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Abstract: Mathematical word problems are a crucial component of mathematics
education, requiring students to integrate multiple reasoning skills. Annotating these
problems with knowledge components (KC) enables better personalized learning,
adaptive tutoring, and Al-driven educational assessment. However, manual annotation
is time-consuming and inconsistent, limiting the scalability of KC-based learning
systems. In this work, we introduce a new labeled dataset of MWPs, derived from
ASDiv and GSMB8K, with KCs aligned to the Common Core mathematics framework.
Using this dataset, we benchmark two different methods to perform automatic KC
annotation without any labeled examples, namely LLM KC tagging and SBERT
sentence embedding similarity scoring. Our results highlight key strengths and
limitations of LLMs in this task, revealing challenges in consistency and reasoning
alignment with human labels. We then show that SBERT-based similarity scoring
underperforms LLM KC tagging, but can be significantly enhanced by combining the
two methods, which addresses their respective limitations. This study provides critical
insights into the feasibility of automated KC tagging, laying the foundation for future
research in Al-assisted curriculum design and intelligent tutoring systems.
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1. Introduction

Mathematical word problems (MWPs) play a central role in mathematics education, requiring
students to integrate numerical computation with problem-solving and logical reasoning.
Unlike direct arithmetic exercises, MWPs demand an understanding of mathematical
concepts, real-world application, and multi-step reasoning. As a result, MWPs are widely used
in curriculum design, standardized testing, and adaptive learning platforms to assess students'
problem-solving abilities (Verschaffel et al., 2020). However, understanding and solving
MWPs effectively depends on mastering a set of underlying knowledge components (KCs) -
fine-grained mathematical skills that correspond to cognitive subskills such as addition,
multiplication, fraction manipulation, and proportional reasoning.

The concept of KCs originates from cognitive science and educational research, where
learning is modeled as the progressive acquisition of fundamental skills (Corbett & Anderson,
1995). By tagging MWPs with appropriate KCs, educators and Al-driven tutoring systems can
break down complex problems into their constituent skills, enabling personalized learning and
targeted intervention (VanLehn, 2006). This approach is foundational to Intelligent Tutoring
Systems (ITSs) - Al-driven platforms designed to provide real-time feedback, adaptive
exercises, and automated assessments (Anderson et al., 1995; Pane et al., 2014). ITSs rely
on KC-annotated datasets to track student progress, predict learning trajectories, and optimize
instructional strategies. However, a key challenge in deploying such systems at scale is the
manual effort required to annotate MWPs with KCs, which is often time-consuming and
inconsistent.



To mitigate the challenges associated with mapping KCs to assessments, a variety of
automated solutions employing machine learning and natural language processing (NLP)
have been proposed. These approaches primarily use classification algorithms trained on
annotated datasets to predict KC for math word problems. For example, Yaumauchi et al.
(2023) used word n-gram features with a vector space model and random forest classifiers,
while Shen et al. (2021) used a Task-adaptive Pre-trained BERT model. While these methods
reported good results, they rely on substantial, high-quality labeled datasets, which are often
scarce due to the labor-intensive nature of manual annotation and the need for domain-
specific expertise. Moreover, these models are typically trained on a fixed set of curriculum
standards — such as the Common Core — and thus exhibit limited generalizability. When
applied to a different curriculum or an alternative set of KCs, their performance may degrade
significantly, necessitating retraining or reannotation, which limits their scalability and practical
utility.

Recent advances in natural language processing, particularly in sentence embedding
models and large language models (LLMs), offer promising pathways to automate the KC
annotation process. Sentence-BERT (SBERT) (Reimers et al., 2019) for example allows for
semantic comparison between math problems and skill descriptions using dense vector
representations without the need for labelled data. Meanwhile, LLMs like the GPT-family of
models from OpenAl and Llama models from Meta exhibit strong reasoning capabilities and
internalized knowledge of curriculum frameworks, enabling them to infer education concepts
directly from problem content. These tools may significantly reduce human effort and enhance
the scalability of ITSs. However, their ability to consistently identify and map MWPs to the
correct underlying KCs has not been fully explored.

