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Abstract: This study examines how Large Language Model (LLM) feedback generated 
for compiler errors impacts learners’ persistence in programming tasks within a system 
for automated assessment of programming assignments. Persistence, the ability to 
maintain effort in the face of challenges, is crucial for academic success but can 
sometimes lead to unproductive "wheel spinning" when students struggle without 
progress. We investigated how additional LLM feedback based on the GPT-4 model, 
provided for compiler errors affects learners’ persistence within a CS1 course. 
Specifically, we examined whether its impacts differ based on task difficulty, and if the 
effects persist after the feedback is removed. A randomized controlled trial involving 
257 students across various programming tasks was conducted. Our findings reveal 
that LLM feedback improved some aspects of students’ performance and persistence, 
such as increased scores, a higher likelihood of solving problems, and a lower 
tendency to demonstrate unproductive "wheel spinning" behavior. Notably, this positive 
impact was also observed in challenging tasks. However, its benefits did not sustain 
once the feedback was removed. The results highlight both the potential and limitations 
of LLM feedback, pointing out the need to promote long-term skill development and 
learning independent of immediate AI assistance.  
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1. Introduction  
  
Persistence, the ability to maintain effort in the face of challenges, is a critical factor in student 
success and learning outcomes (Cloninger et al., 1993). This concept is closely linked to grit, 
productive struggle, and growth mindset that encourage persistent efforts (Cutts et al., 2010; 
Duckworth et al., 2007). Previous studies have demonstrated that higher persistence predicts 
course completion (Wang & Baker, 2018), college enrollment (Adjei et al., 2021) and academic 
success (McClendon et al., 2017). Persistence can be particularly relevant to computer 
science education, as programming often involves debugging. This process can be 
challenging due to various factors such as misconceptions, fragile knowledge, and the 
'superbug' (the incorrect assumption that the programming language has intelligent 
interpretive powers) (McCauley et al., 2008). Debugging often requires students to engage in 
iterative testing to identify and resolve issues, demanding persistence as students must 
maintain their efforts despite the frustration and setbacks.  

However, not all persistence in programming tasks is productive. Students may exhibit 
unproductive persistence, or "wheel spinning." This occurs when students make repeated 
unsuccessful attempts without making meaningful progress or achieving mastery within a 
reasonable timeframe (Beck & Gong, 2013). Wheel spinning is particularly prevalent among 
novice programmers who struggle with syntax and find it difficult to interpret compiler error 
messages (Hartmann et al., 2010). Without appropriate guidance, students may misinterpret 
error messages, apply ineffective debugging strategies, or repeatedly attempt incorrect 
solutions, hindering their learning (Nienaltowski et al., 2008).  



Recent advancements in artificial intelligence, particularly Large Language Models 
(LLMs) like GPT, offer new opportunities for personalized feedback in CS education.  
Examples include Codehelp (Liffiton et al., 2023) and Codeaid (Kazemitabaar et al., 2024). 
LLMs have also been used to generate code explanations (Leinonen, Denny, et al., 2023), and 
debugging hints (Leinonen, Hellas, et al., 2023; McBroom et al., 2021). However, recent 
studies suggest that novices may struggle to interpret AI-generated feedback, leading to 
cognitive overload and ineffective problem-solving strategies (Leinonen, Hellas, et al., 2023). 
Concerns have also emerged about students' potential over-reliance, where students merely 
copy AI-suggested solutions without fully understanding them, hindering their ability to 
internalize programming concepts and independently solve problems (Becker et al., 2023; 
Finnie-Ansley et al., 2022). This highlights the need for further investigation into whether LLM 
feedback fosters genuine problem-solving or reinforces unproductive behaviors.  

