
Jiang, B. et al. (Eds.) (2025). Proceedings of the 33rd International Conference on Computers in Education. Asia-
Pacific Society for Computers in Education 

 

Towards Scalable Annotation of Math 
Word Problems: Knowledge 

Component Tagging via LLMs and 
Sentence Embeddings 

 
Chor Seng TANa*, Chengwei WEIa, Jung-Jae KIMa  

aInstitute for Infocomm Research (I2R), A*STAR, Singapore 
*jjkim@i2r.a-star.edu.sg 

 
Abstract: Mathematical word problems are a crucial component of mathematics 
education, requiring students to integrate multiple reasoning skills. Annotating these 
problems with knowledge components (KC) enables better personalized learning, 
adaptive tutoring, and AI-driven educational assessment. However, manual annotation 
is time-consuming and inconsistent, limiting the scalability of KC-based learning 
systems. In this work, we introduce a new labeled dataset of MWPs, derived from 
ASDiv and GSM8K, with KCs aligned to the Common Core mathematics framework. 
Using this dataset, we benchmark two different methods to perform automatic KC 
annotation without any labeled examples, namely LLM KC tagging and SBERT 
sentence embedding similarity scoring. Our results highlight key strengths and 
limitations of LLMs in this task, revealing challenges in consistency and reasoning 
alignment with human labels. We then show that SBERT-based similarity scoring 
underperforms LLM KC tagging, but can be significantly enhanced by combining the 
two methods, which addresses their respective limitations. This study provides critical 
insights into the feasibility of automated KC tagging, laying the foundation for future 
research in AI-assisted curriculum design and intelligent tutoring systems.  
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sentence embedding, large language model, natural language processing 

 
 
1. Introduction 
 
Mathematical word problems (MWPs) play a central role in mathematics education, requiring 
students to integrate numerical computation with problem-solving and logical reasoning. 
Unlike direct arithmetic exercises, MWPs demand an understanding of mathematical 
concepts, real-world application, and multi-step reasoning. As a result, MWPs are widely used 
in curriculum design, standardized testing, and adaptive learning platforms to assess students' 
problem-solving abilities (Verschaffel et al., 2020). However, understanding and solving 
MWPs effectively depends on mastering a set of underlying knowledge components (KCs) - 
fine-grained mathematical skills that correspond to cognitive subskills such as addition, 
multiplication, fraction manipulation, and proportional reasoning. 

The concept of KCs originates from cognitive science and educational research, where 
learning is modeled as the progressive acquisition of fundamental skills (Corbett & Anderson, 
1995). By tagging MWPs with appropriate KCs, educators and AI-driven tutoring systems can 
break down complex problems into their constituent skills, enabling personalized learning and 
targeted intervention (VanLehn, 2006). This approach is foundational to Intelligent Tutoring 
Systems (ITSs) - AI-driven platforms designed to provide real-time feedback, adaptive 
exercises, and automated assessments (Anderson et al., 1995; Pane et al., 2014). ITSs rely 
on KC-annotated datasets to track student progress, predict learning trajectories, and optimize 
instructional strategies. However, a key challenge in deploying such systems at scale is the 
manual effort required to annotate MWPs with KCs, which is often time-consuming and 
inconsistent. 



To mitigate the challenges associated with mapping KCs to assessments, a variety of 
automated solutions employing machine learning and natural language processing (NLP) 
have been proposed. These approaches primarily use classification algorithms trained on 
annotated datasets to predict KC for math word problems. For example, Yaumauchi et al. 
(2023) used word n-gram features with a vector space model and random forest classifiers, 
while Shen et al. (2021) used a Task-adaptive Pre-trained BERT model. While these methods 
reported good results, they rely on substantial, high-quality labeled datasets, which are often 
scarce due to the labor-intensive nature of manual annotation and the need for domain-
specific expertise. Moreover, these models are typically trained on a fixed set of curriculum 
standards – such as the Common Core – and thus exhibit limited generalizability. When 
applied to a different curriculum or an alternative set of KCs, their performance may degrade 
significantly, necessitating retraining or reannotation, which limits their scalability and practical 
utility.  