To address this gap, we introduce a new dataset of MWPs from ASDiv (Miao et al.,
2020) and GSM8K (Cobbe et al., 2021), annotated with knowledge components aligned to the
Common Core mathematics framework. Using this dataset, we benchmark several automated
KC tagging approaches. First, we use cosine similarity between SBERT-encoded problem-
solution pairs and KC descriptions to score and rank candidate KCs. Second, we evaluate
GPT-40 mini, a lightweight yet high-performance LLM from OpenAl (2024), under multiple
prompting strategies, to assess its ability to predict the appropriate KC directly, relying solely
on its internalized knowledge of curriculum standards without external KC descriptions. Lastly,
we introduce a hybrid method that prompts GPT-40 mini to generate KC descriptions from the
MWP and then match these generated descriptions to KCs using SBERT similarity scoring.

The main contributions of this work are as follows: 1) we present two datasets based
on problems from ASDiv and GSM8K with manual KC annotations from experts based on the
Common Core State Standards (CCSS), 2) we benchmark the performance of different NLP
models, namely sentence embedding using SBERT and LLM annotation using OpenAl’s GPT-
40 mini, to perform automated KC annotation without any labelled examples, 3) we show that
the two methods of SBERT and LLM annotation, including reasoning-based LLM annotation,
show high degree of inconsistency across the two datasets, and thus are unreliable to be used
as input to manual validation, and 4) we demonstrate that by combining the two methods we
can address the issues of the two methods.

Our study provides a comprehensive evaluation of the strengths and limitations of both
embedding-based and generative approaches to KC tagging. Our results show that each
method has complementary advantages and combining their outputs vyields improved
performance. This work contributes to Al-driven education research and the broader goal of
automating curriculum-aware reasoning tasks, paving the way for more effective Al-powered
learning systems.

2. Background and Related Work

Automating the tagging of Knowledge Components (KCs) for math word problems using
natural language processing (NLP) methods has been an ongoing area of research for over a
decade. One of the earliest efforts was from Cetintas et al. (2009), who trained a support
vector machine (SVM) classifier to differentiate Multiplicative Compare and Equal Group



problems from other types of math problems drawn from a fourth-grade math textbook.
Subsequent studies expanded the classification scope to a broader range of KCs. For instance,
Karlovcec et al. (2012) demonstrated a text mining approach using a SVM classifier as well
as a search engine-based approach with a k-nearest neighbors (KNN) classifier to tag math
problems with labels drawn from a pool of 106 KCs. Meanwhile, Pardos et al. (2017) used a
skip-gram approach to match math problems with labels from a pool of 198 KCs. While these
early works reported promising results, later analysis revealed that the datasets used, which
were from the ASSISTments platform, were based on templates and vulnerable to overfitting.
Patikorn et al. (2019) pointed out that the models were exploiting spurious textual cues — such
as keywords and formatting patterns — rather than learning mathematical concepts, thus
limiting generalizable to more diverse datasets.

More recent works leverage language models such as BERT and GPT that are based
on the Transformer architecture, which allows for modelling bidirectional dependencies and
generating context-sensitive representations of texts. (Vaswani et al., 2017). Tan et al. (2024)
showed that training a RoBERTa classifier model to predict KC can achieve strong
performance on a diversified math word problem dataset. However, this approach still requires
annotated data for training and may not generalize well across different curricula. Moore et al.
(2024) employed GPT-4 to generate KCs for multiple-choice questions in Chemistry and E-
learning. They developed an ontology to cluster questions that assess similar KCs based on
their content. However, their method does not rely on any existing set of KCs but instead uses
LLMs to generate a new set of KCs based on the problem texts and compares the outputs to
KCs generated by humans. Li et al. (2024) also explored the use of LLMs for KC tagging,
particularly focusing on prompt engineering, zero-shot and few-shot settings, and comparing
different LLM models. They managed to achieve high accuracies with their LLM annotations.
Nevertheless, their dataset was limited to just 12 distinctive KCs, which were also not aligned
with any established curriculum. Shan et al. (2024) proposed a prompt-based approach where
LLMs are guided to produce annotations in a key-value format, with mathematical terms as
keys and their corresponding annotations as values. However, their approach focuses on
tagging KCs to mathematical expressions rather than word problems and the respective
solutions. Their approach is also not aligned with any established curriculum.