This study contributes to this discussion by examining whether LLM-generated feedback 
enhances learners' productive persistence in programming tasks and whether its benefits 
persist after AI assistance is withdrawn. We hypothesize that the personalized LLM feedback 
could help students engage in more effective debugging and problem-solving strategies while 
mitigating unproductive persistence (i.e., repeated unsuccessful attempts). To rigorously test 
this hypothesis, we conducted a randomized controlled experiment with 257 CS1 students 
using an automated assessment platform. Students were randomly assigned to receive either 
standard compiler error messages or standard compiler error messages plus LLM-enhanced 
feedback with error explanation, allowing us to compare their persistence behaviors across 
programming tasks of varying difficulty. Beyond assessing the immediate effects of AI-
generated feedback, our study uniquely examines its long-term impact by analyzing student 
performance after LLM feedback is removed. Specifically, we examine:  
RQ1: How does LLM feedback affect learners' persistence in programming tasks?  
RQ2: Does LLM feedback show a significant effect on learners' persistence, specifically in 
challenging programming tasks?  
RQ3: How does the removal of LLM feedback affect the performance of students who have 
previously received it? Are there lasting effects on their persistence?  

  

2. Literature Review  
  

2.1 Operationalization of Persistence  
  

Persistence research has recently expanded to computer science domain (Flores & Rodrigo, 
2020; Pinto et al., 2021), but the iterative nature of programming poses challenges for 
traditional models. Programming involves cycles of coding, testing, and debugging (McCauley 
et al., 2008). Common approaches like correct-in-a-row count (Gong & Beck, 2015) or 
Bayesian Knowledge Tracing (BKT) (Käser et al., 2016) often assume binary correctness and 
clear skill mapping, which do not reflect the multifaceted progress typical in programming 
tasks. In programming tasks, students often make incremental progress in various aspects of 
the code (e.g., syntax, logic, efficiency) simultaneously. Another challenge is the issue of credit 
assignment. While intelligent tutoring systems (ITSs) use well-defined skill structure to track 
learning (Fang et al., 2017; Gong & Beck, 2015), programming tasks often involve overlapping 
concepts, making it hard to pinpoint which specific skill or concept underlies errors. As a result, 
the criteria traditionally used to define mastery and differentiate between productive and 
unproductive persistence in ITS may not directly translate to the programming context. Thus, 
this work leverages the metrics defined in Pinto et al. (2021), which are tailored to measure 
persistence in programming tasks. This approach considers the characteristics of 
programming tasks and provides a more nuanced view of persistence in programming.  

  

2.2 LLM in CS education and Research Motivation  
  

LLM have shown promise in CS education by providing explanations for programming 
concepts and errors, and personalized hints (Kazemitabaar et al., 2024; Leinonen, Denny, et 
al., 2023; Liffiton et al., 2023; McBroom et al., 2021; Sit et al., 2024). In introductory 
programming courses, ChatGPT has been found to deliver consistent formative feedback 
(Kiesler et al., 2023) and improve task performance with positive student ratings (Pankiewicz 



& Baker, 2023). However, limitations remain: GPT-based tools may struggle with complex 
queries and software testing questions (Qureshi, 2023) and can yield mixed results, especially 
when deeper understanding of programming concepts is required (Pankiewicz & Baker, 2024). 
Moreover, concerns around over-reliance have emerged (Xue et al., 2024). One risk is the 
illusion of understanding, where students believe they have grasped a concept simply because 
they can produce working solutions with AI (Becker et al., 2023). Tools like OpenAI Codex may 
enable students to bypass the problem-solving process instead of engaging in debugging and 
critical thinking (Finnie-Ansley et al., 2022). Research on Copilot has similarly shown that some 
students develop a habit of outsourcing their cognitive effort to AI (Prather et al., 2023). These 
concerns highlight that unregulated use may also undermine the acquisition of problem solving 
skills. Recent research has shown that students’ intentions to use these tools are shaped not 
only by immediate needs such as academic stress and risk-taking tendencies (Samson et al., 
2024) but also by broader psychological factors such as personal innovativeness, trust, and 
self-efficacy (Elinzano & Ching, 2024).  