Recent advances in natural language processing, particularly in sentence embedding 
models and large language models (LLMs), offer promising pathways to automate the KC 
annotation process. Sentence-BERT (SBERT) (Reimers et al., 2019) for example allows for 
semantic comparison between math problems and skill descriptions using dense vector 
representations without the need for labelled data. Meanwhile, LLMs like the GPT-family of 
models from OpenAI and Llama models from Meta exhibit strong reasoning capabilities and 
internalized knowledge of curriculum frameworks, enabling them to infer education concepts 
directly from problem content. These tools may significantly reduce human effort and enhance 
the scalability of ITSs. However, their ability to consistently identify and map MWPs to the 
correct underlying KCs has not been fully explored. 

To address this gap, we introduce a new dataset of MWPs from ASDiv (Miao et al., 
2020) and GSM8K (Cobbe et al., 2021), annotated with knowledge components aligned to the 
Common Core mathematics framework. Using this dataset, we benchmark several automated 
KC tagging approaches. First, we use cosine similarity between SBERT-encoded problem-
solution pairs and KC descriptions to score and rank candidate KCs. Second, we evaluate 
GPT-4o mini, a lightweight yet high-performance LLM from OpenAI (2024), under multiple 
prompting strategies, to assess its ability to predict the appropriate KC directly, relying solely 
on its internalized knowledge of curriculum standards without external KC descriptions. Lastly, 
we introduce a hybrid method that prompts GPT-4o mini to generate KC descriptions from the 
MWP and then match these generated descriptions to KCs using SBERT similarity scoring.  

The main contributions of this work are as follows: 1) we present two datasets based 
on problems from ASDiv and GSM8K with manual KC annotations from experts based on the 
Common Core State Standards (CCSS), 2) we benchmark the performance of different NLP 
models, namely sentence embedding using SBERT and LLM annotation using OpenAI’s GPT-
4o mini, to perform automated KC annotation without any labelled examples, 3) we show that 
the two methods of SBERT and LLM annotation, including reasoning-based LLM annotation, 
show high degree of inconsistency across the two datasets, and thus are unreliable to be used 
as input to manual validation, and 4) we demonstrate that by combining the two methods we 
can address the issues of the two methods.  

Our study provides a comprehensive evaluation of the strengths and limitations of both 
embedding-based and generative approaches to KC tagging. Our results show that each 
method has complementary advantages and combining their outputs yields improved 
performance. This work contributes to AI-driven education research and the broader goal of 
automating curriculum-aware reasoning tasks, paving the way for more effective AI-powered 
learning systems. 

 
 
2. Background and Related Work 
 
Automating the tagging of Knowledge Components (KCs) for math word problems using 
natural language processing (NLP) methods has been an ongoing area of research for over a 
decade. One of the earliest efforts was from Cetintas et al. (2009), who trained a support 
vector machine (SVM) classifier to differentiate Multiplicative Compare and Equal Group 



problems from other types of math problems drawn from a fourth-grade math textbook. 
Subsequent studies expanded the classification scope to a broader range of KCs. For instance, 
Karlovcec et al. (2012) demonstrated a text mining approach using a SVM classifier as well 
as a search engine-based approach with a k-nearest neighbors (KNN) classifier to tag math 
problems with labels drawn from a pool of 106 KCs. Meanwhile, Pardos et al. (2017) used a 
skip-gram approach to match math problems with labels from a pool of 198 KCs. While these 
early works reported promising results, later analysis revealed that the datasets used, which 
were from the ASSISTments platform, were based on templates and vulnerable to overfitting. 
Patikorn et al. (2019) pointed out that the models were exploiting spurious textual cues – such 
as keywords and formatting patterns – rather than learning mathematical concepts, thus 
limiting generalizable to more diverse datasets. 

