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Abstract: Algorithmic bias research often evaluates models in terms of traditional 
demographic categories (e.g., U.S. Census), but these categories may not capture 
nuanced, context-dependent identities relevant to learning. This study evaluates four 
affect detectors (boredom, confusion, engaged concentration, and frustration) 
developed for an adaptive math learning system. Metrics for algorithmic fairness (AUC, 
weighted F1, MADD) show subgroup differences across several categories that 
emerged from a free-response social identity survey (Twenty Statements Test; TST), 
including both those that mirror demographic categories (i.e., race and gender) as well 
as novel categories (i.e., Learner Identity, Interpersonal Style, and Sense of 
Competence). For demographic categories, the confusion detector performs better for 
boys than for girls and underperforms for West African students. Among novel 
categories, biases are found related to learner identity (boredom, engaged 
concentration, and confusion) and interpersonal style (confusion), but not for sense of 
competence. Results highlight the importance of using contextually grounded social 
identities to evaluate bias. 
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1. Introduction 
 
The scaled adoption of adaptive learning technologies, which in many cases have led to 
improved student outcomes (Rai & Murthy, 2022), has raised concerns about algorithmic 
fairness (Kizilcec & Lee, 2022). A critical step in addressing these concerns is detecting these 
biases, which have been investigated in terms of race (Hu & Rangwala, 2020), gender 
(Christie et al., 2019), neurodivergence (e.g., ADHD; Lee et al., 2025), socioeconomic status 
(Yu et al., 2021), urbanicity (Ocumpaugh et al., 2015), and regional groups (Svabensky et al., 
2024). The range of subgroups potentially affected by these biases accentuates the 
complexity of this issue. To date, many studies rely solely on institutionally defined 
demographic labeling systems, such as race or gender, based on legal protections in some 
countries. These labels often deliberately merge smaller categories in order to facilitate large-
scale comparisons, but may fail to capture the nuanced, context-dependent dimensions of 
student identity in the classroom. In practice, heterogeneous groups (e.g., English language 
learners) are treated as monoliths, and significant within-group diversity is left unanalyzed or 
even misrepresented (Wang et al., 2022).  

In addition to collapsing heterogeneity, institutionally defined labels may also miss the 
unique, context-specific dimensions of students’ self-perceived identities (e.g., learner 
identity), which may be especially relevant in classroom settings (Cribbs et al., 2015; Crossley 
et al., 2018). Research shows that a student’s sense of identity—like seeing oneself as “good 
at math”—can drive learning outcomes and academic success (Cribbs et al., 2015). Likewise, 
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while there are well-documented links between large-scale demographic categories (e.g., 
race, gender) and learners’ performance, as well as help-seeking and motivational 
behaviors(e.g., Karumbaiah et al., 2022), incorporating non-traditional, locally meaningful 
categories can provide a richer, more nuanced picture of students and their learning 
experiences. These context-specific identities particularly matter in the case of modeling 
emotions, which are inherently social and situated (Barrett et al., 2019). 

To investigate this, we examine whether affect detectors built for MATHia (an adaptive 
learning system) show biases against middle school students in terms of their self-reported 
identities, as elicited from a free-response survey. Doing so helps us understand whether any 
of these less-studied categories of identities are important for determining if automated 
detectors are less effective for some groups of students.  
 
 
2. Literature Review 
 
2.1 Algorithmic Bias in Education 

 
Research on algorithmic bias in education has largely focused on broad demographic 
categories like race, ethnicity, nationality, and gender (Baker & Hawn, 2022). Such studies 
have revealed racial disparities across models predicting college retention (Kai et al., 2017), 
high school dropout (Christie et al., 2019), and course failure risk (Hu & Rangwala, 2020), with 
inconsistent results highlighting the complexity of intra-group heterogeneity. Geographic and 
linguistic differences have also emerged in automated essay scoring (Bridgeman et al., 2009) 
and in help-seeking models favoring domestic learners (Ogan et al., 2015). Gender disparities 
also appear but are often intertwined with other sociocultural factors (Yu et al., 2021).  

