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Abstract: Large Language Models (LLMs) have made significant strides in natural
language processing and are increasingly being integrated into recommendation
systems. However, their potential in educational recommendation systems has yet to
be fully explored. This paper investigates the use of LLMs as a general-purpose
recommendation model, leveraging their vast knowledge derived from large-scale
corpora for course recommendation tasks. We explore prompt and fine-tuning methods
for LLM-based course recommendation and compare their performance against
traditional recommendation models. Extensive experiments were conducted on a real-
world MOOC dataset, evaluating using LLMs as course recommendation systems
across a variety of key dimensions. Our results demonstrate that fine-tuned LLMs can
achieve good performance comparable to traditional models, highlighting their potential
to enhance educational recommendation systems. These findings pave the way for
further exploration and development of LLM-based approaches in the context of
educational recommendations.
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1. Introduction

Course recommendation systems are increasingly used in the field of education and have
become an essential tool in addressing information overload and enhancing user experience
for learning (Ma et al., 2020). They can offer personalized course suggestions that align with
a student's interests, career goals, or skill development needs and can enhance the
educational experience by helping students navigate the vast array of available courses and
make more informed decisions about their learning journey (Jiang et al., 2019).

Over the past decade, significant advancements have been made in course
recommendation technologies. Traditional recommendation models, including collaborative
filtering and content-based methods, have long been employed in practical settings. These
approaches typically rely on user-item interaction data or explicit features to provide
personalized recommendations (Ma et al., 2021). While successful, traditional
recommendation models face notable limitations, such as a lack of generalization and the
need for task-specific data for training (Ma et al., 2024). On the other hand, recent deep
learning models have demonstrated considerable potential in enhancing prediction accuracy,
but they require extensive training and often suffer from a lack of explainability, making them
less transparent to users (Dai et al., 2023).

Large Language Models, such as ChatGPT, have gained significant attention due to
their great performance for natural language processing tasks, such as text generation,
question answering, and language comprehension. These models, with their adaptability and
vast knowledge derived from large-scale corpora, present an appealing opportunity for
recommendation systems. Previous research has indicated LLMs can be directly used as
recommendation systems with prompts, and a growing body of research has begun to explore
the potential of LLMs in recommendation tasks, evaluating their performance across various



recommendation scenarios and datasets from different domains (Di et al., 2023; Dai et al.,
2023; Liu et al., 2023). On the other hand, many researchers have started using LLMs as part
of recommendation systems to enhance their performance, such as through feature extraction,
feature augmentation, or knowledge representation.

Despite the rapid development of LLMs, most research on LLM-based
recommendation systems has focused on domains like music, movies, and books. There has
been limited research on applying LLMs specifically to course recommendations within the
context of Massive Open Online Courses (MOOCs), and whether LLMs can perform well on
course recommendation tasks remains an open question. Therefore, this paper aims to bridge
this gap by evaluating the effectiveness of LLMs in recommending courses based on user
learning history. Our study offers a comparative analysis between LLMs and traditional
recommendation models and investigates the promise of LLMs in addressing key challenges
in educational recommendation systems.

2. Related Work
2.1 Course Recommendation

The rise of Massive Open Online Courses (MOOCs) and the increasing number of students
have led to the widespread application of course recommendation systems (Ma et al., 2021).
Since the introduction of the first course recommendation system based on constraint
satisfaction (Parameswaran et al., 2011), various methods have been developed. Content-
based approaches recommend courses by matching students’ interests with course
descriptions and content (Morsomme et al., 2019; Morsy et al., 2019). Matrix Factorization
(MF) techniques have also been applied to course recommendation, particularly for predicting
future course selections based on students’ past courses and grades (Elbadrawy et al., 2015;
Sweeney et al., 2016). Other methods have explored the mining of historical course enroliment
data to uncover relationships and patterns. For example, Aher et al. (2013) employed
association rule mining combined with clustering to identify course relationships,
recommending courses based on historical enroliment patterns. Similarly, Bendakir et al.
(2006) used association rules with user ratings to enhance the recommendation results, while
Polyzou et al. (2019) introduced Scholars Walk, which captures sequential course
relationships through a random-walk approach.