More recent works leverage language models such as BERT and GPT that are based 
on the Transformer architecture, which allows for modelling bidirectional dependencies and 
generating context-sensitive representations of texts. (Vaswani et al., 2017). Tan et al. (2024) 
showed that training a RoBERTa classifier model to predict KC can achieve strong 
performance on a diversified math word problem dataset. However, this approach still requires 
annotated data for training and may not generalize well across different curricula. Moore et al. 
(2024) employed GPT-4 to generate KCs for multiple-choice questions in Chemistry and E-
learning. They developed an ontology to cluster questions that assess similar KCs based on 
their content. However, their method does not rely on any existing set of KCs but instead uses 
LLMs to generate a new set of KCs based on the problem texts and compares the outputs to 
KCs generated by humans. Li et al. (2024) also explored the use of LLMs for KC tagging, 
particularly focusing on prompt engineering, zero-shot and few-shot settings, and comparing 
different LLM models. They managed to achieve high accuracies with their LLM annotations. 
Nevertheless, their dataset was limited to just 12 distinctive KCs, which were also not aligned 
with any established curriculum.  Shan et al. (2024) proposed a prompt-based approach where 
LLMs are guided to produce annotations in a key-value format, with mathematical terms as 
keys and their corresponding annotations as values. However, their approach focuses on 
tagging KCs to mathematical expressions rather than word problems and the respective 
solutions. Their approach is also not aligned with any established curriculum. 

Despite all the advances in automated KC-tagging of math problems, there is still a 
lack of generalizable methods to annotate MWPs with curriculum-aligned KCs that do not 
require labelled training data. Our work aims to address this gap by evaluating unsupervised 
approaches for tagging MWPs with curriculum-aligned KCs. 
 
 
3. Methodology 
 
3.1 Data Construction 
 
To study the effectiveness of automated KC annotation, we utilize two widely used MWP 
datasets: ASDiv and GSM8K, which are selected due to their complementary characteristics. 
ASDiv is a diverse dataset for MWP solving comprising 2,305 elementary-level problems 
collected from sources like textbooks and educational websites, and includes topics like 
arithmetic, algebra, and geometry. GSM8K comprises 8,500 arithmetic MWPs from 
elementary and middle school level that require multi-step reasoning. Topics include basic 
arithmetic up to rate problems and basic probability.  

 A critical challenge in mathematical learning systems lies in understanding the 
fundamental skills required to solve different MWPs. To address this, we engaged external 
annotators with expertise in grade to middle school level math education to manually annotate 
each problem in our selected ASDiv and GSM8K datasets with its corresponding knowledge 
component. The goal was to create a high-quality, human-annotated dataset that can serve 
as a ground truth for training and evaluating automated KC-tagging models. 

The annotators were instructed to use a structured framework based on the Common 
Core State Standards (CCSS), a set of mathematics benchmarks widely adopted in U.S. 



states, aligning each problem with fine-grained skill categories. Each problem was assigned 
one or more KCs, based on not only the problem text but also the solution as provided in the 
original dataset. For solutions with multiple expressions, each expression is taken as a step. 
As both ASDiv and GSM8K comprise only math word problems, we emphasize annotating 
with KCs that involve solving word problems over KCs that are only related to calculations. 
For multi-step problems like in GSM8K, annotators are instructed to consider both at the step-
level as well as the problem-level before deciding on the appropriate annotation. Annotators 
were given guidance to select the fewest number of KCs and using the earliest grade KCs that 
best match the mathematical skill required to solve the problem. For example, a problem that 
requires two calculation steps with different operations to solve may involve 
addition/subtraction as a step (2.OA.A.1) and multiplication/division as a step (3.OA.A.3), but 
we can use a single KC that covers two-step word problems with all four operations (3.OA.D.8) 
to cover the problem. 

To ensure consistency in the annotation among the annotators, we conduct several 
rounds of calibration where each problem was independently annotated by two annotators 
until an Inter Annotator Agreement (IAA) of at least 80% is achieved. The resulting dataset 
provides a rich resource for training and evaluating AI models to automatically infer knowledge 
components, enabling personalized learning, automated curriculum alignment, and improved 
feedback mechanisms in ITSs. By benchmarking LLM-based approaches on this dataset, we 
aim to assess whether AI models can effectively replace or augment human annotators in this 
critical task. 
 
Table 1. Examples of KC-annotated problems from ASDiv 

Problem Solution Answer KC 
There are 5 birds in a tree. How many 
bird legs do you see? 5*2=10 10 (bird legs) 3.OA.A.3 

Dave bought a new flat screen TV. The 
screen was 2 feet wide and 4 feet tall. 
What is the area of the screen? 

