Jiang, B. et al. (Eds.) (2025). Proceedings of the 33" International Conference on Computers in Education. Asia-
Pacific Society for Computers in Education

A Computer Vision-Based Approach for
Assessing Student Behavioral
Engagement in the Classroom

Yaping XU?*, Haogang BAO°®, Yaqian ZHENG?Y, Siyu WANG?, Sisi WU?, & Yanyan LI?"
aFaculty of Education, Beijing Normal University, Beijing, China
®School of Educational Technology, Northwest Normal University, Lanzhou, China
¢The China National Academy of Educational Sciences, Beijjing, China
4 College of Education, Hebei University, Baoding, China
*liyy@bnu.edu.cn

Abstract: With increasing emphasis on enhancing classroom engagement and
learning outcomes, efficient and accurate assessment of student behavioral
engagement has become essential. Traditional methods such as classroom
observations and self-reports are often subjective, time-consuming, and lack
scalability. To address these limitations, this study proposes a computer vision-based
approach for automatically assessing student behavioral engagement in classroom
environment. Specifically, an improved VGG16-Attn model is proposed by integrating
attention mechanisms to enhance feature extraction and boost behavior recognition
performance. Our results indicate that the proposed method not only accurately detects
student behavior types but also, by further aggregating and calculating these
behaviors, objectively and effectively captures the dynamic evolution of behavioral
engagement. This method offers a promising solution for educators to gain actionable
insights into student engagement, ultimately contributing to more personalized and
effective teaching strategies.
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1. Introduction

Student engagement can be defined as the degree to which students participate in learning
activities, encompassing their attention, involvement, and effort (Fredricks et al., 2004).
Research has shown a significant positive correlation between student engagement and
academic achievement (Gunuc, 2014). Student engagement is conceptualized as a
multidimensional construct consisting of cognitive, emotional, and behavioral components
(Fredricks et al., 2004; Cooper, 2014), where cognitive and emotional engagement are
relatively implicit and difficult to observe directly. In contrast, behavioral engagement is more
easily assessed as it is directly reflected in students' observable actions, such as classroom
interactions, answering questions, and completing assignments. Therefore, behavioral
engagement is often the most accessible dimension to evaluate and is the most commonly
used indicator in many studies. Traditionally, engagement has been assessed through self-
reports, teacher observations, and surveys, but these methods often suffer from subjectivity,
lack of real-time feedback, and difficulties in scaling for large classrooms.

Recent advancements in computer vision and deep learning have provided new avenues
for automating the assessment of student behavioral engagement in classroom environments.
These technologies offer the potential to capture real-time behavioral data with greater
accuracy and consistency compared to traditional methods. A growing body of research has
demonstrated the potential of using video-based analysis for tracking student behaviors (Ngoc
Anh et al., 2019; Guo, 2022; Trabelsi et al., 2023). Despite these advancements, video-based
behavioral analysis still faces several challenges in practical applications. First, the
performance of behavior recognition models is limited by the scale and diversity of available



datasets. Many datasets fail to adequately cover various classroom environments and
behavior types. Second, existing research often lacks long-term tracking of student behaviors,
which hinders a comprehensive analysis of the evolution of students’ behavioral engagement.
Additionally, most studies primarily focus on the technical aspects of behavior recognition.
While these studies have achieved relatively accurate recognition of student behaviors, they
have not effectively integrated this behavioral data into a comprehensive assessment of
behavioral engagement.

To address the aforementioned challenges, this study constructed a large-scale, high-
quality dataset specifically designed to support the task of student behavior recognition in
classroom contexts. On the basis of this dataset, a computer vision—driven framework was
proposed for the quantitative assessment of students’ behavioral engagement during live
classroom sessions. This framework integrates advanced visual analysis techniques to
capture and interpret students’ actions, enabling a more objective and scalable measurement
of engagement levels. The findings of this study contribute to providing teachers with accurate
classroom feedback and offer data support for optimizing teaching strategies and
implementing personalized education.

