Jiang, B. et al. (Eds.) (2025). Proceedings of the 33™ International Conference on Computers in Education. Asia-
Pacific Society for Computers in Education

CodeRunner Agent: Integrating Al
Feedback and Self-Regulated Learning to
Support Programming Education

Huiyong LI° & Boxuan MA”
@Research Institute for Information Technology, Kyushu University, Japan
®Faculty of Arts and Science, Kyushu University, Japan
*boxuan@artsci.kyushu-u.ac.jp

Abstract: The emergence of Large Language Model (LLM) tools has revolutionized
programming education, demonstrating considerable efficacy in providing instant,
personalized feedback. However, most existing LLM-based tools focused on direct
coding assistance, and neglected the cultivation of self-regulation skills. Moreover,
many of these tools operate independently from institutional learning management
systems, which creates a significant pedagogical disconnect that limits the ability to
leverage contextual learning materials and exercises for generating tailored, context-
aware feedback. To address these challenges, we developed CodeRunner Agent, an
LLM-based programming assistant. CodeRunner Agent enhances students' self-
regulated learning by providing strategy-based Al feedback and embedding within
Moodle system. Additionally, it empowers educators to customize Al-generated
feedback by incorporating detailed context from lecture materials, programming
questions, student answers, and execution results. This integrated approach,
emphasizing self-regulation skill development with contextual awareness, offers
promising avenues for data-driven enhancements in programming education with Al.

Keywords: LLM-powered tools, programming education, self-regulated learning,
personalized feedback, CodeRunner

1. Introduction

Innovation within higher education has been accelerated dramatically by digital transformation
strategies and evolving pedagogical approaches. Programming education, in particular, has
attracted an ever-growing number of students with wider recognition of the critical importance
of computer science literacy. This growth has created significant pedagogical challenges in
providing timely, individualized assistance to each student (Yilmaz & Yilmaz, 2023). Large
Language Models (LLMs) have emerged as a promising technological intervention. A variety
of LLM-powered programming assistants have been developed to provide timely coding
guidance and suggestions, potentially transforming traditional instructional approaches and
feedback mechanisms in programming education (Pankiewicz & Baker, 2023).

While these advancements present exciting opportunities for personalized learning,
they also raise concerns about over-reliance and reduced development of self-regulated
learning (SRL) and problem-solving skills (Humble et al., 2024; Prasad & Sane, 2024). Easy
access to answers may encourage surface-level understanding, yet many LLM tools lack
pedagogical guardrails to promote active engagement and SRL strategies (Sun et al., 2024).
A further limitation is the lack of integration with institutional Learning Management Systems
(LMS) like Moodle. Effective feedback is highly context-dependent, relying on alignment with
lecture materials and assignment specifications (Kaur & Chahal, 2024; Kazemitabaar et al.,
2024). Without LMS integration, tools cannot leverage rich contextual data or provide
educators with insights into student interactions and learning outcomes (Ma et al., 2024a,
2024b). Therefore, it's essential to ensure that the Al-generated feedback is both relevant and
aligned with course objectives by integrating LLM-based tools into the LMS environment.

To address these limitations, we developed CodeRunner Agent (Li & Ma, 2025), an
LLM-powered programming assistant embedded within CodeRunner, an open-source Moodle

s 4

Lecture Viewer 1 { Knowledge Context Engine

BB @

Lecture Exercise
Knowledge Base ~ Knowledge Base

CodeRunner: Online Judge System ﬂ @)
.@ Upload =
Learnin, Personal — =
¢ S=8E

(I)._ Logs Data Filter
— Knowledge Database
.- —
- 8 i F—— Customise
Learning Record Store
Learner Eb ¢ Instructor
Configuration Tools
CodeRunner Agent: Learner Support Learning Analytics Context Engine
Self-Regulated Learning
- == Cyecle in Programmin
@® 2 =
) =’ Request Planning Request :|_|||

) N—r , A Program creation
’ Error correction Engagement & Performance

~ P N
Self-monitoring |r— Data Aggregation
Feedback | Self-reflection Feedback

Figure 1. Overview of the CodeRunner Agent Programming Support Environment.

