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Abstract: This study investigates the effectiveness of deep learning (DL) methods for 
classifying student comments based on quality within the AVW-Space video-watching 
platform. Given the limitations of existing machine learning (ML) techniques, this 
research explores whether DL models can improve classification performance. The 
study compared six DL models (BERT, RoBERTa, ALBERT, ELECTRA, GPT, and 
GPT-2) by training them on a dataset of 13,440 student comments. The results show 
that RoBERTa outperforms all models, demonstrating precision, recall, and F1-score 
improvements. Fine-tuning experiments led to an optimised RoBERTa model. We  
examine methods to address class imbalance, with weighted loss functions and 
random undersampling proving ineffective. This study contributes to the automation of 
comment assessment and supports personalised educational experiences. 
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1. Introduction and Related Work  
 
Using video media for learning has become prevalent. Video-based learning (VBL) has unique 
features supporting various learning styles and has the potential to lead to better learning 
outcomes (Zhang et al., 2006). Recent VBL systems also facilitate self-regulated learning 
(Dimitrova & Mitrovic, 2022), but the lack of direct interaction with teachers can lead to passive 
learning (Yousef et al., 2014). Active Video Watching (AVW) mitigates inefficient learning and 
encourages engagement in video-based teaching.  

AVW-Space is a controlled video-based learning platform that enables teachers to 
create customised spaces by selecting YouTube videos and specifying aspects to direct 
students’ attention (Mitrovic et al., 2016). These aspects prompt students to reflect on their 
knowledge and experiences. Students can pause the video to leave comments at any point, 
and teachers may select comments to be anonymously shared for peer review, enabling 
classmates to rate and respond. Continuous enhancements have optimised AVW-Space for 
learning and engagement (Dimitrova & Mitrovic, 2022; Mitrovic, Dimitrova, et al., 2017; 
Mitrovic et al., 2016, 2019; Mohammadhassan et al., 2020). This study focuses on comments 
from a presentation skills module, which contained four tutorial videos on delivering 
presentations and four actual recordings of presentations.  

Students who reviewed and wrote comments improved their knowledge, while those 
who passively watched did not (Mitrovic, Dimitrova, et al., 2017). Initial studies demonstrated 
the benefits of behaviour-based hints designed to encourage commenting and offer exemplar 
responses, known as personalised nudges, leading to increased student comments (Mitrovic 
et al., 2019). AVW-Space was enhanced to deliver personalised nudges; however, students 
did not yet receive real-time feedback on comment quality.  

In response, Mohammadhassan et al. (2020) explored whether machine learning (ML) 
could assess comment quality, introducing a five-class scheme specific to tutorial videos. 
Class 1 (Affirmative, negative, off-topic) contains irrelevant or purely affirmative/negative 
remarks without explanation. While Class 2 (Repeating) consists of comments restating video 
content, both are considered low quality. The remaining classes represent higher quality. 
Class 3 (Critical and analytical) reflects critical thinking, while Class 4 (Self-reflective) connects 



to the learner’s prior experiences or behaviours. In Class 5 comments, students write about 
how to improve in future. Weighted classes and cost-sensitive error handling addressed the 
dataset’s class imbalance. Misclassifying Class 3 as Class 2 is less severe than misclassifying 
Class 1 as Class 5, as the latter represents the most significant gap in engagement and thus 
incurs the highest penalty. A weighted random forest classifier achieved an F1-score of 0.68 
and an average cost of 3.53. Performance was improved by merging classes, though this 
reduced the specificity of the feedback. 

Reflective writing classification is challenging due to its unstructured nature and varied 
vocabulary. Literature shows deep learning (DL) methods often outperform traditional ML. 
Wang et al. (2024) achieved an F1-score of 0.699 using BERT, improving to 0.7474 with GPT-
4-generated data and contrastive learning to stabilise training. Wulff et al. (2023) classified 
teachers’ reflections with BERT, but faced tokenisation issues due to the niche domain. Li et 
al. (2023) found that BERT outperformed ML for reflective writing (F1-score: 0.7217).  

