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Abstract: Large Language Models (LLMs) have made significant strides in natural 
language processing and are increasingly being integrated into recommendation 
systems. However, their potential in educational recommendation systems has yet to 
be fully explored. This paper investigates the use of LLMs as a general-purpose 
recommendation model, leveraging their vast knowledge derived from large-scale 
corpora for course recommendation tasks. We explore prompt and fine-tuning methods 
for LLM-based course recommendation and compare their performance against 
traditional recommendation models. Extensive experiments were conducted on a real-
world MOOC dataset, evaluating using LLMs as course recommendation systems 
across a variety of key dimensions. Our results demonstrate that fine-tuned LLMs can 
achieve good performance comparable to traditional models, highlighting their potential 
to enhance educational recommendation systems. These findings pave the way for 
further exploration and development of LLM-based approaches in the context of 
educational recommendations. 
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1. Introduction 
 
Course recommendation systems are increasingly used in the field of education and have 
become an essential tool in addressing information overload and enhancing user experience 
for learning (Ma et al., 2020). They can offer personalized course suggestions that align with 
a student's interests, career goals, or skill development needs and can enhance the 
educational experience by helping students navigate the vast array of available courses and 
make more informed decisions about their learning journey (Jiang et al., 2019). 

Over the past decade, significant advancements have been made in course 
recommendation technologies. Traditional recommendation models, including collaborative 
filtering and content-based methods, have long been employed in practical settings. These 
approaches typically rely on user-item interaction data or explicit features to provide 
personalized recommendations (Ma et al., 2021). While successful, traditional 
recommendation models face notable limitations, such as a lack of generalization and the 
need for task-specific data for training (Ma et al., 2024). On the other hand, recent deep 
learning models have demonstrated considerable potential in enhancing prediction accuracy, 
but they require extensive training and often suffer from a lack of explainability, making them 
less transparent to users (Dai et al., 2023).  

Large Language Models, such as ChatGPT, have gained significant attention due to 
their great performance for natural language processing tasks, such as text generation, 
question answering, and language comprehension. These models, with their adaptability and 
vast knowledge derived from large-scale corpora, present an appealing opportunity for 
recommendation systems. Previous research has indicated LLMs can be directly used as 
recommendation systems with prompts, and a growing body of research has begun to explore 
the potential of LLMs in recommendation tasks, evaluating their performance across various 



recommendation scenarios and datasets from different domains (Di et al., 2023; Dai et al., 
2023; Liu et al., 2023). On the other hand, many researchers have started using LLMs as part 
of recommendation systems to enhance their performance, such as through feature extraction, 
feature augmentation, or knowledge representation.  

Despite the rapid development of LLMs, most research on LLM-based 
recommendation systems has focused on domains like music, movies, and books. There has 
been limited research on applying LLMs specifically to course recommendations within the 
context of Massive Open Online Courses (MOOCs), and whether LLMs can perform well on 
course recommendation tasks remains an open question. Therefore, this paper aims to bridge 
this gap by evaluating the effectiveness of LLMs in recommending courses based on user 
learning history. Our study offers a comparative analysis between LLMs and traditional 
recommendation models and investigates the promise of LLMs in addressing key challenges 
in educational recommendation systems.  
 
2. Related Work 
 
2.1 Course Recommendation 
 
The rise of Massive Open Online Courses (MOOCs) and the increasing number of students 
have led to the widespread application of course recommendation systems (Ma et al., 2021). 
Since the introduction of the first course recommendation system based on constraint 
satisfaction (Parameswaran et al., 2011), various methods have been developed. Content-
based approaches recommend courses by matching students’ interests with course 
descriptions and content (Morsomme et al., 2019; Morsy et al., 2019). Matrix Factorization 
(MF) techniques have also been applied to course recommendation, particularly for predicting 
future course selections based on students’ past courses and grades (Elbadrawy et al., 2015; 
Sweeney et al., 2016). Other methods have explored the mining of historical course enrollment 
data to uncover relationships and patterns. For example, Aher et al. (2013) employed 
association rule mining combined with clustering to identify course relationships, 
recommending courses based on historical enrollment patterns. Similarly, Bendakir et al. 
(2006) used association rules with user ratings to enhance the recommendation results, while 
Polyzou et al. (2019) introduced Scholars Walk, which captures sequential course 
relationships through a random-walk approach.  