2*4=8 
 

8 (square 
feet) 4.MD.A.3 

The sum of three consecutive odd 
numbers is one hundred twenty-three. 
What is the smallest of the three 
numbers ? 

x:The first 
number; 

x+(x+2)+(x+4)
=123 

39 6.EE.B.6 

 
Table 2. Examples of KC-annotated problems from GSM8K 

Problem Solution Step KC 
A chef bought 4 bags of onions. 
Each bag weighs 50 pounds. A 
pound of onions cost $1.50. How 
much did the chef spend? 

A bag of onions cost $1.50 x 50 = 
<<1.5*50>>=75.Therefore, the 
chef spent $75 x 4 = <<75*4>> = 
300 for the four bags of onions. 
#### 300 

1.5*50=75 4.MD.A.2 

75*4=300 4.MD.A.2 

John buys 2 packs of index cards 
for all his students.  He has 6 
classes and 30 students in each 
class.  How many packs did he 
buy? 

John has 6*30=<<6*30=180>>180 
students. So he bought 180*2 = 
<<180*2=360>>360 packs 
#### 360 

6*30=180 3.OA.D.8 

180*2=360 4.NBT.B.5 

 
The final annotated ASDiv dataset comprises 2,000 problems randomly selected from 

the original ASDiv problem pool, with 49 unique KCs and 107 unique combinations of KCs, 
demonstrating the diversity of the dataset. On the other hand, the annotated GSM8K dataset 
comprises 1,426 randomly selected problems with 4,868 total steps, with the number of steps 
for the problems ranging from 1 to as high as 8, and an average of 3.36 steps/problem. There 
were a total of 29 unique KCs and 42 unique KC combinations. Figure 1 shows the breakdown 
of the grades and domains for the annotations of both datasets. While the grades for both 
datasets span from kindergarten (K) to Grade 8, the ASDiv has a better distribution of grades 
across the problems in contrast to GSM8K, which sees a majority of problems concentrated 



around Grade 4. In terms of the KC domains, both datasets have majority of the KCs under 
Operations and Algebraic Thinking (OA) and Measurement and Data (MD). Other common 
domains include Numbers and Operations in Base Ten (NBT), Ratios and Proportional 
Distribution (RP), as well as Expressions and Equations (EE). Tables 1 and 2 illustrate some 
example problems from the two datasets, along with their solutions and the corresponding KC 
annotations. 
 

 
Figure 1. Distribution of grades and domains for ASDiv and GSM8K KC annotations 

 
3.2 Models 
 
3.2.1 – SBERT-based Sentence Embedding and Similarity Ranking 
 
For the first approach, we adopt a retrieval-style strategy using sentence-level embeddings. 
We use a pre-trained Sentence-BERT (SBERT) model (all-MiniLM-L6-v2) to generate dense 
vector representations for each problem as well as each candidate KC description from CCSS. 
For each problem, we concatenate the problem text along with the solution and answer as 
such: “Problem/Word problem: <problem text> Solution <solution> Answer: <answer>”. 
During our experiments with problems from ASDiv, we found that using “Word problem” 
performed much better than “Problem” as it biases the embedding towards word problem KCs. 
For GSM8K, we use “Word problem” exclusively for the problem embeddings. We also 
experimented with using only the problem text without the solution in the problem embedding 
to compare the performance. 

For each problem, we compute the cosine similarity between its embedding and the 
embeddings of all available KC descriptions. The KC with the highest similarity score is 
selected as the predicted label. We also evaluate the results using recall@k, such that the 
top-k ranked KCs can be analyzed to evaluate near-miss performance. We also calculate the 
mean reciprocal rank (MRR), which captures how close the ground truth is to the top rank. 
This approach offers a lightweight and transparent baseline for semantic matching between 
instructional content and curricular standards without requiring any task-specific training. 



 
3.2.2 – LLM-based Labelling with GPT-4o mini 
 
We also leverage on a large language model, GPT-4o mini, to perform automated KC tagging. 
We prompt the model with the math word problem and the ground truth solution and ask it to 
select the most appropriate KC from the CCSS. Because there are over 200 KCs in the CCSS 
just from Grades 1 to 8 alone, we do not provide the model with the descriptions of all the 
possible KCs. Instead, we rely on the LLM’s internal knowledge of the CCSS taxonomy to 
assign the most appropriate label. This method simulates how an LLM might be used in 
automated curriculum alignment or tutoring systems, where it must understand both the 
semantics of the math word problem and the pedagogical scope of various standards without 
additional input.  

