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Abstract: This study introduces a game-based programming environment for 
developing algorithmic thinking through iterative refinement. The system features 
"Score-based Gradual Worked Examples," allowing learners to view others’ codes that 
achieved slightly higher scores. An analysis of behavioral logs from 49 university 
students using K-means clustering revealed seven distinct patterns. Learners who 
frequently referenced others' codes while making incremental changes showed greater 
learning gains. Expert evaluation suggests that presenting codes based on algorithmic 
similarity may be more effective than score-based selection alone. These findings can 
inform the design of adaptive support in programming education. 
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1. Introduction 
 
In programming education, students must develop not only syntax knowledge but also the 
ability to design and execute problem-solving procedures through computational thinking and 
algorithmic thinking (AT) (Lockwood et al., 2016; Wing, 2006). Visual programming 
environments like Code.org have shown promise in promoting AT through iterative trial-and-
error processes (Choi, 2022; Papert, 1980). However, traditional puzzle-type tasks with single 
correct answers may limit continuous improvement once a working solution is found. 

To address this limitation, we designed a game-based programming task that 
encourages score maximization rather than finding a single correct answer (Maeda et al., 
2024a). This open-ended approach motivates learners to continuously refine their algorithms 
for better performance. However, novice learners require support, such as worked examples 
(WE) to progress effectively. Although WE can reduce cognitive load and facilitate learning 
(Sweller, 2020; Zhi et al., 2019), presenting complete solutions may lead to mere imitation 
without meaningful trial-and-error learning. 

We propose "Score-based Gradual Worked Examples," where learners can view peer-
generated codes that achieved slightly higher scores. This approach addresses two key 
challenges: (1) satisfaction with suboptimal solutions, by presenting incremental 
improvements rather than complete answers, and (2) limited support, by scaling support 
through peer-generated examples rather than instructor-authored ones. While previous 
classroom implementation showed overall score improvements (Maeda et al., 2024a), 
individual differences in system usage and learning outcomes remain unexplored. Therefore, 
this study analyzes behavioral patterns to address the following research questions (RQs). 
RQ1: In a class using the proposed step-by-step “Score-based Gradual Worked Examples,” 
what trial-and-error characteristics are observed among learners, and how are these 
differences related to learning effectiveness? RQ2: For learners who do not achieve 



satisfactory learning outcomes even after viewing the WE, what factors might have influenced 
their learning? 

 
 

2. Literature Review 
 
AT—the ability to construct new algorithms to solve problems (Futschek, 2006)—requires 
learning environments that support repeated trial-and-error (Grover & Pea, 2013; Papert, 
1980). Game-based platforms like Code.org and Scratch effectively promote AT through 
iterative challenges (Hsu & Wang, 2018), encouraging natural skill development through 
repeated practice. However, without clear guidance, learners may abandon trial-and-error 
when unable to understand or modify their programs. WE addresses this by reducing cognitive 
load through solution demonstrations (Sweller, 2020), which are proven to be effective in 
programming education (Zhi et al., 2019). Yet conventional WE remain static and uniform, 
limiting adaptation to individual needs. Learners also tend to skip high-quality examples 
without meaningful engagement (Zhi et al., 2019). Recent research has explored adaptive WE 
presentation methods. Toukiloglou and Xinogalos (2023) used fuzzy reasoning to adapt WE 
to learning progress; however, utilization was inconsistent and examples were fixed to specific 
problems rather than learner-constructed algorithms. Effective WE must be perceived as 
"helpful" (Muldner et al., 2023), yet learners often find them unhelpful when the "distance from 
the task" is too great (Wang et al., 2021). To address these limitations, our system 
automatically presents peer-generated code examples incrementally, matching examples to 
learners' current performance and facilitating continuous trial-and-error through contextually 
relevant support.  