As deep learning techniques have gained popularity, they have also been applied to 
course recommendation systems (Yang et al., 2025; Zhang et al., 2019; Jiang et al., 2019). 
For instance, Pardos et al. (2019a) modified the skip-gram model to generate course vectors 
from historical course enrollment data, which are then used to recommend courses similar to 
a student's previously favored courses. In a similar vein, they proposed the course2vec model, 
which employs a neural network to generate course recommendations by taking multiple 
courses as input and predicting a probability distribution over potential course selection 
(Pardos et al., 2019b). 

 
2.2 LLMs for Recommendation 
 
LLMs have demonstrated their adaptability and significant improvements in a wide range of 
NLP tasks by leveraging the extensive knowledge from large-scale corpora. Inspired by its 
successes, there has been a growing interest in applying LLMs to recommendation systems. 
Recent works have leveraged prompt-based techniques to transform recommendation tasks 
into natural language tasks, utilizing LLMs without task-specific fine-tuning. For instance, 
LMRecSys (Zhang et al., 2021) and P5 (Geng et al., 2022) focus on converting 
recommendation tasks into multi-token cloze tasks using prompts to tackle zero-shot and data 
efficiency issues. GPT4Rec (Li et al., 2023) and M6-Rec (Cui et al., 2022) utilize LLMs to learn 
both item and user embeddings. Liu et al. (2023) evaluated ChatGPT’s performance on five 
recommendation scenarios, including rating prediction, sequential recommendation, direct 
recommendation, explanation generation, and review summarization. Dai et al. (2023) 
investigated ChatGPT’s ranking capabilities, including point-wise, pair-wise, and list-wise 



ranking. Moreover, the ability of LLMs has also been explored in cold-start scenarios where 
few user interaction data are available (Wu et al., 2023). 

Besides the direct use of LLMs as recommendation systems, LLMs are increasingly 
being used as components to enhance traditional recommendation models. These 
approaches integrate LLMs into existing systems through feature extraction, feature 
augmentation, knowledge representation, and ranking functions (Wu et al., 2024). For 
instance, Gao et al. (2023) are among the first to use ChatGPT to augment traditional 
recommender systems by injecting user preferences into the recommendation process 
through conversational interaction. Another example, Zhang et al. (2023) enhance 
recommendation system with LLMs by designing prompts for different recommendation 
settings, where LLM takes candidates from a Recall model for re-ranking. 
 Despite the growing body of research on LLM-based recommendation systems in 
different domains, to our knowledge, there has been limited research on applying LLMs 
specifically to course recommendations aside from work by Khan et al. (2022), while they did 
not focus on the evaluation of LLMs' potential and only used local models. Yang et al. (2024a, 
2024b) use LLMs to generate knowledge concepts from course descriptions and provide 
course recommendations based on generated concepts. However, whether LLMs can perform 
well on course recommendation tasks remains an open question.  
 
3. Methods 
 
The workflow for using LLMs in course recommendation tasks is shown in Figure 1. We 
explore two approaches for applying LLMs to course recommendations. The first approach 
involves using pre-trained LLMs as recommendation systems, where they generate 
recommendations directly based on prompts. The second approach involves fine-tuning the 
model, enriching its knowledge base with student interaction data, and generating 
recommendations based on the fine-tuned model. The examples of course information, 
training set, prompt and training instance for fine-tuning can also be seen in Figure 1. 
 
3.1 Direct Use of LLMs for Recommendation  
 
As shown in Figure 1-B, we directly use LLMs to generate recommendations without re-
training or fine-tuning the model. Instead, we craft prompts and feed them into the LLMs. The 
model then generates recommendation results based on the instructions provided in prompts.  