2. Literature Review
2.1 Behavioral Engagement and lIts Typical Measurement

The definition of classroom behavioral engagement can be categorized into two main
perspectives: one focuses on student compliance with rules, specifically reflecting behaviors
such as attendance rates. For instance, Finn (1989) suggests that learning engagement helps
identify the process of students gradually becoming disengaged and alienated from school,
thus enabling timely interventions to support students in completing their academic work. The
other perspective examines the extent of students’ deep involvement in learning activities,
including effort, persistence, and concentration (Fredricks et al., 2004). This is typically
reflected in behaviors such as completing assignments, attending classes, answering
questions, and participating in discussions. This study, building upon the foundation of prior
research, conceptualizes behavioral engagement as the proactive and purposeful interaction
of students with various learning resources, instructors, and peers within the classroom
context. Such engagement encompasses actions that reflect students’ participation,
persistence, and effort in academic tasks. By systematically observing students' behavioral
states throughout the learning process, the degree of their engagement in classroom activities
can be assessed.

Traditional methods for measuring classroom behavioral engagement primarily include
self-reports and classroom observations. Early research primarily involved learners self-
reporting their levels of engagement. This method is highly practical and provides large-scale
data at a relatively low cost. However, self-reports are prone to subjective bias, and students
may not always provide truthful responses. Additionally, this approach fails to offer process-
oriented analysis, making it difficult to track the dynamic changes in student engagement over
time. Classroom observation, on the other hand, uses pre-established observation scales to
capture students’ behavioral characteristics during the learning process, thereby assessing
their behavioral engagement (Volpe et al., 2005). The primary limitation of this method lies in
the substantial investment of time and effort required from researchers, rendering it impractical
for large-scale investigations and unsuitable as a routine instrument for process-oriented
assessment. However, the advent of computer vision technology has introduced new
opportunities to enhance and transform traditional classroom observation approaches.
Leveraging cameras, sensors, and sophisticated algorithms, computer vision systems are
capable of capturing and processing visual data in real time, thereby offering researchers
granular and dynamic insights into student behaviors and interactions. In particular, recent
advancements in deep learning have significantly expanded the analytical capabilities of these
systems, enabling more accurate, scalable, and automated behavioral analysis. As a result,
research integrating computer vision with educational observation has attracted growing



scholarly interest in recent years, paving the way for more efficient and data-rich methods of
studying classroom engagement.

2.2 Classroom Behavioral Engagement Recognition via Computer Vision

Computer vision technology aims to detect, recognize, track, and understand objects through
the processing and analysis of image or video data. Researchers can utilize this technology
to perform fine-grained recognition of students’ body movements in classroom videos,
enabling the automated assessment of behavioral engagement. Early studies in this field
primarily focused on using traditional machine learning methods to recognize classroom
engagement (Karimah & Hasegawa, 2022). For instance, Zaletelj et al. (2017) trained a
classifier to automatically assess students' attention levels in the classroom by extracting
features from facial expressions and body posture, and combining them with various traditional
machine learning algorithms. The results indicated that the three-level attention classifier
achieved a moderate accuracy of 75.3%. The advantage of traditional machine learning
methods lies in their relatively simple model structures, lower computational requirements,
and suitability for smaller datasets. However, these methods are highly dependent on manual
feature extraction and have limited effectiveness in handling complex and dynamic student
behaviors.

With the advancement of artificial intelligence, deep learning methods have
demonstrated their superiority in image recognition tasks. The end-to-end learning process
not only simplifies the workflow of traditional machine learning tasks but also enhances the
capability of deep neural networks through a hierarchical feature extraction process.
Consequently, in recent years, an increasing number of studies on student behavior
recognition have adopted deep learning methods. For example, Li et al. (2023) used
classroom videos from a smart classroom to generate an image dataset containing seven
typical learning behaviors. Based on this dataset, they developed a behavior recognition
network model, which includes a backbone network (SlowFast R-101) for feature extraction,
a target detector (Faster R-CNN), and an action classifier composed of fully connected layers.
Ikram et al. (2023) employed a VGGNet16 model based on transfer learning to calculate
students' learning engagement levels in real classroom settings by extracting external
behavioral features. Additionally, Xiong et al. (2024) proposed a CNN-Transformer model that
simultaneously captures both coarse- and fine-grained information, significantly improving the
accuracy of learning engagement recognition in classroom contexts.