As deep learning techniques have gained popularity, they have also been applied to
course recommendation systems (Yang et al., 2025; Zhang et al., 2019; Jiang et al., 2019).
For instance, Pardos et al. (2019a) modified the skip-gram model to generate course vectors
from historical course enrollment data, which are then used to recommend courses similar to
a student's previously favored courses. In a similar vein, they proposed the course2vec model,
which employs a neural network to generate course recommendations by taking multiple
courses as input and predicting a probability distribution over potential course selection
(Pardos et al., 2019b).

2.2 LLMs for Recommendation

LLMs have demonstrated their adaptability and significant improvements in a wide range of
NLP tasks by leveraging the extensive knowledge from large-scale corpora. Inspired by its
successes, there has been a growing interest in applying LLMs to recommendation systems.
Recent works have leveraged prompt-based techniques to transform recommendation tasks
into natural language tasks, utilizing LLMs without task-specific fine-tuning. For instance,
LMRecSys (Zhang et al., 2021) and P5 (Geng et al., 2022) focus on converting
recommendation tasks into multi-token cloze tasks using prompts to tackle zero-shot and data
efficiency issues. GPT4Rec (Li et al., 2023) and M6-Rec (Cui et al., 2022) utilize LLMs to learn
both item and user embeddings. Liu et al. (2023) evaluated ChatGPT’s performance on five
recommendation scenarios, including rating prediction, sequential recommendation, direct
recommendation, explanation generation, and review summarization. Dai et al. (2023)
investigated ChatGPT’s ranking capabilities, including point-wise, pair-wise, and list-wise



ranking. Moreover, the ability of LLMs has also been explored in cold-start scenarios where
few user interaction data are available (Wu et al., 2023).

Besides the direct use of LLMs as recommendation systems, LLMs are increasingly
being used as components to enhance traditional recommendation models. These
approaches integrate LLMs into existing systems through feature extraction, feature
augmentation, knowledge representation, and ranking functions (Wu et al., 2024). For
instance, Gao et al. (2023) are among the first to use ChatGPT to augment traditional
recommender systems by injecting user preferences into the recommendation process
through conversational interaction. Another example, Zhang et al. (2023) enhance
recommendation system with LLMs by designing prompts for different recommendation
settings, where LLM takes candidates from a Recall model for re-ranking.

Despite the growing body of research on LLM-based recommendation systems in
different domains, to our knowledge, there has been limited research on applying LLMs
specifically to course recommendations aside from work by Khan et al. (2022), while they did
not focus on the evaluation of LLMs' potential and only used local models. Yang et al. (2024a,
2024b) use LLMs to generate knowledge concepts from course descriptions and provide
course recommendations based on generated concepts. However, whether LLMs can perform
well on course recommendation tasks remains an open question.

3. Methods

The workflow for using LLMs in course recommendation tasks is shown in Figure 1. We
explore two approaches for applying LLMs to course recommendations. The first approach
involves using pre-trained LLMs as recommendation systems, where they generate
recommendations directly based on prompts. The second approach involves fine-tuning the
model, enriching its knowledge base with student interaction data, and generating
recommendations based on the fine-tuned model. The examples of course information,
training set, prompt and training instance for fine-tuning can also be seen in Figure 1.

3.1 Direct Use of LLMs for Recommendation

As shown in Figure 1-B, we directly use LLMs to generate recommendations without re-
training or fine-tuning the model. Instead, we craft prompts and feed them into the LLMs. The
model then generates recommendation results based on the instructions provided in prompts.
For zero-shot recommendation (Figure 1-B-1), we provide the LLM with knowledge
about all available courses (including course IDs, names, and descriptions), along with the
student's prior course registration history as prompt input. The LLM is tasked with
recommending a set of courses based on this input. In the case of few-shot (Figure 1-B-2), we
incorporate additional training data as knowledge context and prompt the LLM to recommend
courses based on the complete set of provided prompts. To mitigate hallucination issues and
address token limitations, we represent courses using only their IDs in our prompt design.