For zero-shot recommendation (Figure 1-B-1), we provide the LLM with knowledge 
about all available courses (including course IDs, names, and descriptions), along with the 
student's prior course registration history as prompt input. The LLM is tasked with 
recommending a set of courses based on this input. In the case of few-shot (Figure 1-B-2), we 
incorporate additional training data as knowledge context and prompt the LLM to recommend 
courses based on the complete set of provided prompts. To mitigate hallucination issues and 
address token limitations, we represent courses using only their IDs in our prompt design. 

 
3.2 Using Fine-tuned LLMs for Recommendation 
 
We also fine-tune LLMs to enhance their knowledge with historical data relevant to our task. 
We fine-tune two open-source models, Llama-3 (Touvron et al., 2023) and GPT-2 (Radford et 
al., 2019), as they are freely available and easy to use. Following prior work in item 
recommendation (Liu et al., 2023), we use students' course enrollment histories to fine-tune 
the LLMs, enabling them to capture historical enrollment patterns. After fine-tuning, we provide 
prompts that include a student's prior course registration history and ask the fine-tuned models 
to recommend a set of courses (see Figure 1-C). 

We use <|user|> and <|assistant|> tokens to indicate the input and output in each 
training instance, where the input is the student's prior course list, and the output is the 
subsequent courses they are likely to take. Additionally, we include course descriptions as 
input to help the model capture the semantic similarity between courses. 
 



 
 

Figure 1. Workflow of Using LLMs to Perform Course Recommendation Tasks.  
 A-1: Example Knowledge for Course Information. A-2: Example Knowledge for Training Set. 

 A-3: Example Prompt of Course Recommendation Task (Test Set). A-4: Example of A 
Training Instance for Fine-Tuning. B-1: Direct Use of LLMs for Recommendation (Zero-

Shot). B-2: Direct Use of LLMs for Recommendation (Few-Shot). C: Using Fine-Tuned LLMs 
for Recommendation. 

 
4. Evaluation 
 
4.1 Dataset 
 
In the context of this work, we focus on the scenario of course recommendation within a MOOC 
environment. The dataset MOOCCubeX (Yu et al., 2021) in our analysis is collected from the 
XuetangX1, one of the largest MOOC websites in China. This dataset consists of 4,216 
courses and 3,330,294 students.  
 
4.2 Evaluation Baselines and Metrics 
 
We explore two approaches for using LLMs in course recommendation: direct prompting and 
fine-tuning with student interaction data. For direct prompting, we use GPT4-turbo and GPT4o 
due to their popularity and affordability. Following Khan et al. (2022), we fine-tune two open-
source models: Llama-3 (Touvron et al., 2023) and GPT2 (Radford et al., 2019).  

We also compared LLMs to following traditional baselines: Random, recommend 
random items. Pop (Elbadrawy et al., 2016), recommend most popular items. PMF 
(Salakhutdinov et al., 2007), probabilistic matrix factorization relies solely on the user-item 
interaction matrix. NMF (Lee et al., 1999), non-negative matrix factorization factorizes a non-
negative matrix into the product of two or more non-negative matrices based on the user-item 
interaction matrix. Item-based KNN (Sarwar et al., 2001), models user and item based on 
item similarity obtained by interaction information. User-based KNN (Sarwar et al., 2001), 
models user and item based on user similarity obtained by interaction information. KEAM 
(Yang et al., 2024a), a knowledge graph-based autoencoder model that use both user-item 
interactions and course concepts.  

 
1 http://www.xuetangx.com 



 
Table 1. Accuracy Performance Comparison (%) 

 
To get a comprehensive evaluation that sheds light on LLMs' performance in the 

course recommendation task, we select the different metrics following previous works (Dai et  
al., 2023; Di et al., 2023; Liu et al., 2023). For accuracy metrics, we utilize metrics including 
HR (Hit Ratio), Recall, Precision, F1, and nDCG (normalized Discounted Cumulative Gain). 
For coverage and novelty metrics, we select Coverage (quantifies the coverage of all available 
items that can potentially be recommended), Gini Index (assesses the distribution of items) 
and EPC (Expected Popularity Complement, measures the expected number of relevant 
recommended items that were not previously seen by the user, showing the model's ability to 
introduce novelty in the recommendations). Higher scores in these metrics indicate better 
recommendations. 
 