Despite all the advances in automated KC-tagging of math problems, there is still a
lack of generalizable methods to annotate MWPs with curriculum-aligned KCs that do not
require labelled training data. Our work aims to address this gap by evaluating unsupervised
approaches for tagging MWPs with curriculum-aligned KCs.

3. Methodology
3.1 Data Construction

To study the effectiveness of automated KC annotation, we utilize two widely used MWP
datasets: ASDiv and GSM8K, which are selected due to their complementary characteristics.
ASDiv is a diverse dataset for MWP solving comprising 2,305 elementary-level problems
collected from sources like textbooks and educational websites, and includes topics like
arithmetic, algebra, and geometry. GSM8K comprises 8,500 arithmetic MWPs from
elementary and middle school level that require multi-step reasoning. Topics include basic
arithmetic up to rate problems and basic probability.

A critical challenge in mathematical learning systems lies in understanding the
fundamental skills required to solve different MWPs. To address this, we engaged external
annotators with expertise in grade to middle school level math education to manually annotate
each problem in our selected ASDiv and GSM8K datasets with its corresponding knowledge
component. The goal was to create a high-quality, human-annotated dataset that can serve
as a ground truth for training and evaluating automated KC-tagging models.

The annotators were instructed to use a structured framework based on the Common
Core State Standards (CCSS), a set of mathematics benchmarks widely adopted in U.S.



states, aligning each problem with fine-grained skill categories. Each problem was assigned
one or more KCs, based on not only the problem text but also the solution as provided in the
original dataset. For solutions with multiple expressions, each expression is taken as a step.
As both ASDiv and GSM8K comprise only math word problems, we emphasize annotating
with KCs that involve solving word problems over KCs that are only related to calculations.
For multi-step problems like in GSM8K, annotators are instructed to consider both at the step-
level as well as the problem-level before deciding on the appropriate annotation. Annotators
were given guidance to select the fewest number of KCs and using the earliest grade KCs that
best match the mathematical skill required to solve the problem. For example, a problem that
requires two calculation steps with different operations to solve may involve
addition/subtraction as a step (2.0A.A.1) and multiplication/division as a step (3.0A.A.3), but
we can use a single KC that covers two-step word problems with all four operations (3.0A.D.8)
to cover the problem.

To ensure consistency in the annotation among the annotators, we conduct several
rounds of calibration where each problem was independently annotated by two annotators
until an Inter Annotator Agreement (IAA) of at least 80% is achieved. The resulting dataset
provides a rich resource for training and evaluating Al models to automatically infer knowledge
components, enabling personalized learning, automated curriculum alignment, and improved
feedback mechanisms in ITSs. By benchmarking LLM-based approaches on this dataset, we
aim to assess whether Al models can effectively replace or augment human annotators in this
critical task.

Table 1. Examples of KC-annotated problems from ASDiv

Problem Solution Answer KC
There are 5 birds in a tree. How many

bird legs do you see? 5*2=10 10 (bird legs) 3.0AA3
Dave bought a new flat screen TV. The 2%4=8 8 (square

screen was 2 feet wide and 4 feet tall. feqet) 4MD.A3
What is the area of the screen?

