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Abstract: The emergence of Large Language Model (LLM) tools has revolutionized 
programming education, demonstrating considerable efficacy in providing instant, 
personalized feedback. However, most existing LLM-based tools focused on direct 
coding assistance, and neglected the cultivation of self-regulation skills. Moreover, 
many of these tools operate independently from institutional learning management 
systems, which creates a significant pedagogical disconnect that limits the ability to 
leverage contextual learning materials and exercises for generating tailored, context-
aware feedback. To address these challenges, we developed CodeRunner Agent, an 
LLM-based programming assistant. CodeRunner Agent enhances students' self-
regulated learning by providing strategy-based AI feedback and embedding within 
Moodle system. Additionally, it empowers educators to customize AI-generated 
feedback by incorporating detailed context from lecture materials, programming 
questions, student answers, and execution results. This integrated approach, 
emphasizing self-regulation skill development with contextual awareness, offers 
promising avenues for data-driven enhancements in programming education with AI. 
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1. Introduction 
 
Innovation within higher education has been accelerated dramatically by digital transformation 
strategies and evolving pedagogical approaches. Programming education, in particular, has 
attracted an ever-growing number of students with wider recognition of the critical importance 
of computer science literacy. This growth has created significant pedagogical challenges in 
providing timely, individualized assistance to each student (Yilmaz & Yilmaz, 2023). Large 
Language Models (LLMs) have emerged as a promising technological intervention. A variety 
of LLM-powered programming assistants have been developed to provide timely coding 
guidance and suggestions, potentially transforming traditional instructional approaches and 
feedback mechanisms in programming education (Pankiewicz & Baker, 2023).  

While these advancements present exciting opportunities for personalized learning, 
they also raise concerns about over-reliance and reduced development of self-regulated 
learning (SRL) and problem-solving skills (Humble et al., 2024; Prasad & Sane, 2024). Easy 
access to answers may encourage surface-level understanding, yet many LLM tools lack 
pedagogical guardrails to promote active engagement and SRL strategies (Sun et al., 2024). 
A further limitation is the lack of integration with institutional Learning Management Systems 
(LMS) like Moodle. Effective feedback is highly context-dependent, relying on alignment with 
lecture materials and assignment specifications (Kaur & Chahal, 2024; Kazemitabaar et al., 
2024). Without LMS integration, tools cannot leverage rich contextual data or provide 
educators with insights into student interactions and learning outcomes (Ma et al., 2024a, 
2024b). Therefore, it’s essential to ensure that the AI-generated feedback is both relevant and 
aligned with course objectives by integrating LLM-based tools into the LMS environment.  

To address these limitations, we developed CodeRunner Agent (Li & Ma, 2025), an 
LLM-powered programming assistant embedded within CodeRunner, an open-source Moodle  



 
 

Figure 1. Overview of the CodeRunner Agent Programming Support Environment. 
 
plugin for executing and assessing student-submitted code. CodeRunner Agent leverages the 
comprehensive context available within an LMS environment from learning logs and enhances 
students' self-regulated learning in programming education. Specifically, it enhances the 
delivery of individualized feedback by combining students’ knowledge level, self-regulation 
skills, and strategy-focused LLM-based scaffoldings. It also tracks AI feedback and 
subsequent actions in students’ coding behaviors. This provides valuable insights into learning 
behaviors and the effectiveness of AI-assisted feedback. By addressing the challenges of 
scalability, contextual feedback, and skill enhancement, our approach contributes to a deeper 
understanding of AI’s role in modern education. 
 
2. CodeRunner Agent 
 
2.1 Overview of CodeRunner Agent  
 
The framework of CodeRunner Agent is shown in Figure 1. It is developed and integrated to 
scaffold programming education with an LLM-based assistant in the Moodle LMS. The 
framework contains a Lecture Viewer, a CodeRunner plugin, and a CodeRunner Agent. 

Lecture Viewer is provided to deliver the lecture slides by instructors and access the 
lecture slides by learners. The operations of the lecture viewer are recorded in the form of 
Experience API (or xAPI) statements. Then, the xAPI statements are stored in the Learning 
Record Store (LRS). CodeRunner is an open-source plugin that can be imported to Moodle 
(Lobb & Harlow, 2016). Learners can write programming codes and receive automated grades 
by running it in a series of tests. A logging plugin named “Logstore xAPI” is used to record the 
results and send them to the LRS. For example, the code for the test, got output, correct status, 
and mark reward will be logged in LRS if learners run the test code once. CodeRunner Agent 
is an AI-powered tool to support learners' SRL and teachers' customized designs for LLM-
based feedback in programming education. It can be embedded into the Moodle LMS and 
executed with the CodeRunner plugin. Learners can receive general-purpose and 
programming-specific regulatory strategy feedback based on OpenAI API capabilities and 
strategy-focused prompt design. Specifically, the agent provides scaffolding hints while not 
directly generating code solutions by code guardrails design. A specific LLM prompt is used 
to rewrite the response by giving salient features of the code when code blocks are detected 
in the scaffolding hints. The interactions with the agent are automatically tracked as xAPI 
statements and stored in the LRS (e.g., the request type, request time, exercise ID). 