 We experiment with four prompting strategies: 
l Zero-shot: A basic prompt that instructs the model to output only the relevant CCSS KC 
l Few-shot: The prompt includes a few example problems paired with gold KC labels 

before presenting the test example, the only output is the predicted KC 
l Chain-of-thought (CoT): The model is prompted to explain its reasoning step-by-step 

before producing a label KC 
l Few-shot + CoT: Combines examples with intermediate reasoning steps for a few 

example problems before prompting the model to reason step-by-step and produce a 
label KC 

These variations allow us to explore the effects of guidance and reasoning on LLM 
performance in aligning curriculum standards with problem content. We use GPT-4o mini via 
the OpenAI API, with temperature set at 0 to ensure deterministic output. The outputs 
produced by GPT-4o mini are parsed using string matching and compared against the ground 
truth annotations to assess the accuracy. For the chain-of-thought prompts, we also consider 
the qualitative alignment with human reasoning. 
 
3.2.3 – LLM + SBERT Embedding-based Matching 
 
In addition to the direct SBERT similarity ranking method and the prompting-based LLM 
classification, we introduce a third hybrid method that leverages the generative capabilities of 
LLMs together with semantic similarity scoring. This approach is designed to mimic a more 
human-like reasoning pipeline: first summarizing the mathematical knowledge applied in the 
problem, then aligning it with an existing curriculum taxonomy. 

In this method, we prompt the LLM (GPT-4o mini) with the full math problem text and 
corresponding solution steps, and instruct it to generate a natural language description of the 
knowledge components or mathematical skills involved in solving the problem. Once 
generated, each description is encoded using the SBERT model to produce a vector 
representation and the cosine similarities between this embedding and those of all the 
available CCSS KC descriptions are computed and ranked. This hybrid method thus separates 
the understanding of applied mathematical knowledge, handled by the LLM, from the 
alignment with standard curriculum concepts, handled by SBERT embeddings, offering a 
flexible alternative to direct classification or retrieval-based methods. 

 
 
4. Results 
 
4.1 SBERT sentence embedding results 
 
The results for the SBERT-embedding method on the ASDiv dataset are summarized in Table 
3. We see better recall@k across all values for k as well as better MRR when both problem 
text and the solution are used for the problem embedding. We also observe significant 
improvements across the board when we use “Word problem” as part of the input for the 
problem embedding. We observe a similar trend for the GSM8K dataset (Table 4). However, 



the overall performance is lower, with a best recall@10 of 51.85% for GSM8K vs. 79.22% for 
ASDiv, and a MRR of 0.1592 vs. 0.3374. One possible reason for this is that the solution for 
ASDiv problems only includes mathematic expressions (see Table 1) while for GSM8K there 
are much longer explanations in natural language along with the mathematical expressions 
(see Table 2), which dilute the core mathematical concepts applied. As a result, the 
embedding becomes an averaged representation, and the truly discriminative parts end up 
being underweighted, adversely affecting the similarity scoring. 
 
Table 3. SBERT sentence embedding similarity scoring results for ASDiv 

ASDiv recall@1 recall@3 recall@5 recall@10 MRR 
Problem only 
(“Problem”) 10.39% 25.92% 37.91% 58.79% 0.2419 