However, reliance on these traditional categories risks over-simplification, as 
aggregating heterogeneous subgroups can obscure contextually salient identities (Belitz et 
al., 2023). Emerging work has explored less-studied categories, such as urbanicity 
(Ocumpaugh et al., 2014), neurodivergent groups (Lee et al., 2025), and regional groups in 
the Philippines (Svabensky et al., 2024), revealing biases tied to dimensions of identity that 
are finer-grained and more contextually situated than what is often studied. Yet these efforts 
remain fragmented, and few frameworks address how self-reported identities affect 
algorithmic biases. This gap highlights the need for more nuanced approaches to subgroup 
definition, ensuring that fairness evaluations reflect the lived experiences of learners rather 
than overly broad, externally chosen demographic variables. 
 
2.2 Twenty Statements Test (TST)  
 
Determining which factors are relevant potential sources of bias for a given student remains 
an underexplored area (Belitz et al., 2023). Gender, racial, and economic categories are often 
analyzed because of longstanding patterns of disparity in the treatment and educational 
outcomes of these groups (Kao & Thompson, 2003). While these issues remain important, the 
categories used in these contexts—which are designed to apply to many learners for ease of 
comparison at scale—are not always the most relevant in a specific situation.  For example, 
populations in South Asia and East Asia have ethnic groups with vast cultural and linguistic 
diversity, which are often grouped under the same label, even though these groups (and their 
teachers) likely consider themselves distinct from one another. Efforts to capture identities that 
could supplement the existing commonly studied categories exist (Crossley et al., 2018), but 
the ability to do so at scale is quite challenging. One promising approach is the Twenty 
Statements Test (TST), which elicits a free-response survey to ask students how they would 
describe themselves (Kuhn, 1954). This technique is designed to surface salient categories 
that emerge from students’ responses, which may not always be captured by traditional 
approaches.  
 



2.3 Algorithmic Bias in Affect Detection 
 
Existing research on algorithmic bias in education has examined predictive models of dropout 
(Christie et al., 2019), automated essay scoring (Bridgeman et al., 2009), and help-seeking 
behaviors (Ogan et al., 2015), but research involving affect detectors remains limited. For 
observation-based detectors, Ocumpaugh et al. (2014) found detectors failed to work across 
differences in urbanicity, and Chiu (2020) found gendered affect patterns—female STEM 
students persisted when less bored and off-task, while male students thrived with higher 
concentration and lower frustration. More recently, with facial-recognition-based detectors, 
Ashwin & Biswas (2024) reported higher misclassification rates for students with darker skin 
tones, underscoring the need for diverse training data. These limited efforts highlight the 
importance of examining bias in affect detectors across varied subpopulations. Furthermore, 
since affect is rooted in cultural and linguistic differences (Barrett et al., 2019), it may be 
important to incorporate variables of this nature in investigating the algorithmic bias that 
impacts detectors of affect.  
 
 
3. Methods 
 
3.1 Participants and Study Context 

 
The study was conducted with middle school students across several classes in a small city 
in the northeastern U.S. with a large immigrant population. These students used Carnegie 
Learning’s MATHia software in 2023-2024 as their regular math instruction. Participation in 
the study involved two different types of data collection. First, 219 students completed the 
Twenty Statements Test to determine relevant social categories for the students. Second, field 
observation of 163 students was conducted to collect training labels for automated detectors. 
Both parental consent and student assent were acquired.  

The labeled affect data from the observers was mapped to action logs in MATHia for 
each student, as well as the corresponding TST identity labels when present. TST responses 
from students without affect labels were dropped since the affect labels served as ground truth 
and were necessary to build the detectors. A final total of 95 students’ data were used for 
analysis. Students who didn’t have TST responses for a specific category of interest were 
noted as NR (not reported) for that category, and evaluated as a separate subgroup for that 
category (explained in detail below).   
 