plugin for executing and assessing student-submitted code. CodeRunner Agent leverages the
comprehensive context available within an LMS environment from learning logs and enhances
students' self-regulated learning in programming education. Specifically, it enhances the
delivery of individualized feedback by combining students’ knowledge level, self-regulation
skills, and strategy-focused LLM-based scaffoldings. It also tracks Al feedback and
subsequent actions in students’ coding behaviors. This provides valuable insights into learning
behaviors and the effectiveness of Al-assisted feedback. By addressing the challenges of
scalability, contextual feedback, and skill enhancement, our approach contributes to a deeper
understanding of Al's role in modern education.

2. CodeRunner Agent
2.1 Overview of CodeRunner Agent

The framework of CodeRunner Agent is shown in Figure 1. It is developed and integrated to
scaffold programming education with an LLM-based assistant in the Moodle LMS. The
framework contains a Lecture Viewer, a CodeRunner plugin, and a CodeRunner Agent.
Lecture Viewer is provided to deliver the lecture slides by instructors and access the
lecture slides by learners. The operations of the lecture viewer are recorded in the form of
Experience API (or xAPI) statements. Then, the xAPI statements are stored in the Learning
Record Store (LRS). CodeRunner is an open-source plugin that can be imported to Moodle
(Lobb & Harlow, 2016). Learners can write programming codes and receive automated grades
by running it in a series of tests. A logging plugin named “Logstore xAPI” is used to record the
results and send them to the LRS. For example, the code for the test, got output, correct status,
and mark reward will be logged in LRS if learners run the test code once. CodeRunner Agent
is an Al-powered tool to support learners' SRL and teachers' customized designs for LLM-
based feedback in programming education. It can be embedded into the Moodle LMS and
executed with the CodeRunner plugin. Learners can receive general-purpose and
programming-specific regulatory strategy feedback based on OpenAl API capabilities and
strategy-focused prompt design. Specifically, the agent provides scaffolding hints while not
directly generating code solutions by code guardrails design. A specific LLM prompt is used
to rewrite the response by giving salient features of the code when code blocks are detected
in the scaffolding hints. The interactions with the agent are automatically tracked as xAPI
statements and stored in the LRS (e.g., the request type, request time, exercise ID).

Phase Strategy LLM-powered feedback
Problem understanding Offer the basic knowledge of the exercise’s
Planning Problem definition requirements and suggest planning the program
Program logic planning step-by-step using diagrams, pseudocode, or notes
Review lecture materials ; - : i
; ’ . Provide the location of required knowledge in lecture
(P;og:_am (F;egev;_p;qvnom OEEES materials, supplemental resources related to the
foStOn CeDeltig) exercise, and explanations for the key points
Code commenting
Review the exercise statement Provide suggestions for effective error correction
E"°'_ Utilize test cases and generate hints on fixing syntactic and logical
Correction Analyze the error message errors without showing the solution directly

Self-monitoring

Self-reflection

Help-seeking

Check exercises progress
Test the program regularly

Achievement self-assessment
Effort self-assessment

Code review

Code optimization

Encourage learners to track their own learning
progress regularly

Give evaluations on students' behavioral process
and final performance, motivate students by finding
their strength points or the effort they put in, and
suggest students to identify their improvement areas

Figure 2. Phase, Target SRL strategy, and LLMs Feedback in the CodeRunner Agent.

The CodeRunner Agent's core intelligence contains two context engines: Learning
Analytics Context Engine (LACE) and Knowledge Context Engine (KCE). LACE calculates
and aggregates learners' engagement metrics (i.e., time spent, attempt frequency) and
performance metrics (i.e., success rates, error patterns) from LRS data after filtering personal
data (i.e., name, gender, and email). LACE is integrated as contextual embedding of self-
regulation behavioral strategies with the feedback of the agent. KCE handles both lecture and
exercise knowledge bases. The lecture knowledge base manages the key programming
concepts and the dependencies between the concepts from lecture materials. The exercise
knowledge base categorizes exercises by concept, difficulty, solution, and typical mistakes.
KCE is used as learner knowledge embedding in the agent.