 
 

3. Method 
 
3.1 Participants and Procedure 

 
This study analyzed log data from a classroom implementation that involved 49 second-year 
engineering students who used the system during a 40-minute session (10-min pre-test, 20-
min system use with code viewing features, 10-min post-test). This approach has shown 
significant score improvements (Wilcoxon signed-rank test, p < 0.005, Cohen's d > 0.8) as 
reported in our previous work (Maeda et al., 2024a). To understand how different usage 
patterns of the "Score-based Gradual Worked Examples" feature influenced these learning 
outcomes, we extracted and analyzed behavioral indicators from the system logs. 

 
3.2 System Description 

 
The learning environment requires learners to construct algorithms for a virtual robot that 
performs seeding and harvesting tasks. To maximize crop yield, learners must design effective 
action sequences and conditional branching, fostering AT development. The system scores 
and ranks algorithms, allowing learners to view others’ codes that was “one rank higher”—a 
restriction ensuring examples remain sufficiently aligned with learners' current performance. 
Figure 1 shows the system features (Learners write code in C#). 

Game-based programming task designed to encourage score acquisition: The 
system is structured as a harvesting game with a virtual robot. Evaluation metrics like 
productivity, cost, and efficiency are used to assign scores. Productivity is indicated by the 
number of crops harvested, and cost is indicated by the number of robotic actions. Efficiency 
is indicated by the value obtained by subtracting cost from productivity (Maeda et al., 2024a). 
Improving one’s score thus becomes equivalent to engaging in trial-and-error to develop more 
effective algorithms. 

Ranking feature: The system displays each learner’s score in relation to their peers. 
This approach not only promotes self-evaluation but also encourages the setting of new goals 



and increases motivation by emphasizing relative achievements rather than absolute 
performance. 

Code viewing function: To foster continuous trial-and-error learning, learners are only 
allowed to view the code of another learner who holds a rank just above theirs. This “one-rank-
higher” restriction ensures that the code being referenced is similar in complexity, making it 
more accessible and relevant. 

Since the learners’ code is used, differences in quality and syntax are expected to arise. 
Thus, beginners who are learning programming are expected to learn from others’ codes who 
are at a similar level. Additionally, learners who already have some ability to write code are 
also expected to learn from the codes of others who are at a similar level. It should be noted 
that this system focuses only on the behavior of robots, or algorithmic evaluation (scores), and 
therefore does not evaluate syntactic style. 

Figure 1 (left) shows the robot planting and harvesting interface, where harvest scores 
depend on crop growth. Since each command incurs costs, efficient algorithm design is 
essential. The total score equals harvest score minus operational costs. The ranking panel 
(right) displays peer scores and allows viewing code one rank above. 
 

 
Figure 1. Example of the Code Visualization Interface and Ranking System. 

 
3.3 Overview and Selection of Behavioral Indicators 
 
To understand system usage patterns and their impact on learning, we analyzed behavioral 
log data using seven key indicators: (1) #Exec: Code execution count after modifications 
(excluding repeated runs) (2) ΔTotal: Cumulative behavioral changes across executions (3) 
Δ/Exec: Average behavioral change per execution (ΔTotal/#Exec) (4) Maximum score: 
Highest total score achieved (5) #Ref: Frequency of viewing others' codes during learning (6) 
Ref/Exec: Reference rate per execution (#Ref/#Exec) (7) Learning gain: Normalized gain 
(Hake, 1998): g = (post−pre-score)/(max−pre-score), where max = 3284 points. These 
metrics collectively assess trial-and-error authenticity and the utilization of others’ code 
examples from multiple perspectives. 
 
 
4. Results 
 
Table 1 presents the basic statistics for each indicator across three phases: pre (Pre), during 
system-use learning (Learn), and post (Post). While learners cannot access WE features in 
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the Pre and Post phases, these features were enabled in the Learn phase. Additionally, the 
same questions were used for Pre, Post, and Learn. #Exec increased from 13.2 (Pre) to 24.2 
(Learn) and 15.0 (Post), with the Learn phase showing higher activity likely due to having 
double the exercise time (20 vs. 10 minutes).  