3.2 BROMP-based Affect Detectors 

 
3.2.1 BROMP Field Observations 
 
Affect training labels were obtained using the Baker Rodrigo Ocumpaugh Monitoring Protocol 
(BROMP; Ocumpaugh et al., 2015a), a classroom observation method that has been used to 
produce detectors for more than two dozen online learning systems (Baker et al., 2020). 
BROMP observers use a momentary time sampling method, implemented by an open-source 
Android app (Ocumpaugh et al., 2015b), to label students’ affective engagement. As part of 
the BROMP certification process, the researchers achieved a kappa of greater than 0.6 on all 
affective states for middle school students’ observations, indicating good agreement among 
the researchers. Following this, coders independently coded over five class periods, observing 
for boredom, confusion, delight, engaged concentration, and frustration. As advised in the 
BROMP manual, these coders did not observe the same student simultaneously, maximizing 
data collection (Ocumpaugh et al., 2015a). In total, 591 observations of affect were obtained 
from 163 students. Engaged concentration was the most prevalent affective state (N=591; 
71.21%), followed by confusion (N=109; 13.13%), frustration (N=42; 5.06%), boredom (N=86; 
10.36%), and delight (N=2; 0.24%). This distribution is typical for BROMP research 
(Karumbaiah et al., 2021). Due to low N, a delight detector was not built.  



 
3.2.2 Feature Engineering 

 
To construct affect detectors, we extracted 157 features from the action log data of students. 
These included features like error counts, number of attempts, and changes in hint levels., 
based on actions of students.  As typical in BROMP-based detectors, features within the 20 
seconds (defined as a “clip”) before the BROMP label’s timestamp were prioritized, but earlier 
features were used to add contextual information (Baker et al., 2012; Zambrano et al., 2024).  
 
3.2.3 Detector Construction and Validation 

 
We performed stratified 4-fold student-level cross-validation. This ensured that affect labels 
were balanced across each fold while making sure that each student’s labels appeared only 
in either the training or test set. To address class imbalances, we used a synthetic 
oversampling technique (SMOTE; Chawla et al., 2002) on training data. Features were 
selected through a forward feature selection process, evaluating performance using the Area 
Under the Receiver Operating Characteristic Curve (AUC ROC; AUC for short). Following 
common practice, each detector was trained as a one vs. rest classification (Baker et al., 2012; 
Zambrano et al., 2024). We tested 5 machine-learning algorithms from the Scikit-learn library 
for Python: Logistic Regression (LR), Random Forests (RF), Extreme Gradient Boosting 
(XGB), Support Vector Machines (SVM), and Decision Trees. We used the default 
hyperparameters for all models, as the study’s goal was not to optimize overall model 
performance but to assess bias for the novel TST categories. 
 
3.3 Twenty Statements Test (TST) 
 
3.3.1 TST Implementation 

 
This study measures student identity using the Twenty Statements Test (Kuhn, 1954), which 
asks students to fill in the blank—twenty times—for the question “Who am I?”. This free-form 
survey has been used to produce nuanced identity classifications across urbanity samples 
(Somech, 2000), age groups (McRae & Costa, 1988), and nationalities (Santamaria et al., 
2010). Notably, the TST facilitates identifying locally relevant categories that more fully reflect 
the identities of those being sampled. 
 
3.3.2 TST Data Categorization 
 
Qualitative coding of TST data was adapted from Gordon and Gergen (1968); these codes 
were then combined into umbrella categories specific to our sample. Table 1 shows the N for 
each subgroup across five umbrella categories, with examples given for those that do not align 
with typical census-style data. Each umbrella category also includes a Not Reported (NR) 
subgroup, as each umbrella category had students whose answers did not reflect that 
category. This large number of students being identified as NR is expected for open-ended 
methods and was included because not reporting a category serves as an indicator of lack of 
salience of that category in this context.  
 
Table 1. TST Categories. N≥10 are shown in grayscale and included in the fairness analyses 

Categories Subgroups Description/example N 
Gender B Boy 13 
 G Girl 21 
 NR not reported 149 
Race / Ethnicity  
/ Nationality 

Black - 13 
West African Deidentified West African Nationality 18 
Caribbean Deidentified Caribbean Nationality 9 
White  - 4 



Categories Subgroups Description/example N 
South Asian Deidentified South Asian Nationality 2 
East Asian Deidentified East Asian Nationality 3 
South American Deidentified South American Nationality 2 
Mixed - 3 
NR not reported 142 

Learner Identity (LI) Pos e.g., “good student” or “good at math” 36 
Neg e.g. “not great at math” “don’t like school” 10 
Neut e.g., “student”, or “high schooler” 10 
NR not reported 127 