This study aims to bridge the gap between the need for persistence in programming and 
the potential of AI-generated feedback. Most existing studies on AI-generated feedback have 
focused primarily on immediate learning outcomes, with limited attention to whether these 
benefits continue after the AI support is withdrawn. This study examines how LLM feedback 
impacts student persistence both immediately and over the long term. Specifically, we 
investigate whether LLM feedback reduces unproductive persistence and whether this benefit 
persists once removed. By examining the interaction between LLM feedback and task difficulty, 
this study also aims to inform best practices regarding when and how AI assistance should be 
used. Ultimately, this research provides evidence-based insights into the conditions under 
which AI-generated feedback supports meaningful learning in programming.  

  

3. Method  
  

3.1 Participant and Learning Environment  
  

The study involved 257 computer science students, enrolled in a mandatory first semester 
CS1 course at a large European university. Topics include types and variables, conditional 
statement, recursion, loops, and loops with arrays. Students were randomly assigned to the 
Experimental group (N=129) or the Control group (N=128). Participants comprised 182 males 
and 74 females, with gender information missing for one participant. Consent was obtained 
from students. Tasks were assigned on an online platform for automated assessment, through 
14 modules containing between 5 to 14 problems each, with modules typically assigned on a 
weekly basis. The platform's assessment process involved compiling and testing the submitted 
code written in C# language, followed by providing students with feedback that included: 
compiler messages (line, error message, and id), results for each unit test (with input values 
and expected outcome), and overall score (the percentage of successful unit tests 0-100%).   

  

3.2 Experiment Setting and Prompt Design  
  

Both the control and experimental groups had access to 141 programming tasks distributed 
across 14 modules (as shown in Figure 1). For the first half of each module (72 tasks), the 
experimental group received additional feedback on compiler errors from OpenAI's GPT-4 
model (gpt-4-0613), while the control group received only standard messages. For the 
remaining 69 tasks, the GPT-4 feedback was withdrawn for the experimental group to assess 
any lasting effects. Feedback was created via a request to the OpenAI Chat Completion API 
using the approach to prompt generation that consisted of the following parts: 1) general 
instructions for the assistant, 2) assignment text, 3) student code, and 4) results of the code 
evaluation. The prompt was extended by examples of an ideal response containing three 
elements (in English): an explanation of the error (example from one of generated hints: “The 
compiler message ; expected means that a semicolon is missing in the line int a = 2*b”), a 
solution strategy (example: “To fix this error, you need to add a semicolon ; at the end of the 
line int a = 2*b”), and an educational element regarding the underlying concept (example: 
“Remember that in C#, every statement must be terminated with a semicolon”). This structure 
was designed to provide scaffolded support that guided students toward a solution without 



offering explicit code corrections. Hints were generated in approximately 20 seconds as a re-
viewable pop-up and offered once per submission, with no limit on attempts. The researchers 
also conducted a qualitative review of a sample of hints to ensure their general accuracy and 
pedagogical value. 

  

 
Figure 1. Experiment Setting 

  