Instructors can upload lecture materials (i.e., concept definition, concept illustration,
and annotated examples) and exercises (i.e., problem statement, solution, and test cases) to
the context engine. They will be converted to textual knowledge and stored in the knowledge
database for future retrieval by the Retrieval Augmented Generation (RAG) technique. More
importantly, instructors can update the knowledge bases and customize the parameters of the
context engine by using the configuration tools.

2.2 SRL Support Model in CodeRunner Agent

To enhance strategy-based programming learning for novice learners, LLM-powered
feedback is integrated into a five-phase model grounded in the Zimmerman's SRL theory
(Zimmerman, 2008) and adopts a conceptual framework for regulating learning in
programming (Silva et al., 2024). The model adds two CS domain-specific elements to the
general three-phase SRL cycle (forethought, performance, and self-reflection). The model
contains five phases, named PPESS: Planning, Program creation, Error correction, Self-
monitoring, and Self-reflection.

The phase, target SRL strategy, and LLMs support in the CodeRunner Agent are
shown in Figure 2. Both general-purpose and programming-specific regulatory strategies are
included for SRL scaffoldings in the five-phase PPESS model. Planning supports problem
analysis and decomposition. Program creation assists the implementation of coding solutions
using both declarative and procedural knowledge. Error correction helps cognitive diagnosis
and metacognitive regulation for addressing coding errors. Self-monitoring supports ongoing
evaluation and adjustment toward task completion during coding and debugging. Finally, Self-
reflection helps learners assess their performance and improve future learning strategies.

Moodle Home Dashboard My courses 40 a) Question & Answer

Question text for
programming exercise

x=1, y=2, 2=3

Answer: (penalty regime: 0, 0, 0, 0, 0, 10, 20, ... %)

Students can T [GeF
submit their code ;
for checking with

Student code input box

print_inputs(x, y, 2):
printCxe(},y={3, z0}".¢

re-defined test .

gases [crece | b) Check with Test Cases

o pem— Check the code with test cases
Highlight the difference X print_inputs(2,3,4) x=2, y=3, z=4 x2,y=3, 24 X by comparing the result with
between the result and Vosl::v:e"::/::ssallleslsloeamanymavksﬂryagain the ground truth
the ground truth c) LLM-based Support
Select phase Fhase | - Bor Comeeton V] Ask for feedback based on the
Select question type Strategy | * Help-seeking y H <7 Ask | selected phase and question

type
LLM response

Response

Figure 3. User Interface of Integrated CodeRunner Agent for Learners.

Figure 3 illustrates the user interface of the integrated CodeRunner Agent, which
consists of three main components: (a) Question & Answer, (b) Check with Test Cases, and
(c) LLM-based Support. The LLM-based support box for the CodeRunner Agent appears
below the test results provided by CodeRunner. Learners have the option to select one of five
SRL phases like error correction. Additionally, they can select either the question type in
general level as default or the question type from one of the specific strategies in the phase
like help-seeking. Upon submitting a request, the LLM-based strategy feedback is displayed
within the response box.

3. User Experience Interview with Students and Educators

To gain deeper insights into students' and educators' perspectives on the CodeRunner Agent,
we conducted semi-structured interviews with four students and two educators after
introducing the agent and discussing its capabilities and potential use cases. The student
participants included an undergraduate with one month of programming experience (S1) and
three graduate students with programming experiences of two years (S2), three years (S3)
and six years (S4), respectively. Both educators involved were actively teaching
undergraduate programming courses, with teaching experiences of four years (T1) and two
years (T2), respectively. Each interview, conducted via Zoom with informed consent, lasted
approximately one hour.