In summary, research on classroom behavioral engagement recognition based on
computer vision has evolved from traditional methods based on handcrafted features to deep
learning approaches. Although deep learning methods are widely favored for their ability to
provide more accurate recognition of student behavior, they often suffer from lower
interpretability and typically require large amounts of labeled data for training. Existing
datasets in current research are relatively limited in size, which can lead to overfitting issues.
Furthermore, due to privacy concerns and other factors, acquiring datasets from external
institutions presents significant challenges. In response to these issues, this study has
constructed a large-scale student behavior dataset by collecting real classroom videos and
has conducted an in-depth analysis of engagement levels based on behavior recognition
results.

3. Methodology
3.1 Student Behavior Dataset

Due to the absence of publicly available datasets tailored to real-world classroom settings, we
constructed a large-scale student behavior dataset to support behavior recognition model
development and evaluation. The dataset includes 152,823 annotated images extracted from
actual classroom videos, each labeled with one of nine representative behaviors: listening,
reading, writing, raising hand, standing, leaning the body, looking around, lying on desk, and
other, Figure 1 shows example images. These categories were selected for their pedagogical



relevance and importance in evaluating student engagement. The dataset captures diverse
classroom environments, camera angles, postures, and occlusion conditions, making it highly
representative. This resource provides a solid foundation for advancing computer vision-
based behavior analysis in education.
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Figure 1. Example images from the behavior dataset.

3.2 Data Augmentation

The annotated behavior dataset exhibits class imbalance, which may lead to biased
predictions if directly used to train deep learning models. In such cases, the model is likely to
favor the majority class, resulting in poor recognition performance for the minority classes. To
expand and balance the image dataset, this study employed various data augmentation (DA)
techniques, including rotation, flipping, noise addition, and blurring, as shown in Figure 2. After
applying these augmentation methods, the final dataset used to train the behavior recognition
model contained 312,459 images.
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Figure 2. Some examples of DA.

3.3 Improved VGGNet16 for Recognizing Student Behavior

Although VGGNet16 (Simonyan & Zisserman, 2019) is a classic convolutional neural network
with strong performance in image classification, it lacks the ability to adaptively focus on
important spatial and channel-wise features. This limitation reduces its effectiveness in
distinguishing key behavioral cues from complex classroom backgrounds, potentially lowering
recognition accuracy.

To overcome this, we propose an improved model, referred to as VGG16-Attn, by
embedding a Convolutional Block Attention Module (CBAM) at the end of each convolutional
block in the original VGGNet16 (see Figure 3). The CBAM module introduces a two-stage
attention mechanism: the channel attention sub-module emphasizes meaningful feature
channels by learning inter-channel relationships, while the spatial attention sub-module high-
lights relevant regions in the feature map by learning spatial dependencies. Structurally, the
modified model retains the five convolutional blocks of VGGNet16, each followed by a CBAM
module, and ends with three fully connected layers for classification. This enhancement



enables the network to better capture discriminative features relevant to student behavior,
improving both accuracy and robustness.
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Figure 3. Network architecture of the VGG16-Attn model.

3.4 Behavioral Engagement Analysis

Chi and Wylie (2014) proposed the ICAP (Interactive, Constructive, Active, Passive)
framework, which distinguishes students' engagement levels in the classroom based on their
observable behaviors. This study builds on the ICAP framework to systematically categorize
learning behaviors and classifies them into four types: interactive behavior, active behavior,
passive behavior, and disengaged behavior. Specifically, interactive behavior emphasizes
students' interaction with others (teacher or peers) in the classroom, and is demonstrated by
actions such as standing up to answer questions or leaning the body to communicate. Active
behavior reflects active participation and autonomous learning tendencies, such as writing or
raising hands. Passive behavior refers to actions where students primarily receive information
in the classroom, such as listening or reading. Disengaged behavior refers to a lack of
meaningful learning participation, such as looking around or lying on the desk.