The sum of three consecutive odd x:The first

numbers is one hundred twenty-three. number; 39 6.EEB.6
What is the smallest of the three X+(X+2)+(x+4) T
numbers ? =123

Table 2. Examples of KC-annotated problems from GSM8K

Problem Solution Step KC
. A bag of onions cost $1.50 x 50 = .
pound c?f onions cost $1 .EO. How gggffzrr)?;:; fgfri:gzsj;z)iig:; i 75*4=300 4. MD.A.2
much did the chef spend? 300 -VU.A.
John buys 2 packs of index cards John has 6*30=<<6*30=180>>180 6*30=180 3.0A.D.8

for all his students. He has 6
classes and 30 students in each
class. How many packs did he
buy?

students. So he bought 180*2 =

<<180*2=360>>360 packs -
#HHHE 360 180*2=360 4.NBT.B.5

The final annotated ASDiv dataset comprises 2,000 problems randomly selected from
the original ASDiv problem pool, with 49 unique KCs and 107 unique combinations of KCs,
demonstrating the diversity of the dataset. On the other hand, the annotated GSM8K dataset
comprises 1,426 randomly selected problems with 4,868 total steps, with the number of steps
for the problems ranging from 1 to as high as 8, and an average of 3.36 steps/problem. There
were a total of 29 unique KCs and 42 unique KC combinations. Figure 1 shows the breakdown
of the grades and domains for the annotations of both datasets. While the grades for both
datasets span from kindergarten (K) to Grade 8, the ASDiv has a better distribution of grades
across the problems in contrast to GSM8K, which sees a majority of problems concentrated



around Grade 4. In terms of the KC domains, both datasets have majority of the KCs under
Operations and Algebraic Thinking (OA) and Measurement and Data (MD). Other common
domains include Numbers and Operations in Base Ten (NBT), Ratios and Proportional
Distribution (RP), as well as Expressions and Equations (EE). Tables 1 and 2 illustrate some
example problems from the two datasets, along with their solutions and the corresponding KC
annotations.

Distribution for ASDiv KC annotations Distribution for ASDiv KC domains
700 1400
600 1200
500 1000
400 800
300 600
200 400
100 200
0= 1 3 3 4 5 6 7 8 OANBTMD EE NS RP G SP NF CC
KC Grade KC Domain
Distribution for GSM8K KC annotations Distribution for GSM8K KC domains
3500 2000
3000 1750
2500 1500
1250
2000
1000
1500 750
1000 500
500 250
0- 0
K 1 2 3 4 5 6 7 8 MD OA RP EE NBT NS SP NF G
KC Grade KC Domain

Figure 1. Distribution of grades and domains for ASDiv and GSM8K KC annotations
3.2 Models
3.2.1 — SBERT-based Sentence Embedding and Similarity Ranking

For the first approach, we adopt a retrieval-style strategy using sentence-level embeddings.
We use a pre-trained Sentence-BERT (SBERT) model (all-MiniLM-L6-v2) to generate dense
vector representations for each problem as well as each candidate KC description from CCSS.
For each problem, we concatenate the problem text along with the solution and answer as
such: “Problem/Word problem: <problem text> Solution <solution> Answer: <answer>".
During our experiments with problems from ASDiv, we found that using “Word problem”
performed much better than “Problem” as it biases the embedding towards word problem KCs.
For GSM8K, we use “Word problem” exclusively for the problem embeddings. We also
experimented with using only the problem text without the solution in the problem embedding
to compare the performance.

For each problem, we compute the cosine similarity between its embedding and the
embeddings of all available KC descriptions. The KC with the highest similarity score is
selected as the predicted label. We also evaluate the results using recall@k, such that the
top-k ranked KCs can be analyzed to evaluate near-miss performance. We also calculate the
mean reciprocal rank (MRR), which captures how close the ground truth is to the top rank.
This approach offers a lightweight and transparent baseline for semantic matching between
instructional content and curricular standards without requiring any task-specific training.