 
Figure 2. Phase, Target SRL strategy, and LLMs Feedback in the CodeRunner Agent. 

 
The CodeRunner Agent's core intelligence contains two context engines: Learning 

Analytics Context Engine (LACE) and Knowledge Context Engine (KCE). LACE calculates 
and aggregates learners' engagement metrics (i.e., time spent, attempt frequency) and 
performance metrics (i.e., success rates, error patterns) from LRS data after filtering personal 
data (i.e., name, gender, and email). LACE is integrated as contextual embedding of self-
regulation behavioral strategies with the feedback of the agent. KCE handles both lecture and 
exercise knowledge bases. The lecture knowledge base manages the key programming 
concepts and the dependencies between the concepts from lecture materials. The exercise 
knowledge base categorizes exercises by concept, difficulty, solution, and typical mistakes. 
KCE is used as learner knowledge embedding in the agent. 

Instructors can upload lecture materials (i.e., concept definition, concept illustration, 
and annotated examples) and exercises (i.e., problem statement, solution, and test cases) to 
the context engine. They will be converted to textual knowledge and stored in the knowledge 
database for future retrieval by the Retrieval Augmented Generation (RAG) technique. More 
importantly, instructors can update the knowledge bases and customize the parameters of the 
context engine by using the configuration tools. 
 
2.2 SRL Support Model in CodeRunner Agent 
 
To enhance strategy-based programming learning for novice learners, LLM-powered 
feedback is integrated into a five-phase model grounded in the Zimmerman's SRL theory 
(Zimmerman, 2008) and adopts a conceptual framework for regulating learning in 
programming (Silva et al., 2024). The model adds two CS domain-specific elements to the 
general three-phase SRL cycle (forethought, performance, and self-reflection). The model 
contains five phases, named PPESS: Planning, Program creation, Error correction, Self-
monitoring, and Self-reflection. 

The phase, target SRL strategy, and LLMs support in the CodeRunner Agent are 
shown in Figure 2. Both general-purpose and programming-specific regulatory strategies are 
included for SRL scaffoldings in the five-phase PPESS model. Planning supports problem 
analysis and decomposition. Program creation assists the implementation of coding solutions 
using both declarative and procedural knowledge. Error correction helps cognitive diagnosis 
and metacognitive regulation for addressing coding errors. Self-monitoring supports ongoing 
evaluation and adjustment toward task completion during coding and debugging. Finally, Self-
reflection helps learners assess their performance and improve future learning strategies. 



 
Figure 3. User Interface of Integrated CodeRunner Agent for Learners. 

 
Figure 3 illustrates the user interface of the integrated CodeRunner Agent, which 

consists of three main components: (a) Question & Answer, (b) Check with Test Cases, and 
(c) LLM-based Support. The LLM-based support box for the CodeRunner Agent appears 
below the test results provided by CodeRunner. Learners have the option to select one of five 
SRL phases like error correction. Additionally, they can select either the question type in 
general level as default or the question type from one of the specific strategies in the phase 
like help-seeking. Upon submitting a request, the LLM-based strategy feedback is displayed 
within the response box. 
 
3. User Experience Interview with Students and Educators 
 
To gain deeper insights into students' and educators' perspectives on the CodeRunner Agent, 
we conducted semi-structured interviews with four students and two educators after 
introducing the agent and discussing its capabilities and potential use cases. The student 
participants included an undergraduate with one month of programming experience (S1) and 
three graduate students with programming experiences of two years (S2), three years (S3) 
and six years (S4), respectively. Both educators involved were actively teaching 
undergraduate programming courses, with teaching experiences of four years (T1) and two 
years (T2), respectively. Each interview, conducted via Zoom with informed consent, lasted 
approximately one hour. 
 