4.3 Implementation Details 
 
We first split the dataset based on user history, using 80% of the user interaction data for 
training and 20% for testing. After processing, we randomly sampled 1000 records from the 
test set for evaluation due to token limitations and expensive costs. For each user, we input 
their previously interacted items in order and use the LLM to recommend a list of course IDs 
they might interact with next. 

For the pre-trained models, we access GPT4-turbo and GPT4o using OpenAI's API. 
We also fine-tuned Llama-3-8B and GPT-2-1.5B models. Following previous work (Khan et 
al., 2022), the Llama-3 model is tokenized using Autotokenizer, and the GPT-2 model is 
tokenized using the GPT-2tokenizer. We use BitsandBytes2 and PEFT3 libraries for fine-tuning 
efficiently by reducing computing requirements. The PEFT library offers a LoraConfig class to 
enable QLoRA (Dettmers et al., 2023), which combines quantization with low-rank adapters. 
By quantizing the base LLM to 4 bits per parameter, we drastically reduce its memory footprint. 
QLoRA then freezes all original model weights and injects a small set of trainable, low-rank 
adapter matrices. This approach lets us fine-tune large models using far less GPU memory 
and compute resources. 

 
2 https://github.com/bitsandbytes-foundation/bitsandbytes 
3 https://github.com/huggingface/peft 

 
Model 

K = 5 K = 10 
HR Recall Precision F1 nDCG HR Recall Precision F1 nDCG 

Random 0.100 0.005 0.020 0.010 0.020 0.610 0.009 0.080 0.090 0.080 
GPT4-turbo zero-shot 0.210 0.100 0.040 0.060 0.050 0.410 0.310 0.040 0.070 0.130 
GPT4o zero-shot 0.405 0.080 0.080 0.075 0.075 0.815 0.185 0.080 0.110 0.110 
Item-based KNN 0.510 0.070 0.100 0.080 0.125 1.225 0.400 0.130 0.195 0.215 
GPT4o few-shot 0.800 0.400 0.160 0.230 0.230 0.800 0.400 0.080 0.130 0.230 
GPT4-turbo few-shot 1.002 0.113 0.201 0.147 0.015 1.000 0.110 0.100 0.110 0.100 
PMF 1.630 0.285 0.325 0.304 0.435 3.370 0.680 0.340 0.425 0.515 
NMF 1.630 0.285 0.325 0.304 0.435 3.370 0.680 0.340 0.425 0.515 
User-based KNN 2.960 1.080 0.595 0.755 0.955 4.595 1.645 0.460 0.715 1.100 
Pop 8.195 3.300 1.680 2.215 2.680 15.165 5.950 1.660 2.580 3.640 
KEAM 13.200 6.053 2.840 3.866 5.977 20.800 9.643 2.300 3.714 7.514 
GPT2 Fine-tuning 16.903 7.438 3.524 4.782 11.492 22.643 9.560 2.452 3.903 13.498 
Llama3 Fine-tuning 21.677 12.434 4.852 6.980 15.266 28.857 15.166 3.424 5.587 17.496 