3.1 Students Perceptions

e General Impressions Students generally held favorable impressions of the agent. S2
and S4 expected the agent to support computational thinking, problem requirement
understanding, and code quality improvement more than just code validators. S3 was
positive about the multi-phase support provided by the agent, stating that it "quickly helps
me understand problems and errors."

e Over-Reliance Risk Control As a novice programming learner, S1 appreciated the
design of the hint-like feedback and expressed that "hiding the direct answers will help
my own thinking". S1 also wanted detailed explanations and visual feedback for error
messages. S2 liked the way it "helps develop my thinking skills rather than override them."
As advanced programming learners, S4 emphasized the "assistant role" of the agent and
preferred the agent "helps me understand the target problem more concisely and why my

understanding was wrong." However, S2 raised concerns that some novice students may
struggle even with hints and suggested providing pseudo-code or partial code to ease the
learning curve.

e Contextual Assistance S4 appreciated the design of the contextual assistant feature
since it can provide "more relevant knowledge and suggestions" for the specific learning
tasks. Also, the seamless integration of the agent within LMS was highlighted as a key
advantage. S3 valued the ability to support the entire learning workflow, from reading
materials to coding and checking codes and receiving LLM-assisted feedback.

e Self-regulated Learning Support S4 highlighted the critical role of planning support in
the agent and wanted to use it regularly. S4 also mentioned that "self-reflection support
is highly related to the learning tasks" and expected to use it for code optimization. S2
highlighted that "students can use the agent in different SRL stages, sometimes in a cycle
or non-linear manner." S3 expressed that "self-reflection on programming tasks can be
widely practiced."

e Trust and Reliability Although many students frequently use Al tools, they do not fully
trust them. S1 used them regularly for both learning and everyday tasks but viewed them
more as virtual freshman peers rather than trustworthy sources, citing issues with
complex questions. S4 expressed a more critical perspective, stating that ChatGPT had
"about 60%-70% accuracy during my advanced learning tasks" and exhibited
weaknesses in logical reasoning. S3 warned that "LLM feedback may not always be
accurate or applicable. It may even be misleading in some cases." Across responses,
they raised concerns about the low accuracy in advanced tasks, lack of transparency,
and the potential for misleading outputs.

3.2 Educators Opinions

Educators provided valuable feedback on the CodeRunner Agent, emphasizing the
importance of customization, instructor control over response types, and its pedagogical
benefits. T2 noted that CodeRunner Agent is "more beneficial than ChatGPT," explaining that
"many students struggle with crafting effective prompts when using ChatGPT" and that "open-
ended interactions may raise privacy concerns." In contrast, "the customized feedback from
CodeRunner Agent, integrated with SRL, offers contextually relevant support, facilitating
actual knowledge acquisition rather than merely solving tasks." T1 further emphasized that
"helping students understand the question and concept is more effective for student learning
compared to directly offering answers." Additionally, T2 highlighted CodeRunner Agent’s
potential in a real classroom setting, envisioning its role in facilitating student self-reflection on
lecture material and supporting assignment completion more effectively.

Educators expressed concerns about students becoming overly dependent on
repeated LLM feedback requests. T2 suggested "setting limits on how frequently students can
access such feedback." He further recommended "structuring feedback progressively,
beginning with simpler guidance and providing more detailed assistance only when students
continue to struggle." Lastly, both educators highlighted the need for a monitoring dashboard
to analyze student interactions and LLM responses, aiding instructors in identifying
instructional gaps and enhancing teaching strategies.

4. Discussion and Future work

This study aims to develop an LLM-based programming assistant, CodeRunner Agent, that
seamlessly integrates with a lecture viewer and CodeRunner plugin in the Moodle LMS. The
design is grounded within Zimmerman's SRL theory and targets the freshmen students'
programming-specific knowledge acquisition as well as general self-regulation skill
development. This study can fill the gap between Al, SRL, and LA by combining LLM-based
scaffolding, self-regulation in programming, and learning log-based contextual feedback.
Future work will involve updating and enhancing the CodeRunner Agent by focusing
on four key design considerations for LLM-based tools (Kazemitabaar et al., 2024): D1.
Exploiting unique advantages of CodeRunner Agent (e.g., for deciding when to use the tool,