Interpersonal Style (IPS) Pos e.g., “ nice” or “kind” or ”respectful” 33 
Neg e.g., “rude” 3 
Neut e.g., “shy” 2 

 NR not reported 145 
Sense of Competence (SoC) Pos e.g., “smart” “leader”, “talented”  37 

Neg e.g., “idiot” 1 
 NR not reported 145 

 
Traditional Demographic Categories. Two categories aligned with traditional census 
measures emerged in this data: race and gender. Gender produced two named subgroups 
from the data: boy and girl, with NR included as a third subgroup. Race (a merger of race, 
ethnicity, and nationality) has many named subgroups but only two large enough (N≥10) for 
analysis: Black and West African (a pseudonym for a specific nationality that students 
provided, which we use to prevent re-identification of this school district). Because many 
students identified as both groups, we focus only on the West African subgroup. This decision 
reflects the higher specificity of the national label, and the concern that the Black subgroup 
would be more heterogenous. Students who reported being Black but were not in the West 
African subgroup had N<10 and were thus not analyzed. For analyses, we compare to “Other” 
labels and “not reported” (NR).  
Novel Social and Contextual Categories. Three named categories emerged that did not 
reflect typical census data. Learner identity (LI) emerged with students reporting to be “a good 
student” (positive LI), “not good at math” (negative LI), or simply “a student” (neutral LI). 
Likewise, Interpersonal Style (IPS) also emerged with positive, negative and neutral 
subgroups, while Sense of Competence (SoC) had positive and negative but no neutral 
subgroups. An NR subgroup is included for all categories. 

To facilitate fairness analysis, final subgroups within categories are mutually exclusive. 
In cases where TST identity categories are not mutually exclusive (e.g., valence subgroups, 
where students sometimes provided multiple, contradictory responses), a resolution process 
totaled the number of positive and negative responses and applied the majority label (e.g., if 
a student provided four neutral responses and one positive, the final code was neutral). Since 
no student had equal numbers of contradictory codes, no further resolutions were necessary. 
 
3.4 Testing for Algorithmic Bias 
 
We used three complementary fairness metrics—difference in AUC and weighted F1 (Wtd 
F1), and Mean Absolute Distribution Difference (MADD)—to test bias against TST subgroups 
with N≥10. AUC and Wtd F1 are standard predictive-performance metrics, while MADD is a 
novel fairness metric (Verger et al., 2023). AUC and Wtd F1 were calculated separately for 
each subgroup. MADD was calculated by comparing one subgroup to all others.  

For AUC (range: 0-1; chance = 0.5), a threshold of ΔAUC≥0.1 was used to label bias. 
AUC reflects the trade-off between true positive and false positive rates, and it can be 
interpreted as a measure of how well an algorithm ranks individual cases. For the weighted 
F1 score (range: 0-1), the same threshold was chosen to label bias (ΔwtdF1≥0.1). This score 
combines precision and recall, while also taking class imbalance into account. Finally, MADD 
measures the divergence between the predicted probability distributions of a model across 



subgroups, with scores ranging from 0 (most fair/identical distributions) to 2 (most 
biased/completely divergent distributions). For this study, we apply a conservative threshold 
of MADD>1 for labeling bias (Verger et al., 2023). 

As small differences could arise stochastically (Kohavi et al., 2022), we chose 
conservative thresholds for our metrics. Our decision aligns with calls for precautionary 
fairness checks that are needed in all contexts (Passi & Barocas, 2019) but perhaps especially 
in educational AI to proactively mitigate harm (Holstein & Doroudi, 2021). These differences 
should not be treated as definitive evidence of bias but as signals to prioritize subgroups for 
validation in larger, representative samples (Mitchell et al., 2021).  
 
 
4. Results 

 
4.1 Affect Detector Models 
 
The performance of different algorithms was compared for each binary affect classifier, and 
we selected the model for investigation of algorithmic bias based on the highest AUC. Table 
2 shows performances for the final detectors that are comparable to previously published 
interaction-based affect detectors (Baker et al., 2014; Tabanao & Rodrigo, 2018): Random 
Forest for boredom (AUC=0.68), Logistic Regression for confusion and engaged 
concentration (AUC=0.65 and 0.66, respectively), and XGBoost for frustration (AUC=0.74). 
 