3.2.2 — LLM-based Labelling with GPT-40 mini

We also leverage on a large language model, GPT-40 mini, to perform automated KC tagging.
We prompt the model with the math word problem and the ground truth solution and ask it to
select the most appropriate KC from the CCSS. Because there are over 200 KCs in the CCSS
just from Grades 1 to 8 alone, we do not provide the model with the descriptions of all the
possible KCs. Instead, we rely on the LLM’s internal knowledge of the CCSS taxonomy to
assign the most appropriate label. This method simulates how an LLM might be used in
automated curriculum alignment or tutoring systems, where it must understand both the
semantics of the math word problem and the pedagogical scope of various standards without
additional input.
We experiment with four prompting strategies:
e Zero-shot: A basic prompt that instructs the model to output only the relevant CCSS KC
e Few-shot: The prompt includes a few example problems paired with gold KC labels
before presenting the test example, the only output is the predicted KC
e Chain-of-thought (CoT): The model is prompted to explain its reasoning step-by-step
before producing a label KC
e Few-shot + CoT: Combines examples with intermediate reasoning steps for a few
example problems before prompting the model to reason step-by-step and produce a
label KC
These variations allow us to explore the effects of guidance and reasoning on LLM
performance in aligning curriculum standards with problem content. We use GPT-40 mini via
the OpenAl API, with temperature set at 0 to ensure deterministic output. The outputs
produced by GPT-40 mini are parsed using string matching and compared against the ground
truth annotations to assess the accuracy. For the chain-of-thought prompts, we also consider
the qualitative alignment with human reasoning.

3.2.3 - LLM + SBERT Embedding-based Matching

In addition to the direct SBERT similarity ranking method and the prompting-based LLM
classification, we introduce a third hybrid method that leverages the generative capabilities of
LLMs together with semantic similarity scoring. This approach is designed to mimic a more
human-like reasoning pipeline: first summarizing the mathematical knowledge applied in the
problem, then aligning it with an existing curriculum taxonomy.

In this method, we prompt the LLM (GPT-40 mini) with the full math problem text and
corresponding solution steps, and instruct it to generate a natural language description of the
knowledge components or mathematical skills involved in solving the problem. Once
generated, each description is encoded using the SBERT model to produce a vector
representation and the cosine similarities between this embedding and those of all the
available CCSS KC descriptions are computed and ranked. This hybrid method thus separates
the understanding of applied mathematical knowledge, handled by the LLM, from the
alignment with standard curriculum concepts, handled by SBERT embeddings, offering a
flexible alternative to direct classification or retrieval-based methods.

4. Results
4.1 SBERT sentence embedding results

The results for the SBERT-embedding method on the ASDiv dataset are summarized in Table
3. We see better recall@k across all values for k as well as better MRR when both problem
text and the solution are used for the problem embedding. We also observe significant
improvements across the board when we use “Word problem” as part of the input for the
problem embedding. We observe a similar trend for the GSM8K dataset (Table 4). However,



the overall performance is lower, with a best recall@10 of 51.85% for GSM8K vs. 79.22% for
ASDiv, and a MRR of 0.1592 vs. 0.3374. One possible reason for this is that the solution for
ASDiv problems only includes mathematic expressions (see Table 1) while for GSM8K there
are much longer explanations in natural language along with the mathematical expressions
(see Table 2), which dilute the core mathematical concepts applied. As a result, the
embedding becomes an averaged representation, and the truly discriminative parts end up
being underweighted, adversely affecting the similarity scoring.

Table 3. SBERT sentence embedding similarity scoring results for ASDiv

ASDiv recall@1 recall@3 recall@5 recall@10 MRR
Problem only 10.39%  25.92%  37.91%  58.79% 0.2419
(“Problem”)
_Problem only 13.19%  33.27%  49.85%  74.08% 0.2964
(“Word problem”)
Problem + solution 16.08%  37.41%  51.20%  68.33% 0.3196
(“Problem”)
Problem + Solution 1553%  40.01%  59.09%  79.22% 0.3374

(“Word problem”)

Table 4. SBERT sentence embedding similarity scoring results for GSM8K

GSM8K recall@1 recall@3 recall@5 recall@10 MRR
Problem only o o o o

Word Problo®) 3.04%  8.63%  16.52%  46.24% 0.1395

Problem + Solution 351%  11.50%  24.03%  51.85% 0.1592

(“Word problem”)