Reference frequency (#Ref) varied widely (mean 3.8, SD 3.4), but reference rate per 
execution (Ref/Exec) remained stable at approximately 20%. While average scores improved 
significantly from 79.4 to 1,279.1, suggesting learning effectiveness, the relationship between 
behavioral indicators and achievement remained unclear from basic statistics alone, 
necessitating further analysis. 
 
Table 1. Basic Statistics 
 Pre Post Learn Pre-Post 

 Mean (SD) Min-Max Mean (SD) Min-Max Mean (SD) Min-Max Mean 
(SD) 

Min-
Max 

#Exec 13.2 (10.3) 0.0-48.0 24.2 (14.8) 4.0-68.0 15.0 (8.8) 4.0-43.0 - - 
ΔTotal 4.0 (3.2) 0.0-17.4 8.0 (5.3) 0.3-27.4 4.5 (3.1) 0.0-16.7 - - 
Δ/Exec 0.3 (0.2) 0.0-0.6 0.3 (0.1) 0.1-0.6 0.3 (0.2) 0.0-0.7 - - 

Max 
Score 

79.4 (435.5) −676.0 
-1568.0 

815.4 
(721.7) 

−500.0 
-2760.0 

1279.1 
(924.2) 

−370.0 
-3284.0 

-- - 

Learning 
Gain - - - - - - 0.4 

(0.3) 
-0.1 

(-1.0) 
Note: Negative scores may occur when harvesting fails or when movement costs exceed the 
harvest value 
 

K-means clustering was performed using five normalized indicators (#Exec, ΔTotal, 
Δ/Exec, Score, #Ref), yielding seven clusters based on silhouette score optimization. Table 2 
presents the behavioral characteristics of each cluster. 
 
Table 2. Behavioral Indicators in Each Cluster 
Cl. Name N #Exec ΔTotal  Δ/Exec Max Score #Ref 
0 HTR 2 52.5(0.7) 12.5(0.5) 0.2(0.0) 669.0(420.0) 10.0(1.4) 
1 MAT 17 17.3(5.2) 6.4(1.9) 0.4(0.1) 566.8(366.3) 2.4(1.9) 
2 PAS 6 9.7(5.1) 2.7(1.4) 0.2(0.1) 29.3(319.4) 0.8(1.0) 
3 SIR 9 22.0(5.2) 10.3(2.8) 0.5(0.1) 1154.9(504.2) 7.3(2.8) 
4 EFS 4 13.3(6.5) 2.8(2.1) 0.2(0.1) 2194.0(517.1) 6.0(2.9) 
5 PTM 7 44.3(12.3) 7.6(2.5) 0.2(0.1) 1004.6(913.6) 2.0(2.0) 
6 BRV 4 42.3(11.1) 20.9(5.3) 0.5(0.1) 650.5(418.2) 4.3(4.8) 

 
Three high-performing clusters emerged: Self-improver & Reference (SIR) showed 

high Ref/Exec and Δ/Exec, making incremental code modifications while frequently 
referencing others' codes. Efficient-Strategist (EFS) achieved the highest scores despite low 
#Exec, suggesting effective use of others' codes within limited trials. Heavy-trial & Reference 
(HTR) had high #Exec and #Ref but low reference density, limiting its effectiveness. 

Four clusters showed limited success: Passive (PAS) exhibited minimal engagement 
across all metrics. Persistent-trial Mixed (PTM) and Moderate-activity (MAT) both showed high 
trial activity but low reference usage, with MAT (n=17) displaying conscious algorithmic 
modifications but variable outcomes. Bulk-revision (BRV) made large code changes (high 
ΔTotal and Δ/Exec) but with moderate reference usage, potentially losing focus through 
excessive modifications. 

A one-way ANOVA revealed significant differences in learning outcomes between 
clusters (F(6,42)=4.781, p=0.0008, η²=0.4058). Post-hoc analysis (Tukey's HSD) showed EFS 
significantly outperformed PAS (p=0.0005), while MAT outperformed EFS (p=0.0016). Despite 
lower #Exec and ΔTotal, EFS achieved the highest scores through high Ref/Exec—frequently 
referencing others' codes within limited executions while making incremental modifications. 
These findings suggest that reference density (Ref/Exec) rather than trial quantity (#Exec) is 
the key factor for improving learning outcomes, though causal relationships require further 
investigation given the small cluster sizes. 