 
Model 

K = 15 K = 20 
HR Recall Precision F1 nDCG HR Recall Precision F1 nDCG 

Random 1.230 0.150 0.090 0.110 0.110 1.435 0.190 0.070 0.100 0.115 
GPT4-turbo zero-shot 0.410 0.310 0.030 0.050 0.130 1.230 0.940 0.060 0.120 0.280 
GPT4o zero-shot 1.225 0.450 0.085 0.135 0.185 1.225 0.450 0.060 0.105 0.185 
Item-based KNN 2.450 0.590 0.175 0.270 0.320 3.165 0.845 0.175 0.295 0.385 
GPT4o few-shot 0.800 0.400 0.500 0.444 0.230 0.800 0.400 0.400 0.400 0.230 
GPT4-turbo few-shot 1.000 0.110 0.070 0.080 0.100 3.000 0.118 0.150 0.270 0.370 
PMF 5.205 1.465 0.345 0.560 0.885 5.100 0.980 0.260 0.405 0.620 
NMF 5.205 1.465 0.345 0.560 0.885 5.100 0.980 0.260 0.405 0.620 
User-based KNN 6.530 2.335 0.455 0.760 1.335 8.165 2.830 0.440 0.760 1.530 
Pop 17.515 6.655 1.305 2.175 3.865 21.920 8.270 1.295 2.240 4.425 
KEAM 26.700 12.229 2.053 3.516 8.667 32.000 14.830 1.915 3.392 9.752 
GPT2 Fine-tuning 26.622 10.896 1.990 3.365 14.296 30.793 12.799 1.896 3.303 15.204 
Llama3 Fine-tuning 34.008 17.193 2.793 4.805 18.693 38.294 19.399 2.393 4.261 19.709 



 
Table 2. Diversity and Novelty Performance Comparison (%) 

 
Model 

K = 5 K = 10 
Coverage Gini Index EPC Coverage Gini Index EPC 

Pop 0.160 80.000 3.410 0.320 90.000 4.505 
PMF 0.220 80.455 0.945 0.395 90.175 1.205 
NMF 0.220 80.455 0.945 0.395 90.175 1.205 
GPT4-turbo zero-shot 1.140 96.050 0.050 1.910 97.860 0.090 
Item-based KNN 6.035 96.375 0.305 9.675 97.775 0.400 
User-based KNN 6.270 96.850 3.435 9.295 98.175 1.650 
GPT4-turbo few-shot 14.872 99.771 0.250 27.540 99.871 0.250 
GPT4o zero-shot 17.375 97.720 0.115 32.910 98.640 0.170 
KEAM 12.048 95.560 8.115 18.554 97.466 9.257 
Llama3 Fine-tuning 22.505 99.696 14.399 31.006 99.692 15.991 
GPT2 Fine-tuning 23.004 95.896 10.393 25.307 95.699 11.301 
GPT4o few-shot 32.400 99.890 0.230 53.750 99.890 0.230 
Random 54.160 99.930 0.090 78.795 99.950 0.150 
 K = 15 K = 20 
Model Coverage Gini Index EPC Coverage Gini Index EPC 
Pop 0.480 93.330 4.800 0.640 95.000 5.180 
PMF 0.585 93.525 1.350 0.760 95.095 1.335 
NMF 0.585 93.525 1.350 0.760 95.095 1.335 
GPT4-turbo zero-shot 1.910 97.860 0.090 2.890 98.740 0.130 
Item-based KNN 12.485 98.375 0.690 12.485 98.375 0.690 
User-based KNN 12.005 98.735 1.825 14.280 99.020 1.955 
GPT4-turbo few-shot 37.740 99.900 0.250 47.010 99.900 0.360 
GPT4o zero-shot 48.810 98.640 0.170 65.090 99.230 0.200 
KEAM 22.988 98.217 9.867 26.747 98.614 10.284 
Llama3 Fine-tuning 36.735 99.832 16.710 39.802 99.807 17.198 
GPT2 Fine-tuning 25.894 96.004 11.798 26.092 96.505 12.291 
GPT4o few-shot 68.960 99.940 0.230 79.030 99.950 0.230 
Random 90.580 99.955 0.265 95.900 99.960 0.195 

 
5. Results 
 
5.1 Recommendation Performance 
 
To assess the recommendation capability of large language models (LLMs), we conducted 
experiments comparing pre-trained and fine-tuned LLMs with traditional models. Table 1 
presents the results in percentages.  

In summary, we found that the performance of LLMs in the zero-shot prompting setup 
was relatively low compared to baseline models, outperforming only random recommendation 
approaches. In contrast, the few-shot prompting setup generally yielded better results, 
suggesting that providing historical enrollment data helps LLMs identify enrollment patterns 
and improve recommendation accuracy. However, overall, pre-trained LLMs still fall short of 
traditional recommendation methods. As a result, relying solely on LLMs for sequential 
recommendation tasks may not be optimal. Further research is needed to integrate additional 
guidance and constraints to help LLMs accurately capture historical user interests and 
produce meaningful recommendations. However, we found that fine-tuned Llama3 
consistently outperformed all other methods across different K values, while fine-tuned GPT-
2 surpassed traditional baselines and achieved performance similar to KEAM, which is the 
state-of-the-art model. These results suggest that fine-tuning enables LLMs to specialize in 
the recommendation task, allowing them to more effectively model user behavior and course 
relationships and thereby produce more accurate predictions. 
 