4.2 LLM Annotation Results with GPT-40 mini

The results for GPT-40 mini tagging are shown in Tables 5 and 6 for ASDiv and GSM8K
problems respectively. For ASDiv, we observe an improvement in accuracy from zero-shot
prompting (13.39%) to chain-of-thought (15.68%) as well as few-shot prompting (22.13%).
The best performance is achieved by combining few-shot and chain-of-thought prompting,
with an accuracy of 27.57%. This compares very favorably with the best recall@1 score for
the SBERT-embedding method which achieved 16.08%, and is likely due to the LLM’s ability
to perform contextual reasoning. One common downside that we observe in LLMs is the
tendency to hallucinate, which in this case is usually when it generates KC annotations that
do not exist in the CCSS. The rate of hallucination is highest for the zero-shot setting at 6.5%,
and is greatly reduced in the few-shot setting at 0.7%. The hallucination rate is moderate at
2.7% and 2.2% for the chain-of-thought and few-shot + chain-of-thought settings respectively.

Table 5. ASDiv LLM Results with GPT-40 mini

Zero-shot Few-shot CoT Few-shot CoT
Accuracy 13.39% 22.13% 15.68% 27.57%
Hallucinations 6.5% 0.7% 2.7% 2.2%

Table 6. GSM8K LLM Results with GPT-40 mini

Zero-shot Few-shot CoT Few-shot CoT
Accuracy 53.51% 54.81% 46.77% 52.59%
Hallucinations 0.2% 0.2% 0.4% 0.2%

In contrast to the SBERT-embedding approach, we observe better results for GSM8K
using LLM-tagging compared to ASDiv. The accuracy for few-shot prompting performed the
best at 54.81% compared to 53.51% for zero-shot prompting. Unlike for ASDiv, the LLM-



tagging performance is worse with chain-of-thought reasoning, with accuracy of 46.77% for
chain-of-thought and 52.59% for few-shot + chain-of-thought. Upon examining the chain-of-
thought output provided by the LLM, we observed that the reasoning is usually sound, but the
final decision is a similar but incorrect KC. For example, a common error is between 4.0A.A.3
and 4.MD.A.2, which are both related to solving word problems with the four operations, with
the former emphasizing multistep problem solving while the latter involving measurement
quantities like distances, intervals of time, liquid volumes, and money. However, we note that
the LLM accuracy is high for the GSM8K problems compared to ASDiv even for the worse-
performing chain-of-thought prompting. The rate of hallucination by the LLM is generally low
for GSM8K, ranging from 0.2% to 0.4%.

4.3 LLM KC generation + SBERT sentence embedding

The results for the combined LLM + SBERT-embedding approach are shown in Tables 7 and
8 along with the best results from the other two approaches. The accuracy/recall@1 for ASDiv
dataset is much improved from 15.53% using only sentence-embedding similarity scoring and
from 27.6% using LLM few-shot + CoT to 39.36% with the hybrid approach. We also see
improvements across the board for higher values of k, and the overall MRR achieves 0.5352,
meaning that the correct KC is typically within the top 2 ranked KCs on average.

For the GSM8K dataset, the hybrid approach significantly improves the recall@k and
MRR over the SBERT-only approach, with recall@1 improving from 3.51% to 16.17%, and
MRR improving from 0.1592 to 0.3820. However, the hybrid approach still underperforms the
best LLM annotation result, which achieves a recall@1 of 54.81% with few-shot prompting.
Upon analyzing the model outputs, we believe this is due to many CCSS KCs having highly
similar descriptions, differing only in subtle differences. For example, the description for
2.0A.A.1 and 2.MD.B.5 are very similar in that both are related to solving word problems using
addition and subtraction within 100, with the main differences being that 2.0A.A.1 emphasizes
that the solution can be up to two steps, while 2.MD.B.5 does not specify the step number but
instead focuses on problems involving length with consistent units. When prompted to
describe the knowledge components applied in the problem, the LLM may not go into sufficient
detail to capture these fine distinctions between similar KCs. As a result, the hybrid approach
can retrieve closely related KCs, and perform significantly better than the SBERT-only
approach, but struggles to precisely identify the correct one among several similar candidates.