This study investigates whether DL can outperform existing ML methods for AVW-
Space comment classification. We evaluate transformer-based models; BERT (Devlin et al., 
2019), ALBERT (Lan et al., 2020), RoBERTa (Liu et al., 2019), ELECTRA (Clark et al., 2020), 
GPT (Radford et al., 2018), and GPT-2 (Radford et al., 2019). Experiments assess 
hyperparameter tuning (dropout, hidden layers, batch size, epochs, learning rate), and testing 
strategies for handling class imbalance. Findings will inform NLP-driven educational tools and 
deepen understanding of DL’s effectiveness for educational text classification. 
 

2. Proposed Method 
 
Mohammadhassan et al. (2020) used 2,245 manually classified comments, collected from 
2016 to 2019, to develop an ML-based method. They split the data into 80% training and 20% 
testing. Since that study, more data is available for training and testing the model. We 
experimented with 13,440 comments written by first-year engineering students and collected 
from 2018 to 2023 (Dimitrova & Mitrovic, 2022; Mitrovic et al., 2019; Mohammadhassan et al., 
2020, 2022). The studies were approved by the Human Research Ethics Committee (HREC) 
of the University of Canterbury. 

We split the data randomly into a training, validation and testing set of 70%, 15% and 
15%, respectively. The class distribution of the comments is uneven. There are 7,599 
comments in Class 2 (Repeating), accounting for 57% of the dataset. Class 3 (Critical and 
analytical) has 2,813 comments, making up 21%. Class 4 (Self-reflective) has 2,253 
comments, 17% of the dataset. Class 1 and Class 5 contain the smallest number of comments, 
both holding 3% of the total collected comments, 341 and 334 comments, respectively. 

 

2.1 Model Comparison 
 
The DL models selected for comparison were BERT, ALBERT, RoBERTa, ELECTRA, GPT, 
and GPT-2. This selection provides a broad overview of the performance of two leading 
architectural frameworks, BERT-based and GPT-based models. We selected these models 
over larger, more recent architectures due to practical and ethical considerations. Fine-tuning 
and deploying larger-scale models exceeded available computational resources. Also, AVW-
Space requires near-instantaneous comment evaluation, favouring smaller models with faster 
inference. Additionally, performing evaluations locally safeguards student privacy by avoiding 
transmission of sensitive data to external entities. Each model is publicly available via Hugging 
Face (bert-base-uncased, albert-base-v2, roberta-base, google/electra-base-discriminator, 
openai-community/openai-gpt, and openai-community/gpt2) (Hugging Face, 2025).  

We used the F1-score, precision, recall and average cost to compare with the results 
obtained from the ML benchmark testing. The goal of the evaluation was to help identify the 
model that best captures the complex nature of student comments, ultimately improving the 
accuracy of the comment classification system in AVW-Space. Model performance 
determined the selection of a single model for the remaining tests. 
 



2.2 Fine-tuning and Weighted Training 
 
Fine-tuning a model to find the optimal hyperparameters involved training models using 
different parameter combinations to maximise performance while ensuring generalisability to 
unseen data. We tested dropout rates of 0.1, 0.2, 0.3, 0.4, and 0.5; batch sizes of 16, 32, and 
64; training for 2 to 6 epochs; learning rates of 1e-5, 2e-5, and 5e-5; and hidden layer counts 
ranging from 2 to 12. The evaluation covered 2,046 configurations, each trained and validated 
on the same dataset split for comparability. To address variability in DL training, the six top-
performing configurations from the initial tests underwent four additional training runs. 
Subsequent experiments utilised the best-performing configuration. 

To address class imbalance, we modified the default cross-entropy loss using focal 
loss for hard-to-classify examples. We applied inverse frequency weighting through both 
weighted cross-entropy and alpha-balanced focal loss. In addition, random undersampling 
balanced all classes to 334 samples to create an even distribution of comment classification. 
  
 

3. Results 
 
We tested six models to assess whether a DL approach would outperform the existing ML 
method to classify the quality of student comments. The selected models are BERT, ALBERT, 
RoBERTa, ELECTRA, GPT, and GPT-2. The BERT-based models were trained with a batch 
size of 64, while GPT models used 32 due to higher computational costs. Preliminary tests 
showed validation loss typically increased after four epochs, suggesting overfitting; thus, all 
the DL model training consisted of four epochs. Table 1 presents the aggregated precision, 
recall, F1-score and average cost obtained for each of the DL models. 
 