3.3 Persistence Elements  
This study utilizes log data from 43,795 submissions to extract eight features, adapted from 
(Pinto et al., 2021), that quantify various aspects of persistence. The choice of thresholds— 
such as the 75th percentile—was informed by prior work (Pinto et al., 2021). For time-related 
features, we subtracted the actual LLM feedback generation time or used an average of 20 
seconds when this record was unavailable. These features were computed per task and then 
aggregated to the student level by averaging across tasks. Prior to aggregation, all features 
were standardized within each task (i.e., z-scored across all students) to account for variation 
in task difficulty and baseline behavior. The final feature list consisted of:  
Number of submissions: The total number of submission attempts made by the student for 
a specific task.  
Beyond attempt threshold: The proportion of tasks for which a student exceeded the 75th 
percentile of submission attempts (calculated across all students for each task).  
Solved: The proportion of attempted tasks that a student successfully solved, where a task is 
considered solved if the final submission received a perfect score.  
Last submission score: The average score of a student’s final submissions across all 
attempted tasks.  
Time since first submission: The average time a student spent on tasks, calculated from 
their first submission to their last for each task. For tasks with LLM assistance, time is adjusted 
to account for LLM feedback generation.  
Beyond time threshold: The proportion of tasks for which a student’s total time spent 
exceeded the 75th percentile of time spent (calculated across all students for each task). 
Taking a break: The proportion of tasks where a student had at least one gap of two hours or 
more between consecutive submissions. This two-hour threshold was determined based on 
an inspection of the distribution of submission intervals across all students, where breaks of 
this length represented a noticeable departure from typical short pauses.  
Wheel spinning: The proportion of tasks where a student made 7 or more submissions and 
didn’t solve the problem (final submission score was below 1). The 7-submission threshold 
corresponds to the mean plus one standard deviation of attempt counts in our dataset, aligning 
with prior work to identify patterns of unproductive persistence (Gong & Beck, 2015).  

These features were designed to capture different aspects of student persistence, 
including effort (number of submissions), efficiency (time spent), success rate (solved tasks), 
and potential struggles (wheel spinning).  

  

3.4 Analysis  
We employed rank-based linear regression from the Rift package in R due to non-normality in 
the data (Kloke & McKean, 2012), which is robust to non-normal data distributions. To further 
assess the stability and reliability of the model estimates, we conducted Monte Carlo 
simulations with 1000 iterations for each model. These simulations allowed us to evaluate the 



sensitivity of our results to sampling variability and ensure inference robustness. Additionally, 
we verified that there were no significant differences in the pre-test scores between the control 
and experimental groups using the Mann-Whitney U test (U = 4441.0, p = 0.121). The 
persistence metrics, outlined in Section 3.4, served as dependent variables. Each regression 
model included two independent variables: feedback type (additional LLM feedback vs. 
control) and pre-test scores, the latter serving as a covariate to control for prior knowledge 
differences. Our analysis addressed three specific research questions. Impact on All Tasks 
(RQ1): The impact of LLM feedback was evaluated across all tasks. Impact on Challenging 
Tasks (RQ2): Challenging tasks were defined by three criteria: average score below 100%, 
total time spent above the 75th percentile of all tasks, and total submission attempts above 
the 75th percentile. By analyzing these tasks separately, we aimed to gain nuanced insights 
into the impacts of LLM feedback on learners' persistence when faced with more difficult 
programming tasks. Post-feedback Removal Effects (RQ3): The persistence of observed 
benefits was examined after LLM feedback was removed.  

  

4. Results  
  

4.1 RQ1: Impact on All Tasks  
  

To investigate the impact of additional LLM feedback on learners' persistence, we employed 
rank-based regression to analyze each persistence metric, with pre-test scores as a covariate. 

The results are presented in Table 1, which reports regression coefficients  as the estimated 

effect of group membership on persistence metrics, Monte Carlo standard errors as the 
measure of estimation precision, and p-values to indicate statistical significance. We also 

calculated Kendall’s Tau  as the rank-based measure of association strength and direction. 
This ranges from -1 (perfect negative correlation) to +1 (perfect positive correlation), with 
values closer to 0 indicating weaker relationships. Tau values near ±0.10 suggest weak 
associations, ±0.30 moderate associations, and ±0.50 or higher strong associations. The 
experimental group, for tasks with GPT feedback enabled, showed significantly higher last 

submission scores ( = 0.029, p = 0.041,  = 0.137) and a marginally higher likelihood of solving 

the problems ( = 0.028, p = 0.061,  = 0.095) compared to the control group. Furthermore, 
the experimental group exhibited significantly lower rates of going beyond the time threshold 

( = -0.098, p =0.00,  = -0.143), taking breaks ( = -0.035, p = 0.050,  = -0.089), and wheel 

spinning ( = -0.025, p = 0.032,  = -0.134) compared to the control group. These findings 

indicate that learners who received GPT feedback were less likely to spend excessive time on 
tasks, take breaks, or engage in unproductive persistence (i.e., wheel spinning) than those who 
received only standard compiler error messages. 
  