3.2 Using Fine-tuned LLMs for Recommendation

We also fine-tune LLMs to enhance their knowledge with historical data relevant to our task.
We fine-tune two open-source models, Llama-3 (Touvron et al., 2023) and GPT-2 (Radford et
al., 2019), as they are freely available and easy to use. Following prior work in item
recommendation (Liu et al., 2023), we use students' course enroliment histories to fine-tune
the LLMs, enabling them to capture historical enroliment patterns. After fine-tuning, we provide
prompts that include a student's prior course registration history and ask the fine-tuned models
to recommend a set of courses (see Figure 1-C).

We use <|user|> and <|assistant|> tokens to indicate the input and output in each
training instance, where the input is the student's prior course list, and the output is the
subsequent courses they are likely to take. Additionally, we include course descriptions as
input to help the model capture the semantic similarity between courses.



A-1 Direct use of LLMs for recommendation

Course ID: 584329 zero-shot m
Course Name: Calculus - Limit Theory and Single Variable Function

Course Field: Applied Economics, Math, Physics, Theoretical Economics

Course Description: This course is an introductory mathematics course for science and engineering, —
which systematically and comprehensively introduces the calculus of single-variable functions. The
J

course not only maintains the rigorous and abstract characteristics of mathematics but also pays attention
to the intuitive and figurative aspects of mathematical concepts. LLM

m few-shot m
User ID: U_11138777 J

Prior Courses: [881436,799796,948409,696923 ,696882...]
Target Courses: [854843,799800..] R
J LLM

. J

p
: Recommend new course(s) by analyzing course information, historical course enrollment Using fine-tuned LLMs for recommendation

patterns, and prior courses of each student.

Prompt : : Prior course list of student U_15359233: (681678, 696673, 682400, 696549, 697821,

1410156, 696938, 680968...]. Try to recommend next 20 course(s) ranked in descending order (higher

probability, ranked first) to this student. Please ensure that your recommendations are only from the

courses provided in the course information.

Output format :A list of course IDs.

Training instance for fine-tuning Fine-tuning /

: Recommend new course(s) by analyzing course information, historical course enrollment

patterns, and prior courses of each student. ' -
. Prompt : : Prior course list of student U_14928454: [696901, 707038, 948282, 799791, |
| 682229...]. Try to recommend next 2 course(s) ranked in descending order (higher probability, ranked |

| first) to this student.
! Completion : : Recommended courses: [674903, 786471]

AN J

Figure 1. Workflow of Using LLMSs to Perform Course Recommendation Tasks.

A-1: Example Knowledge for Course Information. A-2: Example Knowledge for Training Set.
A-3: Example Prompt of Course Recommendation Task (Test Set). A-4: Example of A
Training Instance for Fine-Tuning. B-1: Direct Use of LLMs for Recommendation (Zero-

Shot). B-2: Direct Use of LLMs for Recommendation (Few-Shot). C: Using Fine-Tuned LLMs

for Recommendation.

4. Evaluation

4.1 Dataset

In the context of this work, we focus on the scenario of course recommendation within a MOOC
environment. The dataset MOOCCubeX (Yu et al., 2021) in our analysis is collected from the
XuetangX', one of the largest MOOC websites in China. This dataset consists of 4,216
courses and 3,330,294 students.

4.2 Evaluation Baselines and Metrics

We explore two approaches for using LLMs in course recommendation: direct prompting and
fine-tuning with student interaction data. For direct prompting, we use GPT4-turbo and GPT40
due to their popularity and affordability. Following Khan et al. (2022), we fine-tune two open-
source models: Llama-3 (Touvron et al., 2023) and GPT2 (Radford et al., 2019).

We also compared LLMs to following traditional baselines: Random, recommend
random items. Pop (Elbadrawy et al., 2016), recommend most popular items. PMF
(Salakhutdinov et al., 2007), probabilistic matrix factorization relies solely on the user-item
interaction matrix. NMF (Lee et al., 1999), non-negative matrix factorization factorizes a non-
negative matrix into the product of two or more non-negative matrices based on the user-item
interaction matrix. ltem-based KNN (Sarwar et al., 2001), models user and item based on
item similarity obtained by interaction information. User-based KNN (Sarwar et al., 2001),
models user and item based on user similarity obtained by interaction information. KEAM
(Yang et al., 2024a), a knowledge graph-based autoencoder model that use both user-item
interactions and course concepts.