Table 1. Recall, precision, F1-score and average cost of different models  

Model  Recall  Precision F1-Score Average Cost 

RoBERTa 0.740 0.735 0.734 3.418 

ALBERT 0.738 0.734 0.732 3.513 

GPT 0.731 0.728 0.728 3.658 

BERT 0.724 0.722 0.723 3.738 

GPT-2  0.729 0.721 0.712 3.823 

ELECTRA 0.718 0.693 0.704 3.943 

Retrained ML  0.719 0.706 0.692 4.030 

 
The retrained ML model achieved a recall of 0.719, a precision of 0.706, and an F1-

score of 0.692. All the DL models outperformed the retrained ML model across F1-score and 
average cost. RoBERTa achieved the highest performance across all metrics: a recall of 
0.740, precision of 0.735, F1-score of 0.734, and the lowest average cost of 3.418. Overall, 
while the model performs well, further fine-tuning could improve its performance further.  

ALBERT showed promising results with a recall of 0.738, precision of 0.734, and an 
F1-score of 0.732. ALBERT's compact architecture provides advantages in terms of 
computational efficiency, making it a good option for resource-constrained environments. 
However, RoBERTa remains the best-performing model due to its superior balance of 
accuracy and efficiency, which justifies its selection for further experimentation. Our findings 
were consistent with previous findings, which demonstrate that RoBERTa outperforms other 
DL alternatives (Sy et al., 2024, p. 20).  

Additionally, GPT models obtained lower performance metrics than both RoBERTa 
and ALBERT. GPT models are generally less suited to tasks requiring fine-tuning for specific 
downstream applications, as their pre-training objective is broad in scope. This generality 
could have led to the suboptimal performance compared to models like RoBERTa, which are 
trained on a diverse vocabulary and further optimised for targeted tasks. However, it is 
important to note that the GPT models used a smaller batch size of 32 for training. The smaller 
batch size could have led to overfitting and reduced its ability to generalise 



3.1 Fine-Tuning and Weighted Training  
 

We tested 2,046 hyperparameter configurations for fine-tuning RoBERTa on student comment 
classification. Of these, 72 outperformed the default RoBERTa model (F1-score: 0.734), with 
the highest achieving 0.746, a marginal improvement of 0.012.  

To ensure consistency, we trained the top six configurations three additional times. 
Results showed slight improvements over the default model but revealed that fine-tuning does 
not always guarantee better performance. The best performing configuration (dropout of 0.2, 
10 hidden layers, batch size of 16, 6 epochs, and learning rate of 5e-5) achieved the highest 
F1-score of 0.747, precision of 0.749, and recall of 0.753. The configuration reduced the 
average cost to 3.29 from the RoBERTa default of 3.42, and therefore served as the 
configuration for further testing. This configuration also improved performance across all 
classes (Figure 1). Class 1 achieved an F1-score of 0.789, precision of 0.811 and recall of 
0.768. Class 2 maintained strong performance with an F1-score of 0.829, precision of 0.794, 
and recall of 0.868, comparable to the retrained ML model.  

 

Figure 1. Retrained ML method versus the fine-tuned RoBERTa model performance  
 
Class 3 continued to underperform with an F1-score of 0.550, precision of 0.577, and 

recall of 0.525, possibly due to the factual nature of comments, which made it difficult to 
differentiate from Class 2. For example, one comment classified correctly as Class 2, with the 
aspect "I did/saw this in the past," stated, "Only using meaningful numbers and statistics that 
enhance your point,". However, another comment with the same aspect, "Making the audience 
imagine works as a good opener," was misclassified as Class 2 instead of Class 3. The Class 
3 classification was dependent on the content of the video. Incorporating video transcripts 
might improve classification performance but risks reducing generalisability.  

Class 4 also improved with an F1-score of 0.660, a precision of 0.777, and a recall of 
0.573. The lower recall compared to precision indicates that the model has a conservative 
approach to classifying into Class 4, often misclassifying as Class 2 comments. An example 
is a Class 4 comment with the aspect "I am rather good at this," stated, "Show you are actually 
interested in your topic," but was misclassified as Class 2. The example comment highlights 
the challenge of distinguishing self-reflective content when the reflective components are 
contained in the aspect rather than the comment.  

Class 5 saw the most significant gain, achieving an F1-score of 0.797, a precision of 
0.731, and a recall of 0.875, marking a 0.397 increase in F1-score over the retrained ML model. 
The higher cost of misclassifying Class 5 comments suggests that the average cost reduction 
was primarily due to the improved classification of these comments.  

