylie (2014) proposed the ICAP (Interactive, Constructive, Active, Passive) 
framework, which distinguishes students' engagement levels in the classroom based on their 
observable behaviors. This study builds on the ICAP framework to systematically categorize 
learning behaviors and classifies them into four types: interactive behavior, active behavior, 
passive behavior, and disengaged behavior. Specifically, interactive behavior emphasizes 
students' interaction with others (teacher or peers) in the classroom, and is demonstrated by 
actions such as standing up to answer questions or leaning the body to communicate. Active 
behavior reflects active participation and autonomous learning tendencies, such as writing or 
raising hands. Passive behavior refers to actions where students primarily receive information 
in the classroom, such as listening or reading. Disengaged behavior refers to a lack of 
meaningful learning participation, such as looking around or lying on the desk. 

The levels of engagement for these four types of behavior are ranked from highest to 
lowest as follows: active behavior > interactive behavior > passive behavior > disengaged 
behavior. To quantitatively reflect this hierarchy, weights representing each behavior’s 
contribution to overall engagement are assigned using the Analytic Hierarchy Process (AHP) 
(Tavana et al., 2023), as shown in Table 1. 
 
Table 1. Weight Distribution Information for Different Behavior Types 

Behavior Type Weight Description Explicit Indicators 

Active 
behavior 

0.4824 
Actively participate in 
learning, but do not involve 
interaction. 

writing, raising hand  

Interactive 
behavior 

0.3213 
It Involves collaboration and 
knowledge-building activities. 

standing, leaning the 
body 

Passive 
behavior 

0.1457 
Limited to information 
reception, indicating a lower 
level of engagement. 

listening, reading 

Disengaged 
behavior 

0.0506 
Not engaged in classroom 
learning. 

looking around, lying 
on desk, other 

 
After obtaining the behavior recognition results for all students in the entire class using 

the trained model, the occurrence proportion of each behavior type within each time segment 
(5 seconds in this study) can be calculated. The behavior engagement level for each time 
segment can then be computed using the following formula: 

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = ∑(𝑊𝑖 × 𝑃𝑖)

𝑛

𝑖=1

 



In the formula, 𝑊𝑖 represents the weight of the i-th behavior type, 𝑃𝑖  denotes the proportion of 
occurrences of the i-th behavior type, and n refers to the total number of behavior types (n=4). 
 

4. Result and Discussion 
 
This section presents the baseline results obtained using the dataset. The preliminary 
evaluation offers insights into the dataset's usability. Additionally, the trained model is applied 
to recognize student behaviors in real classroom videos, facilitating an analysis of the 
evolution of behavioral engagement. 
 

4.1 Experimental Setup and Evaluation Metrics 
 
The proposed model was evaluated on the self-constructed student behavior dataset, split into 
training, validation, and test sets in a 7:1:2 ratio. Experiments were conducted using Python 
with Keras 2.2.0 and TensorFlow-GPU 2.6.2. The model was trained for 50 epochs with a 
batch size of 32 and a learning rate of 0.01. To address class imbalance, a weighted cross-
entropy loss function was employed, and parameter optimization was carried out using the 
Adam optimizer.  

The performance of the proposed model was rigorously evaluated using four widely 
recognized metrics—Accuracy, Precision, Recall, and F1-score—thereby ensuring a 
comprehensive assessment of its predictive capabilities. All metrics were computed on the 
test set using macro-averaging, which ensures equal weight across all behavior categories 
regardless of class size. This approach enables a fair evaluation of the model’s performance 
on both majority and minority classes. 

 

4.2 Student Behavior Recognition Results 
 
To comprehensively evaluate the effectiveness of the proposed VGG16-Attn model in 
classroom student behavior recognition, a series of comparative experiments were conducted 
against several representative state-of-the-art deep learning architectures. Specifically, the 
comparison set included InceptionV3 (Szegedy et al., 2016), Xception (Chollet, 2017), 
DenseNet121 (Huang et al., 2017), MobileNetV3 (Howard et al., 2017), and the original 
VGGNet16 (Simonyan & Zisserman, 2014). These models are widely used in computer vision 
tasks and exhibit distinct architectural advantages: InceptionV3 employs parallel multi-scale 
convolution modules to enhance feature extraction; Xception uses depthwise separable 
convolutions to reduce computational cost; DenseNet121 promotes feature reuse across 
layers to improve gradient flow and parameter efficiency; MobileNetV3 combines neural 
architecture search with optimized activation functions for lightweight deployment; and 
VGGNet16, though structurally simple, remains effective in many visual tasks due to its stable 
convolutional stacking. 