Table 1. Combined Regression Analysis for All Tasks  

Variable  GPT Feedback Enabled (Phase 1) GPT Feedback Disabled (Phase 2) 

Coefficient 
(Std.E) 

MC Mean 
(Std.D) 

p-value  Coefficient 
(Std.E) 

MC Mean 
(Std.D) 

p-value  

Number of submissions (count) 

Intercept 7.192 (0.479) 7.256 (0.487) < 0.001*** 7.101 (0.446) 7.082 (0.518) < 0.001*** 

Experiment 0.381 (0.417) -0.439 (0.412) 0.363 0.460 (0.391) 0.441 (0.411) 0.242 

Pre-test -0.556 (0.090) -0.550 (0.075) < 0.001*** -0.438 (0.084) -0.433 (0.085) < 0.001*** 

Beyond Attempt Threshold (proportion) 

Intercept 0.141 (0.015)  0.141 (0.016) < 0.001*** 0.120 (0.019) 0.123 (0.020) < 0.001*** 

Experiment -0.014 (0.014)  -0.016 (0.014) 0.307 0.029 (0.018) 0.028 (0.020) 0.113 

Pre-test -0.019 (0.003)  -0.019 (0.003) < 0.001*** -0.014 (0.004) -0.014 (0.003) < 0.001*** 

Solved (proportion) 

Intercept 0.866 (0.019)  0.868 (0.021) < 0.001*** 0.840 (0.018) 0.838 (0.018) < 0.001*** 

Experiment 0.028 (0.015)  0.029 (0.016) 0.061 0.016 (0.016) 0.015 (0.016) 0.324 



Pre-test 0.011 (0.003)  0.011 (0.003) 0.0005*** 0.017 (0.003) 0.017 (0.003) < 0.001*** 

Last Submission Score (0–1 scale) 

Intercept 0.913 (0.015)  0.911 (0.015) < 0.001*** 0.894 (0.020) 0.892 (0.022) < 0.001*** 

Experiment 0.029 (0.014) 0.029 (0.014) 0.041* 0.016 (0.019) 0.015 (0.019) 0.402 

Pre-test 0.009 (0.003) 0.009 (0.003) 0.003** 0.012 (0.004) 0.012 (0.004) 0.003** 

Time Since First Submission (seconds) 

Intercept 459.217 
(29.760)  

464.509 
(45.946) 

< 0.001*** 497.061 
(39.856) 

501.579 
(44.586) 

< 0.001*** 

Experiment -32.823 
(26.028)  

-35.152 
(29.838) 

0.209 43.394 
(34.758) 

39.889 
(35.614) 

0.214 

Pre-test -43.127 
(5.602) 

-42.788 
(7.031) 

< 0.001*** -41.959 
(7.440) 

-42.536 
(7.016) 

< 0.001*** 

Beyond Time Threshold (proportion) 

Intercept 0.886 (0.034) 0.882 (0.028) < 0.001*** 0.852 (0.032) 0.871 (0.034) < 0.001*** 

Experiment -0.098 (0.031) -0.101 (0.034) 0.002** 0.013 (0.028) 0.006 (0.032) 0.645 

Pre-test -0.047 (0.007) -0.047 (0.007) < 0.001*** -0.036 (0.006) -0.042 (0.007) < 0.001*** 

Taking a Break (proportion) 

Intercept 0.207 (0.023)  0.214 (0.035) < 0.001*** 0.190 (0.023) 0.198 (0.037) < 0.001*** 

Experiment -0.035 (0.018) -0.036 (0.020) 0.050* -0.012 (0.020) -0.012 (0.022) 0.543 

Pre-test -0.025 (0.004) -0.025 (0.005) < 0.001*** -0.024 (0.004) -0.024 (0.005) < 0.001*** 