! http://www.xuetangx.com



Table 1. Accuracy Performance Comparison (%)

K=5 K=10

Model HR Recall Precision F1 nDCG HR Recall Precision F1 nDCG
Random 0.100  0.005 0.020 0.010 0.020 0.610 0.009 0.080 0.090 0.080
GPT4-turbo zero-shot  0.210  0.100 0.040 0.060 0.050 0.410 0.310 0.040 0.070  0.130
GPT4o0 zero-shot 0.405  0.080 0.080 0.075 0.075 0.815 0.185 0.080 0.110  0.110
ltem-based KNN 0.510  0.070 0.100 0.080 0.125 1.225  0.400 0.130 0.195 0.215
GPT4o0 few-shot 0.800  0.400 0.160 0.230 0.230 0.800  0.400 0.080 0.130  0.230
GPT4-turbo few-shot ~ 1.002  0.113 0.201 0.147 0.015 1.000  0.110 0.100 0.110  0.100
PMF 1630 0.285 0.325 0.304 0435 3370 0.680 0.340 0425 0.515
NMF 1630 0.285 0.325 0.304 0435 3370 0.680 0.340 0.425 0.515
User-based KNN 2.960  1.080 0.595 0.755 0.955 4595  1.645 0.460 0.715  1.100
Pop 8.195  3.300 1.680 2215 2680 15.165 5.950 1.660 2.580 3.640
KEAM 13.200 6.053 2.840 3.866 5977 20.800 9.643 2.300 3.714 7514
GPT2 Fine-tuning 16.903  7.438 3.524 4782 11.492 22.643 9.560 2.452 3.903 13.498
Llama3 Fine-tuning 21.677 12.434 4.852 6.980 15.266 28.857 15.166 3.424 5.587 17.496

K=15 K=20

Model HR Recall Precision F1 nDCG HR Recall Precision F1 nDCG
Random 1230 0.150 0.090 0110 0110 1.435  0.190 0.070 0.100 0.115
GPT4-turbo zero-shot  0.410  0.310 0.030 0.050 0.130 1.230  0.940 0.060 0.120  0.280
GPT4o0 zero-shot 1225  0.450 0.085 0.135 0.185 1.225  0.450 0.060 0.105 0.185
ltem-based KNN 2450  0.590 0.175 0.270 0.320 3.165 0.845 0.175 0.295 0.385
GPT4o few-shot 0.800  0.400 0.500 0.444 0.230 0.800 0.400 0.400 0.400 0.230
GPT4-turbo few-shot ~ 1.000  0.110 0.070 0.080 0.100 3.000 0.118 0.150 0.270  0.370
PMF 5205  1.465 0.345 0.560 0.885 5100  0.980 0.260 0.405 0.620
NMF 5205  1.465 0.345 0.560 0.885 5100  0.980 0.260 0.405 0.620
User-based KNN 6.530 2.335 0.455 0.760 1.335 8.165 2.830 0.440 0.760  1.530
Pop 17515  6.655 1.305 2175 3.865 21.920 8.270 1.295 2.240 4.425
KEAM 26.700 12.229 2.053 3.516 8.667 32.000 14.830 1.915 3.392 9752
GPT2 Fine-tuning 26.622 10.896 1.990 3.365 14.296 30.793 12.799 1.896 3.303 15.204

Llama3 Fine-tuning 34.008 17.193 2.793 4.805 18.693 38.294 19.399 2.393 4.261  19.709

To get a comprehensive evaluation that sheds light on LLMs' performance in the
course recommendation task, we select the different metrics following previous works (Dai et
al., 2023; Di et al., 2023; Liu et al., 2023). For accuracy metrics, we utilize metrics including
HR (Hit Ratio), Recall, Precision, F1, and nDCG (normalized Discounted Cumulative Gain).
For coverage and novelty metrics, we select Coverage (quantifies the coverage of all available
items that can potentially be recommended), Gini Index (assesses the distribution of items)
and EPC (Expected Popularity Complement, measures the expected number of relevant
recommended items that were not previously seen by the user, showing the model's ability to
introduce novelty in the recommendations). Higher scores in these metrics indicate better
recommendations.