 
 

5. Discussion and Future work 
 
Cluster analysis revealed that learning effectiveness depended more on the quality of the trial-
and-error than quantity. EFS and SIR clusters demonstrated that high reference density 
(Ref/Exec) combined with incremental modifications led to superior outcomes, despite fewer 
overall trials. Conversely, HTR showed that frequent references without meaningful integration 
yielded limited gains, while PAS's minimal engagement and MAT/BRV's low reference usage 
resulted in poor performance.  

These findings address both RQs. For RQ1, reference density emerged as more 
critical than trial frequency for effective learning. For RQ2, HTR's case demonstrated that 
reference volume alone is insufficient—the quality of engagement matters. This aligns with 
Wang et al.'s (2021) identified barriers: comprehension difficulties and modification challenges, 
which intensify when the presented code significantly differs from learners' own solutions. 
These barriers likely influenced the observed behavioral patterns and outcomes, suggesting 
that code examples should be closely aligned with learners' current approaches to facilitate 
effective adoption. 

To reduce learning barriers, we propose presenting codes based on two similarity 
types: (A) syntactic format and (B) algorithmic proximity—aligning with code clone 
classifications where Types I-III represent textual similarity and Type IV represents functional 
similarity (Roy & Cordy, 2007). Our findings suggest that algorithmic similarity facilitates better 
understanding and integration into learners' trial-and-error processes. 

In a preliminary study (Maeda et al., 2024b), we quantified algorithmic similarity using 
F-values based on execution behaviors and presented both algorithm-based and conventional 
score-based rankings to three expert programmers (a professor specializing in programming 
education and two industry professionals). Expert evaluation strongly favored algorithm-based 
ranking (mean: 5.67/6) over conventional ranking (mean: 3.67/6). Experts noted that 
algorithmically similar codes were "helpful for development" and "used the same strategy," 
while conventional rankings showed "differences too large for beginners" risking "code 
copying rather than learning." Thus, algorithmic similarity-based presentation could effectively 
replace the current "one-rank-higher" restriction. 

Recent advances in deep learning, such as SANN for generating code vectors (Hoq et 
al., 2025), enable presentation of syntactically similar programs that match learners’ coding 
levels rather than expert syntactic patterns. Combining both similarity dimensions could 
reduce code quality as a confounding factor and enable clearer behavioral pattern 
interpretation. This understanding would support personalized strategies, such as presenting 
examples aligned with learners' behavioral tendencies or offering alternative approaches 
when learners stagnate—ultimately enabling more adaptive, individualized learning support. 

This observational study has some limitations. First, it cannot establish causal 
relationships between code viewing and learning improvements. While supplementary 
analysis (Maeda et al., 2025) showed score improvements when learners incorporated 
elements from others' codes, it remains unclear which code types are most "adoptable" and 
"effective." Therefore, the hypothesis that algorithmically and syntactically similar codes 
facilitate learning requires further empirical validation. Further, some clusters, such as HTR 
and BRV, remain an issue for the future due to their small sample sizes. Second, this study 
evaluated a single robot programming task, limiting generalizability to other programming 
domains or diverse learner populations, which warrants future investigation. The algorithmic 
similarity approach requires validation through actual learner testing beyond expert evaluation. 

This study has implications for future research. First, it is not possible to evaluate how 
learners read and understand the code of others. In contrast, in evaluations based on previous 
research, a survey was conducted on learners who viewed the codes of others to investigate 
how their own code changed, and it was confirmed that a certain number of learners 
incorporated parts of others codes into their own, in a way that was not imitation (Maeda et 
al., 2025). Furthermore, this led to an improvement in scores. Another avenue for future 



research is investigating the learning effects of sharing others' codes with large score 
differences. 
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