Problem only 
(“Word problem”) 13.19% 33.27% 49.85% 74.08% 0.2964 

Problem + solution 
(“Problem”) 16.08% 37.41% 51.20% 68.33% 0.3196 

Problem + Solution 
(“Word problem”) 15.53% 40.01% 59.09% 79.22% 0.3374 

 
Table 4. SBERT sentence embedding similarity scoring results for GSM8K 

GSM8K recall@1 recall@3 recall@5 recall@10 MRR 
Problem only 

(“Word Problem”) 3.04% 8.63% 16.52% 46.24% 0.1395 

Problem + Solution 
(“Word problem”) 3.51% 11.50% 24.03% 51.85% 0.1592 

 
4.2 LLM Annotation Results with GPT-4o mini 
 
The results for GPT-4o mini tagging are shown in Tables 5 and 6 for ASDiv and GSM8K 
problems respectively. For ASDiv, we observe an improvement in accuracy from zero-shot 
prompting (13.39%) to chain-of-thought (15.68%) as well as few-shot prompting (22.13%). 
The best performance is achieved by combining few-shot and chain-of-thought prompting, 
with an accuracy of 27.57%. This compares very favorably with the best recall@1 score for 
the SBERT-embedding method which achieved 16.08%, and is likely due to the LLM’s ability 
to perform contextual reasoning. One common downside that we observe in LLMs is the 
tendency to hallucinate, which in this case is usually when it generates KC annotations that 
do not exist in the CCSS. The rate of hallucination is highest for the zero-shot setting at 6.5%, 
and is greatly reduced in the few-shot setting at 0.7%. The hallucination rate is moderate at 
2.7% and 2.2% for the chain-of-thought and few-shot + chain-of-thought settings respectively.  

 
Table 5. ASDiv LLM Results with GPT-4o mini 

 Zero-shot Few-shot CoT Few-shot CoT 
Accuracy 13.39% 22.13% 15.68% 27.57% 

Hallucinations 6.5% 0.7% 2.7% 2.2% 
 
Table 6. GSM8K LLM Results with GPT-4o mini 

 Zero-shot Few-shot CoT Few-shot CoT 
Accuracy 53.51% 54.81% 46.77% 52.59% 

Hallucinations 0.2% 0.2% 0.4% 0.2% 
 

In contrast to the SBERT-embedding approach, we observe better results for GSM8K 
using LLM-tagging compared to ASDiv. The accuracy for few-shot prompting performed the 
best at 54.81% compared to 53.51% for zero-shot prompting. Unlike for ASDiv, the LLM-



tagging performance is worse with chain-of-thought reasoning, with accuracy of 46.77% for 
chain-of-thought and 52.59% for few-shot + chain-of-thought. Upon examining the chain-of-
thought output provided by the LLM, we observed that the reasoning is usually sound, but the 
final decision is a similar but incorrect KC. For example, a common error is between 4.OA.A.3 
and 4.MD.A.2, which are both related to solving word problems with the four operations, with 
the former emphasizing multistep problem solving while the latter involving measurement 
quantities like distances, intervals of time, liquid volumes, and money. However, we note that 
the LLM accuracy is high for the GSM8K problems compared to ASDiv even for the worse-
performing chain-of-thought prompting. The rate of hallucination by the LLM is generally low 
for GSM8K, ranging from 0.2% to 0.4%. 
 
4.3 LLM KC generation + SBERT sentence embedding 
 
The results for the combined LLM + SBERT-embedding approach are shown in Tables 7 and 
8 along with the best results from the other two approaches. The accuracy/recall@1 for ASDiv 
dataset is much improved from 15.53% using only sentence-embedding similarity scoring and 
from 27.6% using LLM few-shot + CoT to 39.36% with the hybrid approach. We also see 
improvements across the board for higher values of k, and the overall MRR achieves 0.5352, 
meaning that the correct KC is typically within the top 2 ranked KCs on average. 

For the GSM8K dataset, the hybrid approach significantly improves the recall@k and 
MRR over the SBERT-only approach, with recall@1 improving from 3.51% to 16.17%, and 
MRR improving from 0.1592 to 0.3820. However, the hybrid approach still underperforms the 
best LLM annotation result, which achieves a recall@1 of 54.81% with few-shot prompting. 
Upon analyzing the model outputs, we believe this is due to many CCSS KCs having highly 
similar descriptions, differing only in subtle differences. For example, the description for 
2.OA.A.1 and 2.MD.B.5 are very similar in that both are related to solving word problems using 
addition and subtraction within 100, with the main differences being that 2.OA.A.1 emphasizes 
that the solution can be up to two steps, while 2.MD.B.5 does not specify the step number but 
instead focuses on problems involving length with consistent units. When prompted to 
describe the knowledge components applied in the problem, the LLM may not go into sufficient 
detail to capture these fine distinctions between similar KCs. As a result, the hybrid approach 
can retrieve closely related KCs, and perform significantly better than the SBERT-only 
approach, but struggles to precisely identify the correct one among several similar candidates. 
 