Wheel Spinning (proportion) 

Intercept 0.086 (0.012) 0.084 (0.015) < 0.001*** 0.088 (0.016) 0.084 (0.021) < 0.001*** 

Experiment -0.025 (0.012)  -0.028 (0.014) 0.032* 0.019 (0.015) 0.020 (0.019) 0.196 

Pre-test -0.011 (0.003) -0.010 (0.003) < 0.001*** -0.013 (0.003) -0.012 (0.003) < 0.001*** 

* Note: Coefficient (Std.E): The coefficient value and its standard error for the regression analysis. MC Mean 
(Std.D): The mean value and its standard deviation obtained from Monte Carlo simulations. 

4.2 RQ2: Impact on Challenging Tasks  
  
The results for the challenging tasks with LLM feedback enabled for the experimental group 
are presented in Table 2. The analysis revealed that the experimental group had significantly 

higher last submission scores ( = 0.059, p = 0.013,  = 0.183) and a marginally higher 

likelihood of solving the challenging problems ( = 0.097, p = 0.059,  = 0.148) compared to 
the control group. These findings suggest that the addition of LLM feedback may have helped 
learners achieve better final outcomes and solve rates in challenging programming tasks. 
However, no significant differences were found between the two groups in terms of the number 
of submissions, time spent on the task, going beyond the time or attempt threshold, or taking 
breaks. Overall, these results suggest that the impact of LLM feedback on learners' 
persistence can be observed in challenging tasks, particularly in terms of achieving better final 
outcomes and solving the problems.  

  

Table 2. Combined Regression Analysis for Challenging Tasks  

Variable  GPT Feedback Enabled (Phase 1) GPT Feedback Disabled (Phase 2) 

Coefficient 
(Std.E) 

MC Mean 
(Std.D) 

p-value  Coefficient 
(Std.E) 

MC Mean 
(Std.D) 

p-value  

Number of submissions (count) 

Intercept 11.716 (0.887) 11.689 (1.138) < 0.001*** 11.092 (1.144) 11.092 (1.144) < 0.001*** 

Experiment 0.681 (0.823)  0.696 (0.879) 0.409 0.925 (1.061) 0.873 (1.190) 0.385 

Pre-test -1.043 (0.177)  -1.032 (0.177) < 0.001*** -0.802 (0.230) -0.802 (0.230) 0.001*** 

Beyond Attempt Threshold (proportion) 



Intercept 0.251 (0.032)  0.247 (0.044) < 0.001*** 0.257 (0.038) 0.244 (0.042) < 0.001*** 

Experiment 0.030 (0.028)  0.030 (0.030) 0.277 0.019 (0.033) 0.020 (0.035) 0.570 

Pre-test -0.030 (0.006)  -0.029 (0.007) < 0.001*** 0.023 (0.007) -0.022 (0.007) 0.002** 

Solved (proportion) 

Intercept 0.638 (0.058)  0.650 (0.054) < 0.001*** 0.615 (0.049) 0.621 (0.047) < 0.001*** 

Experiment 0.097 (0.051)  0.097 (0.050) 0.059 0.034 (0.043) 0.030 (0.045) 0.436 

Pre-test 0.024 (0.011)  0.023 (0.010) 0.028* 0.043 (0.009) 0.042 (0.008) < 0.001*** 

Last Submission Score (0–1 scale) 

Intercept 0.824 (0.029)  0.822 (0.032) < 0.001*** 0.842 (0.022) 0.841 (0.030) < 0.001*** 

Experiment 0.059 (0.023)  0.062 (0.025) 0.013* 0.003 (0.020) 0.002 (0.024) 0.892 

Pre-test 0.014 (0.005)  0.014 (0.005) 0.005** 0.019 (0.004) 0.018 (0.005) < 0.001*** 

Time Since First Submission (seconds) 

Intercept 964.237 
(78.881) 

951.294 
(101.410) 

< 0.001*** 1095.265 
(103.008) 