5.2 Diversity and Novelty Performance 
 
We also aim to assess the extent of diversity (Coverage, Gini Index) and novelty (EPC) in 
the recommendations generated by LLMs. Table 2 presents the results in percentages.  

Overall, the Random model achieves the highest Coverage and Gini Index across all 
K values, outperforming all other models. This result is not surprising, given its random nature, 
which ensures a broad range of items are recommended. In contrast, LLMs perform relatively 
better in diversity and novelty dimensions. Notably, the advanced model, GPT4o, outperforms  



Table 3. Performance Comparison (%) on Cold Start Scenario 
 

Model 
K = 5 

HR Recall Precision F1 nDCG Coverage Gini Index EPC 
Random 0.000 0.000 0.000 0.000 0.000 53.080 99.930 0.000 
PMF  0.000 0.000 0.000 0.000 0.000 0.190 80.190 0.000 
NMF  0.000 0.000 0.000 0.000 0.000 0.190 80.190 0.000 
GPT4-turbo  0.200 0.200 0.040 0.070 0.090 33.290 98.710 0.050 
Item-based KNN  0.430 0.430 0.090 0.140 0.220 11.660 97.280 0.150 
User-based KNN 0.430 0.430 0.090 0.140 0.430 11.280 98.650 0.430 
GPT4o 1.080 1.080 0.220 0.360 0.820 23.630 98.710 0.740 
Pop 4.730 4.730 0.950 1.580 3.030 0.160 80.000 2.470 
GPT2 Fine-tuning 4.409 4.409 0.882 1.470 3.030 9.037 83.844 1.920 
KEAM 7.800 7.800 1.560 2.600 6.406 34.294 97.108 4.933 
Llama3 Fine-tuning 13.613 13.613 2.723 4.538 11.810 7.795 83.029 11.473 
 K = 10 

Model HR Recall Precision F1 nDCG Coverage Gini Index EPC 
Random 0.220 0.220 0.020 0.040 0.060 77.570 99.950 0.020 
PMF  0.000 0.000 0.000 0.000 0.000 0.350 90.100 0.000 
NMF  0.000 0.000 0.000 0.000 0.000 0.350 90.100 0.000 
GPT4-turbo  0.200 0.200 0.200 0.400 0.090 61.750 99.240 0.050 
Item-based KNN  1.080 1.080 0.110 0.200 0.650 15.410 99.130 0.520 
User-based KNN 1.720 1.720 0.170 0.310 0.650 18.460 98.310 0.310 
GPT4o 1.510 1.510 0.150 0.270 0.960 41.520 99.240 0.800 
Pop 6.670 6.670 0.670 1.210 3.640 0.320 90.000 2.710 
GPT2 Fine-tuning 7.214 7.214 0.721 1.312 3.420 9.156 90.953 2.266 
KEAM 11.000 11.000 1.100 2.000 7.945 56.292 98.484 5.346 
Llama3 Fine-tuning 16.515 16.515 1.651 3.003 12.632 7.795 90.631 11.904 

 
GPT4-turbo model across all dimensions. Upon a closer examination of the generated 
recommendations, we observed that GPT4-turbo often exhibits “lazy behaviors”, generating 
similar or repetitive recommendation lists, which leads to low diversity. Furthermore, few-shot  
models consistently outperform zero-shot models. By learning from user-specific data, few-
shot models can generate more personalized and relevant recommendations, enhancing both 
diversity and novelty. Finally, fine-tuned models like GPT-2 and Llama3 not only excel in 
diversity but also significantly surpass other models in novelty. This indicates that directly 
applying LLMs to recommendation tasks is challenging because the data used for pre-training 
LLMs differs from the specific requirements of recommendation tasks. However, fine-tuned 
LLMs, when trained on specific data, can deliver better results.  
 