4.3 Implementation Details

We first split the dataset based on user history, using 80% of the user interaction data for
training and 20% for testing. After processing, we randomly sampled 1000 records from the
test set for evaluation due to token limitations and expensive costs. For each user, we input
their previously interacted items in order and use the LLM to recommend a list of course IDs
they might interact with next.

For the pre-trained models, we access GPT4-turbo and GPT40 using OpenAl's API.
We also fine-tuned Llama-3-8B and GPT-2-1.5B models. Following previous work (Khan et
al.,, 2022), the Llama-3 model is tokenized using Autotokenizer, and the GPT-2 model is
tokenized using the GPT-2tokenizer. We use BitsandBytes? and PEFT? libraries for fine-tuning
efficiently by reducing computing requirements. The PEFT library offers a LoraConfig class to
enable QLoRA (Dettmers et al., 2023), which combines quantization with low-rank adapters.
By quantizing the base LLM to 4 bits per parameter, we drastically reduce its memory footprint.
QLoRA then freezes all original model weights and injects a small set of trainable, low-rank
adapter matrices. This approach lets us fine-tune large models using far less GPU memory
and compute resources.

2 https://github.com/bitsandbytes-foundation/bitsandbytes
3 https://github.com/huggingface/peft



Table 2. Diversity and Novelty Performance Comparison (%)

K=5 K=10
Model Coverage Gini Index EPC Coverage Gini Index EPC
Pop 0.160 80.000 3.410 0.320 90.000 4.505
PMF 0.220 80.455 0.945 0.395 90.175 1.205
NMF 0.220 80.455 0.945 0.395 90.175 1.205
GPT4-turbo zero-shot 1.140 96.050 0.050 1.910 97.860 0.090
Item-based KNN 6.035 96.375 0.305 9.675 97.775 0.400
User-based KNN 6.270 96.850 3.435 9.295 98.175 1.650
GPT4-turbo few-shot 14.872 99.771 0.250 27.540 99.871 0.250
GPT40 zero-shot 17.375 97.720 0.115 32.910 98.640 0.170
KEAM 12.048 95.560 8.115 18.554 97.466 9.257
Llama3 Fine-tuning 22.505 99.696 14.399 31.006 99.692 15.991
GPT2 Fine-tuning 23.004 95.896 10.393 25.307 95.699 11.301
GPT4o0 few-shot 32.400 99.890 0.230 53.750 99.890 0.230
Random 54.160 99.930 0.090 78.795 99.950 0.150
K=15 K=20

Model Coverage Gini Index EPC Coverage Gini Index EPC

Pop 0.480 93.330 4.800 0.640 95.000 5.180
PMF 0.585 93.525 1.350 0.760 95.095 1.335
NMF 0.585 93.525 1.350 0.760 95.095 1.335
GPT4-turbo zero-shot 1.910 97.860 0.090 2.890 98.740 0.130
Item-based KNN 12.485 98.375 0.690 12.485 98.375 0.690
User-based KNN 12.005 98.735 1.825 14.280 99.020 1.955
GPT4-turbo few-shot 37.740 99.900 0.250 47.010 99.900 0.360
GPT4o0 zero-shot 48.810 98.640 0.170 65.090 99.230 0.200
KEAM 22.988 98.217 9.867 26.747 98.614 10.284
Llama3 Fine-tuning 36.735 99.832 16.710 39.802 99.807 17.198
GPT2 Fine-tuning 25.894 96.004 11.798 26.092 96.505 12.291
GPT4o0 few-shot 68.960 99.940 0.230 79.030 99.950 0.230
Random 90.580 99.955 0.265 95.900 99.960 0.195

5. Results
5.1 Recommendation Performance

To assess the recommendation capability of large language models (LLMs), we conducted
experiments comparing pre-trained and fine-tuned LLMs with traditional models. Table 1
presents the results in percentages.