Table 2. Performance of detectors across algorithms with AUC values  
 

  BOR CONF Eng CONC FRU 
Algo. AUC AUC AUC AUC 
Decision Tree 0.62       0.56 0.60  0.63  
SVM 0.62       0.61  0.59 0.65 
LR  0.67       0.65 0.66 0.71 
RF 0.68       0.64 0.64 0.69 
XGBoost 0.67      0.64  0.64 0.74 

 
4.2 Algorithmic Bias  
 
We next evaluate bias in these models across the four affect detectors. Although we report 
bias evaluation both for categories similar to traditional, census-style demographics (i.e., 
gender and race) and for novel categories (i.e., Learner Identity, Interpersonal Style, and 
Sense of Competence), all data have emerged from students’ free form responses in the TST.  
 
4.2.1 Traditional Demographic Categories  
 
Table 3 reports detector performance across TST subgroups and Table 4 shows AUC and F1 
differences between subgroups for traditional demographic categories (gender and race). 
 
Table 3. Model evaluation results for all categories.  
 

  Gender Race Learner Identity IPS     SoC 
Affect Metrics boy girl NR W. Afr. Other NR NR pos neg neut NR pos NR pos 

BOR 
(RF) 

AUC 0.58 0.64 0.70 0.63 0.61 0.69 0.72 0.56 0.67 0.74 0.70 0.70 0.69 0.65 
Wtd F1 0.73 0.73 0.75 0.76 0.69 0.74 0.75 0.73 0.66 0.82 0.76 0.74 0.76 0.71 
MADD 0.45 0.49 0.40 0.49 0.40 0.49 0.31 0.36 0.64 0.66 0.34 0.37 0.35 0.35 

CONF 
(LR) 

AUC 0.72 0.62 0.62 0.55 0.66 0.65 0.64 0.64 0.70 0.70 0.58 0.78 0.62 0.67 
Wtd F1 0.73 0.68 0.65 0.64 0.66 0.67 0.67 0.64 0.64 0.79 0.64 0.77 0.64 0.72 
MADD 0.53 0.40 0.41 0.50 0.39 0.50 0.29 0.29 0.66 0.65 0.36 0.41 0.42 0.43 

ENG 
(LR) 

AUC 0.63 0.60 0.67 0.65 0.60 0.65 0.66 0.62 0.72 0.60 0.67 0.63 0.68 0.60 
Wtd F1 0.64 0.56 0.61 0.65 0.54 0.60 0.61 0.59 0.63 0.68 0.61 0.63 0.62 0.60 



  Gender Race Learner Identity IPS     SoC 
Affect Metrics boy girl NR W. Afr. Other NR NR pos neg neut NR pos NR pos 

MADD 0.44 0.44 0.30 0.38 0.36 0.38 0.28 0.30 0.61 0.73 0.28 0.32 0.29 0.29 

FRU 
(XGB) 

AUC 0.71 0.64 0.73 0.79 0.76 0.71 0.70 0.74 0.94 0.80 0.75 0.56 0.72 0.75 
Wtd F1 0.82 0.93 0.90 0.87 0.85 0.89 0.90 0.87 0.92 0.83 0.88 0.92 0.89 0.88 
MADD 0.41 0.27 0.24 0.35 0.26 0.35 0.23 0.28 0.39 0.63 0.17 0.22 0.20 0.20 

 
Table 4. Differences in fairness metrics for all categories. Diff ≥ |0.1| are highlighted in gray.  

   Gender Race Learner Identity IPS SoC 
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BOR 
(RF)  

AUC -0.06 -0.12 -0.06 0.02 -0.06 -0.08 0.16 0.05 -0.02 -0.11 -0.18 -0.07 0.00 0.04 
WtdF1  0.00 -0.02 -0.02 0.07 0.02 -0.05 0.02 0.09 -0.07 0.07 -0.09 -0.16 0.02 0.05 

CONF 
(LR) 

AUC 0.10 0.10 0.00 -0.11 -0.10 0.01 0.00 -0.06 -0.06 -0.06 -0.06 0.00 -0.20 -0.05 
WtdF1  0.05 0.08 0.03 -0.02 -0.03 -0.01 0.03 0.03 -0.12 0.00 -0.15 -0.15 -0.13 -0.08 