The detailed results are summarized in Table 2. The experimental results indicate that 
although the proposed VGG16-Attn model has a higher computational complexity than the 
baseline models, it delivers the best classification performance across all core metrics. 
Specifically, it achieves an Accuracy of 0.91, a Macro-Precision (Macro-P) of 0.91, a Macro-
Recall (Macro-R) of 0.90, and a Macro-F1 score of 0.91. Compared to the original VGGNet16, 
the VGG16-Attn model demonstrates a 5% improvement in accuracy, confirming the 
effectiveness of the CBAM attention mechanism in enhancing feature representation. In 
contrast, InceptionV3, Xception, and DenseNet121 exhibit lower computational costs, with 
Xception performing slightly better in select metrics. However, none of these models achieve 
an accuracy above 0.85, suggesting limited capacity to capture fine-grained behavior patterns 
in complex classroom scenarios. Notably, MobileNetV3 achieves the lowest computational 
complexity (only 0.44G FLOPs), underscoring its efficiency. Nonetheless, its classification 
accuracy is over 4% lower than that of VGG16-Attn, indicating that lightweight models may 
face challenges in extracting sufficiently rich features for recognizing complex student 
behaviors. 
 



Table 2. Comparison Results Between the VGG16-Attn and State-of-the-art Models 

Models Accuracy Macro-P Macro-R Macro-F1 FLOPs(G) 

InceptionV3 0.77 0.77 0.76 0.76 5.69 
Xception 0.84 0.87 0.83 0.84 9.11 

DenseNet121 0.70 0.71 0.67 0.68 5.67 
MobileNetV3 0.87 0.86 0.87 0.87 0.44 
VGGNet16 0.86 0.87 0.86 0.86 15.47 
VGG16-Attn 
(This study) 

0.91 0.91 0.90 0.91 30.95 

 
Figure 4 displays the results of student behavior detection in different classroom 

scenarios using the trained model. As shown in the figure, the majority of students' behavior 
states are accurately recognized, indicating that the model performs well under ideal lighting 
conditions and with relatively clear visibility. However, for students seated at the back or in 
corner positions of the classroom, the model faces challenges in behavior recognition due to 
limited visibility and reduced resolution. 
 

  
Figure 4. Examples of student behavior recognition. 

 

4.3 Analysis of Classroom Behavioral Engagement 
 
This study analyzed classroom behavioral engagement using video recordings from two class 
sessions. Prior to data collection, informed consent was obtained, and students were clearly 
informed about the purpose of the study. All data were anonymized to ensure student privacy 
and comply with ethical standards. 
 

 
Figure 5. Temporal evolution of student behavioral engagement in two classrooms. 

 
Aggregated behavior recognition results revealed distinct engagement patterns (Figure 

5): both classes showed low engagement during the first 15 minutes, with noticeable increases 



around the 16th and 27th minutes. However, in the final 10 minutes, engagement diverged—
remaining low in Teacher 1’s class, while fluctuating in Teacher 2’s class. Video analysis 
indicates that low engagement corresponded to passive lecture segments, whereas peaks 
aligned with interactive activities such as practice and questioning. Despite identical 
instructional content, the engagement trends reflect differences in teaching pace and style. 
Teacher 2’s class included more frequent but shorter practice sessions, consistent with lesson 
evaluation notes stating that “the pace of the lesson was faster, and when students made 
mistakes, the teacher quickly moved on without targeted feedback”. While this approach 
covered more content, it limited opportunities for in-depth learning. These findings are 
consistent with classroom observations and further validate the effectiveness of the proposed 
automatic behavioral engagement recognition method. 
 

5. Conclusions and Future Work 
 
This study integrates computer vision technology with an improved deep learning model to 
enable automated assessment of classroom behavioral engagement, aiming to address the 
limitations of traditional methods—namely, subjectivity, lack of real-time feedback, and poor 
scalability. Furthermore, the proposed approach was applied to real classroom video analysis, 
and the experimental results confirmed its effectiveness and reliability in practical settings. 
This provides a scientific foundation for teachers to dynamically monitor students’ learning 
processes. 

Although this study successfully achieves automatic recognition of classroom behavioral 
engagement using classroom video data, it has not yet focused on more implicit aspects of 
engagement, including emotion and cognition. Future research should integrate other sources 
of data, such as classroom dialogues, and further develop a more comprehensive, multimodal 
approach to automated learning engagement assessment. Additionally, future work should 
explore how to better integrate the proposed method into teaching practices to enhance 
educational efficiency and quality, thereby contributing to the development of educational 
informatization and intelligence. 
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