what are the role and unique advantages of CodeRunner Agent compared to other available
resources within the learning ecosystem?); D2. Refining the CodeRunner Agent interface (e.g.,
what are the considerations for CodeRunner Agent to allow users to formulate requests in a
way that balances user-friendliness and understandingness with meta-cognitive engagement
and SRL skills?); D3. Balancing the directness of CodeRunner Agent responses (e.g., how
direct should CodeRunner Agent’s responses be so that it balances directness and learning
engagement, and who should control this balance?); D4. Supporting trust, transparency, and
control (e.g., once a response from CodeRunner Agent is received, what considerations are
needed to ensure accuracy, trust, transparency, and control?).

Moreover, we will enhance educator-agent collaboration by enhancing usability and
streamlining the integration of instructor-facing tools like the configuration tool and monitoring
dashboard. In addition, we will evaluate the effectiveness of the CodeRunner Agent through
short-term pilot studies in actual classroom settings and semester-long experiments
conducted across multiple university classes.

Acknowledgements

This work is supported by JSPS KAKENHI Grant Numbers JP24K20903 and JP25K17078.

References

Humble, N., Boustedt, J., Holmgren, H., Milutinovic, G., Seipel, S., & Ostberg, A. S. (2024). Cheaters
or Al-enhanced learners: Consequences of ChatGPT for programming education. Electronic
journal of e-Learning, 22(2), 16-29.

Kaur, A., & Chahal, K. K. (2024). A learning analytics dashboard for data-driven recommendations on
influences of non-cognitive factors in introductory programming. Education and Information
Technologies, 29(8), 9221-9256.

Kazemitabaar, M., Ye, R., Wang, X., Henley, A. Z., Denny, P., Craig, M., & Grossman, T. (2024).
Codeaid: Evaluating a classroom deployment of an lim-based programming assistant that
balances student and educator needs. In Proceedings of the 2024 chi conference on human
factors in computing systems, 650, 1-20.

Li, H.,, & Ma, B. (2025). Design of Al-Powered Tool for Self-Regulation Support in Programming
Education. arXiv preprint arXiv:2504.03068.

Lobb, R., & Harlow, J. (2016). Coderunner: A tool for assessing computer programming skills. ACM
Inroads, 7(1), 47-51.

Ma, B., Chen, L., & Konomi, S. I. (2024a). Enhancing programming education with ChatGPT: a case
study on student perceptions and interactions in a Python course. In International Conference on
Atrtificial Intelligence in Education (pp. 113-126). Cham: Springer Nature Switzerland.

Ma, B., Chen, L., & Konomi, S. I. (2024b). Exploring Student Perception and Interaction Using ChatGPT
in Programming Education. In 217st International Conference on Cognition and Exploratory
Learning in the Digital Age, CELDA 2024 (pp. 35-42). IADIS Press.

Pankiewicz, M., & Baker, R. S. (2023). Large Language Models (GPT) for automating feedback on
programming assignments. In Proceedings of the 31st International Conference on Computers in
Education (pp. 68-77).

Prasad, P., & Sane, A. (2024). A self-regulated learning framework using generative Al and its
application in CS educational intervention design. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (pp. 1070-1076).

Silva, L., Mendes, A., Gomes, A., & Fortes, G. (2024). What Learning Strategies are Used by
Programming Students? A Qualitative Study Grounded on the Self-regulation of Learning Theory.
ACM Transactions on Computing Education, 24(1), 1-26.

Sun, D., Boudouaia, A., Zhu, C., & Li, Y. (2024). Would ChatGPT-facilitated programming mode impact
college students’ programming behaviors, performances, and perceptions? An empirical
study. International Journal of Educational Technology in Higher Education, 21(1), 14.

Yilmaz, R., & Yilmaz, F. G. K. (2023). The effect of generative artificial intelligence (Al)-based tool use
on students' computational thinking skills, programming self-efficacy and motivation. Computers
and Education: Atrtificial Intelligence, 4, 100147.

Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background,
methodological developments, and future prospects. American educational research journal, 45(1),
166-183.