ENG 
(LR) 

AUC 0.03 -0.04 -0.07 0.05 0.00 -0.05 0.04 -0.06 0.06 -0.10 0.02 0.12 0.04 0.08 
WtdF1  0.08 0.03 -0.05 0.11 0.05 -0.06 0.02 -0.02 -0.07 -0.04 -0.09 -0.05 -0.02 0.02 

FRU 
(XGB) 

AUC 0.07 -0.02 -0.09 0.03 0.08 0.05 -0.04 -0.24 -0.10 -0.20 -0.06 0.14 0.19 -0.03 
WtdF1  -0.11 -0.08 0.03 0.02 -0.02 -0.04 0.03 -0.02 0.07 -0.05 0.04 0.09 -0.04 0.01 

 
Gender. The performance of each affect detector was tested across three gender subgroups: 
boy, girl, and not reported (NR). Boredom detection produced ΔAUC>0.1 when comparing the 
NR group (0.70) to boys (0.58). In contrast, confusion’s AUCs are higher for boys (0.72) than 
for both girls and NR (each 0.62). For engaged concentration and frustration, no major 
disparities are found. Wtd F1 scores are largely comparable across subgroups—with the only 
notable exception for frustration (better for girls than for boys). MADD values ranged from 0.40 
to 0.53, suggesting fair affective models. 
Race. Next, we examine the performance of these detectors across three racial subgroups: 
West African, Others, and NR. For boredom, AUC values are similar across subgroups, but 
confusion detection does not perform as well for West African students (0.55) as for Others 
(0.66) and NR (0.65). For engaged concentration and frustration, AUC values showed minimal 
differences across subgroups. Wtd F1 scores also show few differences, though engaged 
concentration detection performs better for West African students than for Others (ΔWtd 
F1=0.11, see Table 3). All MADD values are relatively small (≤0.5).  
 
4.2.2 Novel Identity Categories  
 
Detector performance was tested across three novel TST categories: Learner Identity (LI), 
Interpersonal Style (IPS), and Sense of Competence (SoC). Among the LI codes, four 
subgroups are compared (positive, negative, neutral, and NR), and biases were evenly 
distributed across the affect detectors. Among the IPS and SoC codes, only two subgroups 
are compared (NR, positive), as only these subgroups had N>10 (Table 1). More differences 
in performance between the subgroups are seen in these novel categories than for the 
traditional ones. The specific results are discussed below. 

Learner Identity (LI). Testing across the four LI subgroups shows that the boredom 
detector underperforms for students with a positive learner identity (AUC=0.56) compared to 
other students (NR: 0.72, negative: 0.67, neutral: 0.74), but for Wtd F1 scores, the detectors 
performed worse for students with negative LI than students with neutral LI (0.66 vs 0.82). For 
confusion, AUC values are comparable across subgroups, but Wtd F1 scores show better 
performance for the neutral subgroup (0.79) compared to the other three subgroups 
(ΔAUC≥0.12). For concentration, performance is better for the negative subgroup (0.72) than 
the positive (0.62) and neutral (0.60) subgroups (ΔAUC≥0.10). For frustration, the negative 
subgroup again performed best on AUC (negative: 0.94 vs. NR: 0.70, positive: 0.74, neutral: 



0.80; ΔAUC=0.14 to 0.24). MADD values are highest when comparing the neutral subgroup 
across affective states (avg=0.67) but remain below 1 in all cases.  

Interpersonal Style (IPS). For boredom, AUC values of both subgroups were 
equivalent (0.70), but for confusion, performance was better for the positive subgroup than the 
NR subgroup (0.78 vs 0.58; ΔAUC≥0.20). Similar differences were observed in Wtd F1, with 
the positive subgroup performing better than NR (0.77 vs 0.64; ΔwtdF1=0.13). For engaged 
concentration, there were no differences (.63 vs 0.67), but frustration detection performed 
better for the NR subgroup than the positive subgroup (0.75 vs 0.56; ΔAUC≥0.19). Low MADD 
values (<0.45) were seen across all subgroup comparisons.  