3.1 Students Perceptions 

 
l General Impressions Students generally held favorable impressions of the agent. S2 

and S4 expected the agent to support computational thinking, problem requirement 
understanding, and code quality improvement more than just code validators. S3 was 
positive about the multi-phase support provided by the agent, stating that it "quickly helps 
me understand problems and errors." 

l Over-Reliance Risk Control As a novice programming learner, S1 appreciated the 
design of the hint-like feedback and expressed that "hiding the direct answers will help 
my own thinking". S1 also wanted detailed explanations and visual feedback for error 
messages. S2 liked the way it "helps develop my thinking skills rather than override them." 
As advanced programming learners, S4 emphasized the "assistant role" of the agent and 
preferred the agent "helps me understand the target problem more concisely and why my 



understanding was wrong." However, S2 raised concerns that some novice students may 
struggle even with hints and suggested providing pseudo-code or partial code to ease the 
learning curve. 

l Contextual Assistance S4 appreciated the design of the contextual assistant feature 
since it can provide "more relevant knowledge and suggestions" for the specific learning 
tasks. Also, the seamless integration of the agent within LMS was highlighted as a key 
advantage. S3 valued the ability to support the entire learning workflow, from reading 
materials to coding and checking codes and receiving LLM-assisted feedback. 

l Self-regulated Learning Support S4 highlighted the critical role of planning support in 
the agent and wanted to use it regularly. S4 also mentioned that "self-reflection support 
is highly related to the learning tasks" and expected to use it for code optimization. S2 
highlighted that "students can use the agent in different SRL stages, sometimes in a cycle 
or non-linear manner." S3 expressed that "self-reflection on programming tasks can be 
widely practiced." 

l Trust and Reliability Although many students frequently use AI tools, they do not fully 
trust them. S1 used them regularly for both learning and everyday tasks but viewed them 
more as virtual freshman peers rather than trustworthy sources, citing issues with 
complex questions. S4 expressed a more critical perspective, stating that ChatGPT had 
"about 60%-70% accuracy during my advanced learning tasks" and exhibited 
weaknesses in logical reasoning. S3 warned that "LLM feedback may not always be 
accurate or applicable. It may even be misleading in some cases." Across responses, 
they raised concerns about the low accuracy in advanced tasks, lack of transparency, 
and the potential for misleading outputs. 

 
3.2 Educators Opinions 
 
Educators provided valuable feedback on the CodeRunner Agent, emphasizing the 
importance of customization, instructor control over response types, and its pedagogical 
benefits. T2 noted that CodeRunner Agent is "more beneficial than ChatGPT," explaining that 
"many students struggle with crafting effective prompts when using ChatGPT" and that "open-
ended interactions may raise privacy concerns." In contrast, "the customized feedback from 
CodeRunner Agent, integrated with SRL, offers contextually relevant support, facilitating 
actual knowledge acquisition rather than merely solving tasks." T1 further emphasized that 
"helping students understand the question and concept is more effective for student learning 
compared to directly offering answers." Additionally, T2 highlighted CodeRunner Agent’s 
potential in a real classroom setting, envisioning its role in facilitating student self-reflection on 
lecture material and supporting assignment completion more effectively. 

Educators expressed concerns about students becoming overly dependent on 
repeated LLM feedback requests. T2 suggested "setting limits on how frequently students can 
access such feedback." He further recommended "structuring feedback progressively, 
beginning with simpler guidance and providing more detailed assistance only when students 
continue to struggle." Lastly, both educators highlighted the need for a monitoring dashboard 
to analyze student interactions and LLM responses, aiding instructors in identifying 
instructional gaps and enhancing teaching strategies.  
 
4. Discussion and Future work 
 
This study aims to develop an LLM-based programming assistant, CodeRunner Agent, that 
seamlessly integrates with a lecture viewer and CodeRunner plugin in the Moodle LMS. The 
design is grounded within Zimmerman's SRL theory and targets the freshmen students' 
programming-specific knowledge acquisition as well as general self-regulation skill 
development. This study can fill the gap between AI, SRL, and LA by combining LLM-based 
scaffolding, self-regulation in programming, and learning log-based contextual feedback. 

Future work will involve updating and enhancing the CodeRunner Agent by focusing 
on four key design considerations for LLM-based tools (Kazemitabaar et al., 2024): D1. 
Exploiting unique advantages of CodeRunner Agent (e.g., for deciding when to use the tool, 



what are the role and unique advantages of CodeRunner Agent compared to other available 
resources within the learning ecosystem?); D2. Refining the CodeRunner Agent interface (e.g., 
what are the considerations for CodeRunner Agent to allow users to formulate requests in a 
way that balances user-friendliness and understandingness with meta-cognitive engagement 
and SRL skills?); D3. Balancing the directness of CodeRunner Agent responses (e.g., how 
direct should CodeRunner Agent’s responses be so that it balances directness and learning 
engagement, and who should control this balance?); D4. Supporting trust, transparency, and 
control (e.g., once a response from CodeRunner Agent is received, what considerations are 
needed to ensure accuracy, trust, transparency, and control?). 

Moreover, we will enhance educator-agent collaboration by enhancing usability and 
streamlining the integration of instructor-facing tools like the configuration tool and monitoring 
dashboard. In addition, we will evaluate the effectiveness of the CodeRunner Agent through 
short-term pilot studies in actual classroom settings and semester-long experiments 
conducted across multiple university classes. 
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