The levels of engagement for these four types of behavior are ranked from highest to
lowest as follows: active behavior > interactive behavior > passive behavior > disengaged
behavior. To quantitatively reflect this hierarchy, weights representing each behavior’s
contribution to overall engagement are assigned using the Analytic Hierarchy Process (AHP)
(Tavana et al., 2023), as shown in Table 1.

Table 1. Weight Distribution Information for Different Behavior Types

Behavior Type Weight Description Explicit Indicators
Active Actively participate in | writing, raising hand
behavior 0.4824 learning, but do not involve

interaction.
Interactive 03213 It Involves collaboration and | standing, leaning the
behavior ' knowledge-building activities. | body
Passive Limiteq _to_ .information listening, reading
behavior 0.1457 reception, indicating a lower

level of engagement.
Disengaged 0.0506 Not engaged in classroom | looking around, lying
behavior ' learning. on desk, other

After obtaining the behavior recognition results for all students in the entire class using
the trained model, the occurrence proportion of each behavior type within each time segment
(5 seconds in this study) can be calculated. The behavior engagement level for each time
segment can then be computed using the following formula:

n

Behavioral Engagement = Z(Wi X P;)
i=1



In the formula, W; represents the weight of the i-th behavior type, P, denotes the proportion of
occurrences of the i-th behavior type, and n refers to the total number of behavior types (n=4).

4. Result and Discussion

This section presents the baseline results obtained using the dataset. The preliminary
evaluation offers insights into the dataset's usability. Additionally, the trained model is applied
to recognize student behaviors in real classroom videos, facilitating an analysis of the
evolution of behavioral engagement.

4.1 Experimental Setup and Evaluation Metrics

The proposed model was evaluated on the self-constructed student behavior dataset, split into
training, validation, and test sets in a 7:1:2 ratio. Experiments were conducted using Python
with Keras 2.2.0 and TensorFlow-GPU 2.6.2. The model was trained for 50 epochs with a
batch size of 32 and a learning rate of 0.01. To address class imbalance, a weighted cross-
entropy loss function was employed, and parameter optimization was carried out using the
Adam optimizer.

The performance of the proposed model was rigorously evaluated using four widely
recognized metrics—Accuracy, Precision, Recall, and F1-score—thereby ensuring a
comprehensive assessment of its predictive capabilities. All metrics were computed on the
test set using macro-averaging, which ensures equal weight across all behavior categories
regardless of class size. This approach enables a fair evaluation of the model’s performance
on both majority and minority classes.

4.2 Student Behavior Recognition Results

To comprehensively evaluate the effectiveness of the proposed VGG16-Attn model in
classroom student behavior recognition, a series of comparative experiments were conducted
against several representative state-of-the-art deep learning architectures. Specifically, the
comparison set included InceptionV3 (Szegedy et al., 2016), Xception (Chollet, 2017),
DenseNet121 (Huang et al., 2017), MobileNetV3 (Howard et al., 2017), and the original
VGGNet16 (Simonyan & Zisserman, 2014). These models are widely used in computer vision
tasks and exhibit distinct architectural advantages: InceptionV3 employs parallel multi-scale
convolution modules to enhance feature extraction; Xception uses depthwise separable
convolutions to reduce computational cost; DenseNet121 promotes feature reuse across
layers to improve gradient flow and parameter efficiency; MobileNetV3 combines neural
architecture search with optimized activation functions for lightweight deployment; and
VGGNet16, though structurally simple, remains effective in many visual tasks due to its stable
convolutional stacking.