Table 7. ASDiv results comparison  

ASDiv recall@1 recall@3 recall@5 recall@10 MRR 
LLM Few-shot + CoT 27.6% - - - - 

SBERT Problem + 
Solution 

(“Word problem”) 
15.53% 40.01% 59.09% 79.22% 0.3374 

LLM + SBERT 39.36% 58.74% 72.78% 87.31% 0.5352 
 
Table 8. GSM8K results comparison  

GSM8K recall@1 recall@3 recall@5 recall@10 MRR 
LLM Few-shot  54.81% - - - - 

SBERT Problem + 
Solution 

(“Word problem”) 
3.51% 11.50% 24.03% 51.85% 0.1592 

LLM + SBERT 16.17% 53.23% 69.78% 82.00% 0.3820 
 

Note that for both datasets, the hybrid approach shows above 50% recall@3 and 
consistently high performance of recall@k (k=5,10). This is important for manual validation, 
as the automatic annotations by the hybrid approach provide reliable inputs for manual 
validation, unlike the two methods of SBERT and LLM annotation. Furthermore, the hybrid 



method achieves above 80% recall@10, similar to IAA of human annotators. This would 
indicate that top-10 results of the hybrid method can be used for manual validation by a single 
human annotator effectively. 
 
4.4 Discussion 
 
From the results, we observe that while SBERT sentence embeddings can serve as a useful 
tool for narrowing down candidate KCs for MWPs, their annotation accuracy remains relatively 
low compared to that of GPT-4o mini, especially for the GSM8K dataset. One likely reason for 
this performance gap for GSM8K is the difference in solution formats. GSM8K solutions 
include lengthy, natural language explanations (see Table 2) compared to the more concise, 
math expressions-based solution format for ASDiv (see Table 1). Preprocessing of the text 
solutions to extract only the mathematic steps before computing sentence embeddings may 
yield better results for GSM8K. Additionally, GSM8K emphasizes multistep problems, which 
might not be fully captured in the embeddings of the problem text and solution. This makes it 
challenging for similarity-based methods to accurately distinguish between KCs with subtle 
differences and consistently align problems with the most appropriate KC. 

When annotating MWPs using GPT-4o mini, we found that it shows high degree of 
inconsistency across the two datasets and that the chain-of-thought prompting has opposite 
effects between the datasets, while few-shot prompting leads to performance improvements 
for both datasets. The few-shot prompting helps to guide the model towards producing 
responses that align more closely with the desired output format. Since MWP annotation is 
inherently subjective and context-dependent, it is crucial to craft clear, targeted system 
prompts and carefully selected few-shot examples when using LLMs for annotation. These 
prompt strategies help steer the model towards consistent and curriculum-aligned outputs, 
thereby improving annotation quality and reliability. 

The hybrid LLM+SBERT approach demonstrates promising performance, particularly 
on the ASDiv dataset. By combining the LLM’s ability to abstract and articulate the concepts 
involved in a MWP with SBERT’s semantic similarity matching, this method outperforms both 
the SBERT-only and LLM-only approaches on ASDiv. This is likely due to ASDiv's well-
structured problems and concise solution formats, which make it easier for the LLM to 
generate focused descriptions and for the similarity scoring to correctly identify the matching 
KC. In contrast, on GSM8K, the hybrid method underperforms the LLM-only approach. The 
longer, multi-step reasoning required in GSM8K appears to make the LLM’s generated KC 
descriptions either too verbose or too vague, resulting in less precise matches during similarity 
scoring.  
 
 
5. Conclusion 
 
Our experiments demonstrate that automated KC tagging for math word problems by 
combining SBERT embeddings and LLMs can produce promising results, offering valuable 
support in reducing manual effort and increasing scalability. Importantly, our findings suggest 
that further refinement—such as improved prompt design and more carefully curated few-shot 
examples—has the potential to significantly boost performance. With continued progress, 
these methods could eventually approach human-level reliability, enabling more efficient and 
consistent KC annotation at scale.  
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