Sense of Competence (SoC). Across all affect, AUC and Wtd F1 differences were 
minimal (ΔAUC < 0.1), indicating no significant disparities in model performance, while MADD 
values were also low, showing no substantial differences in probability distribution across 
subgroups.  
 
 
5. Discussion and Conclusion 
 
5.1 Summary of Results 
 
Overall, results show performance differences across groups, emphasizing the importance of 
novel categories of Learner Identity and Interpersonal Style, in addition to demographic 
categories of gender and race for analyzing bias in affect detectors.  
 
5.1.1 Performance Across Subgroups 

 
Within gender, four group comparisons showed performance differences. Boys’ boredom was 
not as accurately modeled (vs the NR group), nor was their frustration (vs the girls). However, 
the confusion detectors outperformed for boys compared to the other two groups. Within race 
categories, only two groups and two affective states experienced bias. The confusion 
detectors underperformed for the West African subgroup (compared to either subgroup), while 
concentration detection underperformed for the Others (vs. the West African subgroup) based 
on weighted F1. 

More differences emerge within the novel categories. As Table 4 shows, no strong 
trends appear in terms of which detector is underperforming on which subgroup. Detectors 
underperformed for the positive LI subgroup in six comparisons to other groups, three of which 
involve boredom. Both the negative LI subgroup and neutral LI are underpredicted for two 
affective states (negative: boredom and confusion; neutral: frustration and concentration). 
Finally, the NR group is underpredicted for confusion (one comparison) and frustration (two 
comparisons). For the Interpersonal Style and Sense of Competence categories, differences 
only emerge for the positive and NR Interpersonal subgroups (in frustration and confusion).   

Overall, the demographics typically studied in algorithmic bias research (gender, 
race/ethnicity) do not seem to be the categories showing the most bias in affect detectors. 
Instead, learner identities show the most variability in model performance, suggesting that 
non-traditional self-categorizations might help us to better understand algorithmic bias and the 
development of context-aware detectors more generally.   

One limitation of the current method is the possibility of self-presentation effects. 
Combining the TST with validated surveys (e.g., self-efficacy) could disentangle some self-
presentation effects from genuine identity differences. 
 
5.1.2 Interpreting Not Reported (NR) Groups 

 
The most common subgroup across all categories was NR, the group that had not provided a 
TST response relevant to that category. The NR groups raise important questions about our 
data, since identity salience—shaped by context, self-presentation effects, and societal 
norms—may influence reporting patterns. For instance, students in sensitive contexts (e.g., 
immigration status concerns) might underreport that identity, and other marginalized students 



may avoid labels to avoid stigmatization. Likewise, cultural norms could make some groups 
less comfortable reporting accomplishments, which could influence categories like learner 
identity (e.g., “I’m a good student!”).  

Although these issues complicate the interpretation of NR subgroups, additional 
surveys and efforts to cross-reference this label with the records maintained by a school could 
help us better understand these patterns. These efforts could be useful if we want to 
understand why, for example, a frustration detector is underperforming for NR group.  

 
5.2 Conclusion 
 
This study evaluates algorithmic bias within affect detectors that were developed for the 
MATHia online learning system. Unlike many previous studies of algorithmic bias, which have 
typically relied on census-style demographic data, we check model performance among social 
identity categories extracted from the Twenty Statements Test (TST). Evidence of algorithmic 
bias demonstrate that the bias may occur for characteristics beyond traditional demographic 
categories (cf. Baker & Hawn, 2024). The inclusion of TST categories enabled us to detect 
differences that might have been missed using more traditional categories. In particular, 
learner identity showed multiple differences across affect detectors and subgroups.  

These findings offer evidence for the need to evaluate bias across contextually relevant 
categories (e.g., Learner Identity and Interpersonal Style), but further research is necessary 
to generalize these results to a broader population. In addition, future work should investigate 
how self-reported identity categories interact with presentation effects and other dynamics 
related to students’ identity reporting behaviors. More research on under-studied dimensions 
of identity, including those shaped by specific regional and ethnic norms, could allow us to 
better mitigate potential biases against small, contextually situated subgroups. Such efforts 
could enhance the fairness of models across a broader range of socially and contextually 
grounded student identities. 
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