In summary, we found that the performance of LLMs in the zero-shot prompting setup
was relatively low compared to baseline models, outperforming only random recommendation
approaches. In contrast, the few-shot prompting setup generally yielded better results,
suggesting that providing historical enrollment data helps LLMs identify enroliment patterns
and improve recommendation accuracy. However, overall, pre-trained LLMs still fall short of
traditional recommendation methods. As a result, relying solely on LLMs for sequential
recommendation tasks may not be optimal. Further research is needed to integrate additional
guidance and constraints to help LLMs accurately capture historical user interests and
produce meaningful recommendations. However, we found that fine-tuned Llama3
consistently outperformed all other methods across different K values, while fine-tuned GPT-
2 surpassed traditional baselines and achieved performance similar to KEAM, which is the
state-of-the-art model. These results suggest that fine-tuning enables LLMs to specialize in
the recommendation task, allowing them to more effectively model user behavior and course
relationships and thereby produce more accurate predictions.

5.2 Diversity and Novelty Performance

We also aim to assess the extent of diversity (Coverage, Gini Index) and novelty (EPC) in
the recommendations generated by LLMs. Table 2 presents the results in percentages.
Overall, the Random model achieves the highest Coverage and Gini Index across all
K values, outperforming all other models. This result is not surprising, given its random nature,
which ensures a broad range of items are recommended. In contrast, LLMs perform relatively
better in diversity and novelty dimensions. Notably, the advanced model, GPT4o0, outperforms



Table 3. Performance Comparison (%) on Cold Start Scenario

K=5
Model HR Recall Precision F1 nDCG Coverage Gini Index EPC
Random 0.000 0.000 0.000 0.000 0.000 53.080 99.930 0.000
PMF 0.000 0.000 0.000 0.000 0.000 0.190 80.190 0.000
NMF 0.000 0.000 0.000 0.000 0.000 0.190 80.190 0.000
GPT4-turbo 0.200 0.200 0.040 0.070 0.090 33.290 98.710 0.050
Item-based KNN 0.430 0.430 0.090 0.140 0.220 11.660 97.280 0.150
User-based KNN 0.430 0.430 0.090 0.140 0.430 11.280 98.650 0.430
GPT40 1.080 1.080 0.220 0.360 0.820 23.630 98.710 0.740
Pop 4.730 4.730 0.950 1.580 3.030 0.160 80.000 2.470
GPT2 Fine-tuning 4.409 4.409 0.882 1.470 3.030 9.037 83.844 1.920
KEAM 7.800 7.800 1.560 2.600 6.406 34.294 97.108 4.933
Llama3 Fine-tuning 13.613 13.613 2.723 4.538 11.810 7.795 83.029 11.473
K=10
Model HR Recall Precision F1 nDCG Coverage Gini Index EPC
Random 0.220 0.220 0.020 0.040 0.060 77.570 99.950 0.020
PMF 0.000 0.000 0.000 0.000 0.000 0.350 90.100 0.000
NMF 0.000 0.000 0.000 0.000 0.000 0.350 90.100 0.000
GPT4-turbo 0.200 0.200 0.200 0.400 0.090 61.750 99.240 0.050
Item-based KNN 1.080 1.080 0.110 0.200 0.650 15.410 99.130 0.520
User-based KNN 1.720 1.720 0.170 0.310 0.650 18.460 98.310 0.310
GPT40 1.510 1.510 0.150 0.270 0.960 41.520 99.240 0.800
Pop 6.670 6.670 0.670 1.210 3.640 0.320 90.000 2.710
GPT2 Fine-tuning 7.214 7.214 0.721 1.312 3.420 9.156 90.953 2.266
KEAM 11.000 11.000 1.100 2.000 7.945 56.292 98.484 5.346
Llama3 Fine-tuning 16.515 16.515 1.651 3.003 12.632 7.795 90.631 11.904

GPT4-turbo model across all dimensions. Upon a closer examination of the generated
recommendations, we observed that GPT4-turbo often exhibits “lazy behaviors”, generating
similar or repetitive recommendation lists, which leads to low diversity. Furthermore, few-shot
models consistently outperform zero-shot models. By learning from user-specific data, few-
shot models can generate more personalized and relevant recommendations, enhancing both
diversity and novelty. Finally, fine-tuned models like GPT-2 and Llama3 not only excel in
diversity but also significantly surpass other models in novelty. This indicates that directly
applying LLMs to recommendation tasks is challenging because the data used for pre-training
LLMs differs from the specific requirements of recommendation tasks. However, fine-tuned
LLMs, when trained on specific data, can deliver better results.