The detailed results are summarized in Table 2. The experimental results indicate that
although the proposed VGG16-Attn model has a higher computational complexity than the
baseline models, it delivers the best classification performance across all core metrics.
Specifically, it achieves an Accuracy of 0.91, a Macro-Precision (Macro-P) of 0.91, a Macro-
Recall (Macro-R) of 0.90, and a Macro-F1 score of 0.91. Compared to the original VGGNet16,
the VGG16-Atth model demonstrates a 5% improvement in accuracy, confirming the
effectiveness of the CBAM attention mechanism in enhancing feature representation. In
contrast, InceptionV3, Xception, and DenseNet121 exhibit lower computational costs, with
Xception performing slightly better in select metrics. However, none of these models achieve
an accuracy above 0.85, suggesting limited capacity to capture fine-grained behavior patterns
in complex classroom scenarios. Notably, MobileNetV3 achieves the lowest computational
complexity (only 0.44G FLOPs), underscoring its efficiency. Nonetheless, its classification
accuracy is over 4% lower than that of VGG16-Attn, indicating that lightweight models may
face challenges in extracting sufficiently rich features for recognizing complex student
behaviors.



Table 2. Comparison Results Between the VGG 16-Attn and State-of-the-art Models

Models Accuracy Macro-P Macro-R Macro-F1 FLOPs(G)
InceptionV3 0.77 0.77 0.76 0.76 5.69
Xception 0.84 0.87 0.83 0.84 9.1
DenseNet121 0.70 0.71 0.67 0.68 5.67
MobileNetV3 0.87 0.86 0.87 0.87 0.44
VGGNet16 0.86 0.87 0.86 0.86 15.47
VGG16-Attn
(This study) 0.91 0.91 0.90 0.91 30.95

Figure 4 displays the results of student behavior detection in different classroom
scenarios using the trained model. As shown in the figure, the majority of students' behavior
states are accurately recognized, indicating that the model performs well under ideal lighting
conditions and with relatively clear visibility. However, for students seated at the back or in
corner positions of the classroom, the model faces challenges in behavior recognition due to
limited visibility and reduced resolution.

Figure 4. Examples of student behavior recognition.

4.3 Analysis of Classroom Behavioral Engagement

This study analyzed classroom behavioral engagement using video recordings from two class
sessions. Prior to data collection, informed consent was obtained, and students were clearly
informed about the purpose of the study. All data were anonymized to ensure student privacy
and comply with ethical standards.
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Figure 5. Temporal evolution of student behavioral engagement in two classrooms.

Aggregated behavior recognition results revealed distinct engagement patterns (Figure
5): both classes showed low engagement during the first 15 minutes, with noticeable increases



around the 16th and 27th minutes. However, in the final 10 minutes, engagement diverged—
remaining low in Teacher 1’s class, while fluctuating in Teacher 2’s class. Video analysis
indicates that low engagement corresponded to passive lecture segments, whereas peaks
aligned with interactive activities such as practice and questioning. Despite identical
instructional content, the engagement trends reflect differences in teaching pace and style.
Teacher 2’s class included more frequent but shorter practice sessions, consistent with lesson
evaluation notes stating that “the pace of the lesson was faster, and when students made
mistakes, the teacher quickly moved on without targeted feedback”. While this approach
covered more content, it limited opportunities for in-depth learning. These findings are
consistent with classroom observations and further validate the effectiveness of the proposed
automatic behavioral engagement recognition method.

5. Conclusions and Future Work

This study integrates computer vision technology with an improved deep learning model to
enable automated assessment of classroom behavioral engagement, aiming to address the
limitations of traditional methods—namely, subjectivity, lack of real-time feedback, and poor
scalability. Furthermore, the proposed approach was applied to real classroom video analysis,
and the experimental results confirmed its effectiveness and reliability in practical settings.
This provides a scientific foundation for teachers to dynamically monitor students’ learning
processes.

Although this study successfully achieves automatic recognition of classroom behavioral
engagement using classroom video data, it has not yet focused on more implicit aspects of
engagement, including emotion and cognition. Future research should integrate other sources
of data, such as classroom dialogues, and further develop a more comprehensive, multimodal
approach to automated learning engagement assessment. Additionally, future work should
explore how to better integrate the proposed method into teaching practices to enhance
educational efficiency and quality, thereby contributing to the development of educational
informatization and intelligence.
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