1107.270 
(130.428) 

< 0.001*** 

Experiment 56.962 
(77.068)  

47.408 
(91.108) 

0.461 28.874 
(92.823) 

22.494 
(92.560) 

0.756 

Pre-test -104.134 
(16.567) 

-99.793 
(17.451) 

< 0.001*** -97.333 
(20.135) 

-95.936 
(22.104) 

< 0.001*** 

Beyond Time Threshold (proportion) 

Intercept 1.034 (0.037)  1.034 (0.029) < 0.001*** 1.035 (0.039) 1.031 (0.027) < 0.001*** 

Experiment -0.007 (0.036) -0.009 (0.042) 0.847 -0.084 (0.038) -0.084 (0.041) 0.028* 

Pre-test -0.040 (0.008) -0.040 (0.009) < 0.001*** -0.029 (0.008) -0.030 (0.008) < 0.001*** 

Taking a Break (proportion) 

Intercept 0.382 (0.059)  0.381 (0.060) < 0.001*** 0.371 (0.069) 0.361 (0.075) < 0.001*** 

Experiment 0.018 (0.055)  0.020 (0.060) 0.739 -0.034 (0.063) -0.029 (0.061) 0.591 

Pre-test -0.055 (0.012) -0.053 (0.011) < 0.001*** -0.043 (0.014) -0.042 (0.012) 0.002** 

Wheel Spinning (proportion) 

Intercept 0.175 (0.048) 0.170 (0.050) < 0.001*** 0.209 (0.046) 0.210 (0.059) < 0.001*** 

Experiment -0.080 (0.045) -0.078 (0.049) 0.080 -0.014 (0.045) -0.013 (0.052) 0.752 

Pre-test -0.016 (0.010)  -0.014 (0.010) 0.105 -0.029 (0.010) -0.028 (0.009) 0.003** 

 

4.3 RQ3: Post-feedback Removal Impact  
  

The analysis revealed that almost all the benefits observed in the experimental group were no 
longer present when the LLM feedback was disabled. The only statistically significant 
difference we found is that, for challenging tasks, the experimental group exhibited a lower 

tendency to go beyond the time threshold ( = -0.084, p = 0.028,  = -0.091).  

  

5. Discussion  
  
Our findings extend previous work on persistence in programming (Flores & Rodrigo, 2020; 
Pinto et al., 2021) by demonstrating the potential of LLM feedback to reduce wheel spinning. 
Two key themes emerge from the findings: the promises of LLM feedback in supporting 
students, and the challenges of sustaining the effects of AI-powered feedback.  

Empirical findings from RQ1 and RQ2 suggest that the addition of LLM feedback can 
promote learners' persistence and reduce unproductive behaviors. Specifically, we have 
observed improvements in last submission scores, higher likelihood of solving problems, lower 
rates of going beyond the time threshold (after adjusting for the time required to generate LLM 
feedback), and reduced wheel spinning. These findings align with previous studies on 
intelligent tutoring systems, such as (Maniktala et al., 2020), who found that hints in the format 