5.3 Cold Start Scenario

Cold start is a well-known challenge in course recommendation systems, especially in MOOC
environments. It refers to the difficulty of recommending relevant courses to new users who
lack sufficient interaction data. To investigate the performance of LLMs in cold start scenarios
for course recommendations, we adopt two different experiments inspired by previous studies
(Di et al., 2023; Dai et al., 2023).

First, we identify cold-start users by dividing the users of the dataset into quartiles
based on their historical interaction data. The lower quartile, representing users with the least
interaction, is selected as the subset of cold-start users. This allows us to evaluate
the models under consistent cold-start conditions, ensuring that all models are tested with a
similar subset of users (note that we fine-tuned our LLMs using the same cold-start training
set). The results of this evaluation are presented in Table 3. We observe that off-the-shelf
LLMs outperform traditional models for cold start scenarios when only limited training data is
available. LLMs do not require extensive training data to function as recommendation systems,
as their pre-trained knowledge allows them to make informed predictions. The Pop method,
by contrast, performs well because it simply recommends the most popular courses in the
dataset. Moreover, with minimal training data, fine-tuned Llama3 achieved the highest scores,
while fine-tuned GPT-2 outperformed Pop and ranked second only to KEAM. This
demonstrates that the reasoning abilities and extensive knowledge encoded in LLMs enable
them to generate superior recommendations.

Secondly, we investigate the amount of training data required for traditional
recommendation models to achieve performance comparable to or better than LLMs.
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Figure 2. Comparison with UserKNN Using Different Percentages of Training Data.

(a) Example of recommendation explanations

’ i

Recommended Courses: English grammar and writing style

Explanation generated by GPT4o: This student has taken multiple courses in the field of Foreign
Languages and Literature, so we recommend English Grammar and Writing Style as an advanced course in
this area.

(b) Human rating

Clarity |
the explanation is clear and easy to understand

Relevance |
the explanation is relevant to the student’s prior course history

Plausibility |

the explanation is plausible and convincing

Figure 3. (a) Example of Explanation Generated by LLMs (b)Human Rating Results.

Specifically, we chose the User-based KNN model as it performed well in the first experiment.
We then evaluated their performance after training on varying proportions of training data and
compared their performance to that of LLMs. Recall@5 and nDCG@5 are reported in Figure
2. As expected, the performance of User-based KNN improves with increasing amounts of
training data. Also, we can observe that although GPT4-turbo's performance is not good, direct
use of GPT40 as a recommendation system without training data still outperforms User-based
KNN that trained on few data, i.e., less than 30%. Based on these findings, we conclude that
using LLMs as course recommendation systems is a promising approach for mitigating the
cold-start problem, offering effective solutions when traditional methods may struggle.

5.4 Explanation

Providing students with clear and understandable explanations for course recommendations
can enhance the transparency and perceived trustworthiness of the system, thereby improving
overall user satisfaction (Ma et al., 2021; Ma et al., 2024). We also prompt LLMs to produce a
textual explanation for each recommended course.

To assess the quality of these explanations, we conducted a small-scale human
evaluation on 50 sampled outputs. Each explanation was rated along three dimensions,
including Clarity (the explanation is clear and easy to understand), Relevance (the
explanation is relevant to the student’s prior course history), and Plausibility (the explanation
is plausible and convincing), using a 5-point Likert scale by two human researchers, the
example explanation and human rate results are shown in Figure 3. Most explanations
received scores of 4 or higher across all dimensions, suggesting that the explanations were
generally interpretable and credible. These findings indicate that LLMs can effectively
generate intuitive and trustworthy justifications by contextualizing recommendations within
students past learning experiences.



6. Conclusions

In this paper, we evaluate the performance of LLMs in course recommendation tasks and
compare them with traditional recommendation methods across diverse settings. Our results
indicate that LLMs without fine-tuning perform worse than baseline models. However, fine-
tuned LLMs significantly outperform traditional approaches, particularly in cold-start scenarios.
Moreover, LLMs demonstrate strong capabilities in generating high-quality recommendation
explanations. These findings provide valuable insights into the strengths and limitations of
LLMs in educational recommendation systems.
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