5.3 Cold Start Scenario 
 
Cold start is a well-known challenge in course recommendation systems, especially in MOOC 
environments. It refers to the difficulty of recommending relevant courses to new users who 
lack sufficient interaction data. To investigate the performance of LLMs in cold start scenarios 
for course recommendations, we adopt two different experiments inspired by previous studies 
(Di et al., 2023; Dai et al., 2023).  

First, we identify cold-start users by dividing the users of the dataset into quartiles 
based on their historical interaction data. The lower quartile, representing users with the least 
interaction, is selected as the subset of cold-start users. This allows us to evaluate  
the models under consistent cold-start conditions, ensuring that all models are tested with a 
similar subset of users (note that we fine-tuned our LLMs using the same cold-start training 
set). The results of this evaluation are presented in Table 3. We observe that off-the-shelf 
LLMs outperform traditional models for cold start scenarios when only limited training data is 
available. LLMs do not require extensive training data to function as recommendation systems, 
as their pre-trained knowledge allows them to make informed predictions. The Pop method, 
by contrast, performs well because it simply recommends the most popular courses in the 
dataset. Moreover, with minimal training data, fine-tuned Llama3 achieved the highest scores, 
while fine-tuned GPT-2 outperformed Pop and ranked second only to KEAM. This 
demonstrates that the reasoning abilities and extensive knowledge encoded in LLMs enable 
them to generate superior recommendations. 

Secondly, we investigate the amount of training data required for traditional 
recommendation models to achieve performance comparable to or better than LLMs.  



 
 

Figure 2. Comparison with UserKNN Using Different Percentages of Training Data. 
 

 
 

Figure 3. (a) Example of Explanation Generated by LLMs (b)Human Rating Results. 
 

Specifically, we chose the User-based KNN model as it performed well in the first experiment. 
We then evaluated their performance after training on varying proportions of training data and 
compared their performance to that of LLMs. Recall@5 and nDCG@5 are reported in Figure 
2. As expected, the performance of User-based KNN improves with increasing amounts of 
training data. Also, we can observe that although GPT4-turbo's performance is not good, direct 
use of GPT4o as a recommendation system without training data still outperforms User-based 
KNN that trained on few data, i.e., less than 30%. Based on these findings, we conclude that 
using LLMs as course recommendation systems is a promising approach for mitigating the 
cold-start problem, offering effective solutions when traditional methods may struggle. 
 
5.4 Explanation 
 
Providing students with clear and understandable explanations for course recommendations 
can enhance the transparency and perceived trustworthiness of the system, thereby improving 
overall user satisfaction (Ma et al., 2021; Ma et al., 2024). We also prompt LLMs to produce a 
textual explanation for each recommended course. 

To assess the quality of these explanations, we conducted a small-scale human 
evaluation on 50 sampled outputs. Each explanation was rated along three dimensions, 
including Clarity (the explanation is clear and easy to understand), Relevance (the 
explanation is relevant to the student’s prior course history), and Plausibility (the explanation 
is plausible and convincing), using a 5-point Likert scale by two human researchers, the 
example explanation and human rate results are shown in Figure 3. Most explanations 
received scores of 4 or higher across all dimensions, suggesting that the explanations were 
generally interpretable and credible. These findings indicate that LLMs can effectively 
generate intuitive and trustworthy justifications by contextualizing recommendations within 
students past learning experiences. 



6. Conclusions 
 
In this paper, we evaluate the performance of LLMs in course recommendation tasks and 
compare them with traditional recommendation methods across diverse settings. Our results 
indicate that LLMs without fine-tuning perform worse than baseline models. However, fine-
tuned LLMs significantly outperform traditional approaches, particularly in cold-start scenarios. 
Moreover, LLMs demonstrate strong capabilities in generating high-quality recommendation 
explanations. These findings provide valuable insights into the strengths and limitations of 
LLMs in educational recommendation systems. 
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