Although the aggregated F1-score presents marginal improvement from the RoBERTa 
model, there is a decrease in average cost and improvement in performance across all classes. 
The difference in each class's performance highlights the limitations of evaluating 
multiclassification models such as these using aggregated metrics.  

The top fine-tuned model performed well for minority Class 1 and 5 but struggled with 
Class 3 and 4, which were harder to distinguish from the majority Class 2. To address the 



class imbalance, weighted cross-entropy, focal loss, alpha-balanced focal loss, and random 
undersampling were tested. The default cross-entropy achieved the strongest performance 
with an F1-score of 0.747, while focal loss produced a comparable result with an F1-score of 
0.735. Random undersampling performed considerably worse, with an F1-score of 0.624, 
reflecting the loss of training data. Weighted cross-entropy and alpha-balanced focal loss 
produced F1-scores of 0.669 and 0.674, respectively. Although these approaches improved 
recall for Classes 3 and 4, they also increased false positives. The models more readily 
classified comments into Classes 3 and 4, but did so inaccurately, resulting in decreased F1-
score. Overall, the alternative methods reduced overall performance, suggesting that more 
targeted strategies are required to address the imbalance. 

 

4. Discussion and Conclusions 
 

AVW-Space enables students to leave comments that are automatically classified into quality 
classes using a weighted random forest classifier developed in 2020 (Mohammadhassan et 
al., 2020). Our goal was to determine whether DL techniques outperformed the existing ML 
method and whether fine-tuning and weighted techniques could optimise performance. 

Training of the 2020 ML model utilised a smaller dataset. To ensure a fair comparison, 
we retrained it using the expanded dataset, yielding marginal improvements in the F1-score. 
We then evaluated six transformer-based DL models: BERT, RoBERTa, ALBERT, ELECTRA, 
GPT, and GPT-2. All DL F1-scores outperformed the retrained ML model, with RoBERTa 
emerging as the best performer. Our findings confirm RoBERTa’s superior performance over 
other DL and ML approaches, aligning with prior research (Mohammadhassan et al., 2020; Sy 
et al., 2024). Fine-tuning RoBERTa by adjusting hyperparameters (dropout rate, hidden 
layers, batch size, number of epochs, and learning rate) further refined its performance. 
Weighted testing used the configuration that obtained the highest F1 score. 

A limitation of our study is the imbalanced dataset, with most comments falling into 
Class 2. Differentiating Class 3 and 4 from Class 2 proved challenging. The factual nature of 
Class 3 comments and the importance of the aspect in some Class 4 comments likely 
contributed to this issue. Attempts to address class imbalance using alternative loss functions 
showed mixed results. Focal loss performed similarly to standard cross-entropy, while 
weighted cross-entropy and alpha-balanced focal loss reduced overall accuracy: although 
they increased classification into Class 3 and 4 over Class 2, these predictions were often 
incorrect. Undersampling also decreased performance, as the benefit of a balanced class 
distribution did not compensate for the information lost.  

As AVW-Space evolves with new features, the nature and quality of comments will 
change. Future research should consider synthetic data generation or selective subsampling 
of recent comments to adapt to these evolving standards. Additionally, the fine-tuned model 
is specialised for comments on presentation skills, meaning its performance may not 
generalise to other topics. Further testing is needed to assess its effectiveness outside the 
trained domain. Also, aggregated performance metrics obscured class performance 
variations, suggesting that alternative evaluation methods, such as class-wise thresholds or 
tailored metrics, could provide a better assessment of model performance. Also, annotator 
bias remains a concern, emphasising the need for standardised labelling to enhance 
classification consistency. Incorporating video transcripts might improve classification 
performance but could also reduce generalisability. 

Overall, this research identified a fine-tuned RoBERTa model as the best-performing 
DL approach, achieving an increased performance across precision, recall, F1-score and 
average cost. The fine-tuned RoBERTa model obtained an improved F1-score across all 
classes, specifically presenting vast improvements for Class 5 comments. These results 
highlight the effectiveness of DL techniques in enhancing comment quality classification within 
AVW-Space. Future work will focus on refining classification strategies, improving evaluation 
metrics, and developing efficient alternatives to support deployment. 
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