Table 7. ASDiv results comparison

ASDiv recall@1 recall@3 recall@5 recall@10 MRR
LLM Few-shot + CoT 27.6% - - - -

SBERT Problem +

Solution 15.53% 40.01% 59.09% 79.22% 0.3374
(“Word problem”)
LLM + SBERT 39.36% 58.74% 72.78% 87.31% 0.5352

Table 8. GSM8K results comparison

GSM8K recall@1 recall@3 recall@5 recall@10 MRR
LLM Few-shot 54.81% - - - -
SBERT Problem +
Solution 3.51% 11.50% 24.03% 51.85% 0.1592
(“Word problem”)
LLM + SBERT 16.17% 53.23% 69.78% 82.00% 0.3820

Note that for both datasets, the hybrid approach shows above 50% recall@3 and
consistently high performance of recall@k (k=5,10). This is important for manual validation,
as the automatic annotations by the hybrid approach provide reliable inputs for manual
validation, unlike the two methods of SBERT and LLM annotation. Furthermore, the hybrid



method achieves above 80% recall@10, similar to IAA of human annotators. This would
indicate that top-10 results of the hybrid method can be used for manual validation by a single
human annotator effectively.

4.4 Discussion

From the results, we observe that while SBERT sentence embeddings can serve as a useful
tool for narrowing down candidate KCs for MWPs, their annotation accuracy remains relatively
low compared to that of GPT-40 mini, especially for the GSM8K dataset. One likely reason for
this performance gap for GSM8K is the difference in solution formats. GSM8K solutions
include lengthy, natural language explanations (see Table 2) compared to the more concise,
math expressions-based solution format for ASDiv (see Table 1). Preprocessing of the text
solutions to extract only the mathematic steps before computing sentence embeddings may
yield better results for GSM8K. Additionally, GSM8K emphasizes multistep problems, which
might not be fully captured in the embeddings of the problem text and solution. This makes it
challenging for similarity-based methods to accurately distinguish between KCs with subtle
differences and consistently align problems with the most appropriate KC.

When annotating MWPs using GPT-40 mini, we found that it shows high degree of
inconsistency across the two datasets and that the chain-of-thought prompting has opposite
effects between the datasets, while few-shot prompting leads to performance improvements
for both datasets. The few-shot prompting helps to guide the model towards producing
responses that align more closely with the desired output format. Since MWP annotation is
inherently subjective and context-dependent, it is crucial to craft clear, targeted system
prompts and carefully selected few-shot examples when using LLMs for annotation. These
prompt strategies help steer the model towards consistent and curriculum-aligned outputs,
thereby improving annotation quality and reliability.

The hybrid LLM+SBERT approach demonstrates promising performance, particularly
on the ASDiv dataset. By combining the LLM’s ability to abstract and articulate the concepts
involved in a MWP with SBERT’s semantic similarity matching, this method outperforms both
the SBERT-only and LLM-only approaches on ASDiv. This is likely due to ASDiv's well-
structured problems and concise solution formats, which make it easier for the LLM to
generate focused descriptions and for the similarity scoring to correctly identify the matching
KC. In contrast, on GSM8K, the hybrid method underperforms the LLM-only approach. The
longer, multi-step reasoning required in GSM8K appears to make the LLM’s generated KC
descriptions either too verbose or too vague, resulting in less precise matches during similarity
scoring.

5. Conclusion

Our experiments demonstrate that automated KC tagging for math word problems by
combining SBERT embeddings and LLMs can produce promising results, offering valuable
support in reducing manual effort and increasing scalability. Importantly, our findings suggest
that further refinement—such as improved prompt design and more carefully curated few-shot
examples—has the potential to significantly boost performance. With continued progress,
these methods could eventually approach human-level reliability, enabling more efficient and
consistent KC annotation at scale.
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