of unsolicited help can encourage productive persistence. Similarly, our results echo the work 
of (Marwan et al., 2020) in CS education, where personalized feedback led to greater 
engagement and increased intention to persist in CS. However, the benefits of LLM feedback 
for compiler errors appear limited in certain scenarios, particularly for challenging tasks. While 
the experimental group demonstrated significantly higher last submission scores and a 
marginally higher likelihood of solving challenging problems, LLM feedback did not significantly 
reduce the probability of wheel spinning on challenging tasks compared to the control group. 
This limitation in complex problem-solving scenarios could be attributed to several factors: (1) 
Inability to diagnose underlying misconceptions: In complex tasks, students' difficulties often 
stem from fundamental misconceptions that are not easily identifiable from code alone (Qian 
& Lehman, 2017). LLM models, operating solely on submitted code, may struggle to effectively 
diagnose and address these underlying issues. (2) Overgeneralization of feedback: A major 
issue identified with ChatGPT is its tendency to provide overly general responses (Rahman et 
al., 2023; Ray, 2023). For highly complex tasks, LLM feedback might lack the specificity 
needed to overcome challenges, failing to disrupt wheel-spinning. (3) Cognitive overload: 
Challenging tasks already impose a high cognitive load on students. Additional feedback, even 
if accurate, might exacerbate this cognitive burden, making it difficult for students to effectively 
process and apply the suggestions. These observations align with previous research (Qureshi, 
2023), which found that ChatGPT is effective primarily with simpler data structure problems 
but struggles with complex queries. This often requires multiple prompts and can potentially 
increase students’ cognitive load. These results highlight the need for a nuanced approach to 
implementing LLM feedback in CS education. While it shows promise in supporting learners, 
particularly with simpler tasks, educators and researchers must consider strategies to leverage 
LLMs in more challenging programming tasks.  

When disabled, the previously observed benefits of LLM feedback no longer existed, 
suggesting that the effects may rely on continuous availability. This contrasts with findings from 
Pankiewicz and Baker (2023), who reported that students exposed to LLM feedback continued 
to solve tasks more quickly even after its removal, possibly due to a potential learning effect. 
In our study, however, students were enrolled in an introductory CS1 course, where many 
lacked prior programming experience, which may have limited their ability to internalize the 
feedback. Moreover, LLM feedback targeted only compiler errors and was available for just 
the first half of each module, a design intended to mitigate over-reliance. Yet this limited 
exposure, combined with the relatively low frequency of compiler errors (under 10% of 
submissions; Pankiewicz & Baker, 2024), may have reduced opportunities for meaningful 
learning transfer. These contrasting findings emphasize the need for further research into the 
sustainability of the benefits of LLM feedback.  

Several implications emerge. First, AI-generated feedback has the potential to support 
programming tasks by helping students overcome initial barriers to understand compiler error 
messages and achieve more efficient debugging. However, careful implementation is 
necessary to avoid over-reliance on AI assistance. Second, future research should explore 
feedback systems that adapt to the learner's current performance, potentially through hybrid 
systems that combine LLM feedback with data-driven insights about student's current 
knowledge. Lastly, there is a need to design feedback systems that explicitly foster the 
development of transferable problem-solving skills, given that the benefits of LLM feedback 
were not sustained when removed. This could involve gradually reducing the level of support 
provided, encouraging them to develop independent problem-solving strategies.  

Our study has several limitations. First, the effectiveness of LLM feedback may vary 
depending on the training, prompts and specific models. Our study used GPT-4, and results 
may differ with other versions or similar language models. Second, these tasks are optional 
problems and participants were free to engage as little or as much as they wanted with the 
problems. Third, existing methods for detecting productive persistence and wheel spinning do 
not account for quality of code revisions or debugging strategies, which could provide valuable 
insights and should be considered in future research. Lastly, our quantitative metrics can be 
complemented by qualitative data, such as interviews or surveys, to better understand how 
students perceive LLM-generated feedback and to contextualize the modest effect sizes.  

 

6. Conclusion  
This study provides empirical evidence on the impact of LLM feedback on programming tasks. 
LLM feedback for compiler errors has shown to enhance certain aspects of student 



performance and persistence, especially in challenging tasks. However, its benefits appear to 
diminish once the feedback is removed in our study context. The transient nature of the 
benefits emphasizes the need for careful integration of AI tools in educational settings. It 
emphasizes the importance of developing strategies that not only leverage immediate LLM 
assistance but also foster students' independent problem-solving skills. Future research 
should focus on developing LLM feedback systems that can balance immediate learning 
support with the promotion of long-term skill development and learning. While LLM feedback 
presents exciting opportunities for CS education, the ultimate goal is to leverage the strengths 
of LLM feedback while cultivating transferable debugging and programming skills that persist 
beyond the immediate context of AI assistance.  
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