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Abstract: GPT has become nearly synonymous with large language models (LLMs),
an increasingly popular term in AIED proceedings. A simple keyword-based search
reveals that 61% of the 76 long and short papers presented at AIED 2024 describe
novel solutions using LLMs to address some of the long-standing challenges in
education, and 43% specifically mention GPT. Although LLMs pioneered by GPT
create exciting opportunities to strengthen the impact of Al on education, we argue that
the field’s predominant focus on GPT and other resource-intensive LLMs (with more
than 10B parameters) risks neglecting the potential impact that small language models
(SLMs) can make in providing resource-constrained institutions with equitable and
affordable access to high-quality Al tools. Supported by positive results on knowledge
component (KC) discovery, a critical challenge in AIED, we demonstrate that SLMs
such as Phi-2 can produce an effective solution without elaborate prompting strategies.
Hence, we call for more attention to developing SLM-based AIED approaches.
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1. Introduction

Itis an exciting time for AIED. Technological breakthroughs in large language models (LLMs)
(Brown et al., 2020) have provided unprecedented opportunities for AIED researchers and
practitioners to solve some of the long-standing challenges in the field (Kasneci et al., 2023).
The excitement is aptly exemplified by the community’s fast adoption of LLMs in AIED
research—of the 76 long and short papers accepted for AIED 2024, 61% (47 papers) describe
innovative solutions using LLMs, as revealed by a simple keyword-based search in the
proceedings (Olney et al., 2024). Among the ever-expanding constellation of available LLMs,
the GPT family, including ChatGPT (OpenAl, 2022) and GPT-4 (OpenAl, 2023), appears to
be the community’s favorite: 33 of the 47 papers (70%) adopting LLMs also mention GPT.
Although LLMs pioneered by GPT herald exciting possibilities to reinforce Al's positive
influence on education, we argue that the community’s predominant focus on GPT and other
similar resource-intensive gigantic language models (with more than ten billion parameters)
risks neglecting the critical impact that small language models (SLMs) can make in creating
equitable and accessible education central to the mission of AIED.

The definition of SLMs is constantly changing as new technologies emerge to shape
the landscape of language models. The BERT model (Devlin et al., 2019) in its largest
configuration, for example, has 340 million parameters—an overwhelming amount in 2018 but
only a fraction by today’s standard. In relation to the current state of the art, we consider a
language model small if it has fewer than ten billion parameters and requires modest hardware
resources, such as a consumer-grade GPU. Canonical examples of SLMs include Llama-2
7B (Touvron et al., 2023), Mistral 7B (Jiang et al., 2023), and Phi-2 (Javaheripi et al., 2023).
Phi-2, a lightweight but capable model that has only 2.7B parameters, might be a particularly
good fit for the AIED community and the range of problems we are trying to address. Trained
on high-quality “textbook-like” data (Gunasekar et al., 2023), Phi-2 subsumes deep knowledge
about various academic disciplines and aligns better with educational contexts, which require
precision and reliability, than other SLMs trained on mixed-quality data sourced from the



Internet. Its smaller size also enables local deployment on consumer-grade hardware,
desirable for most educational settings where computational resources are limited.

Educational institutions operate under distinct constraints that make their Al
implementation needs different from those of commercial environments. Budget limitations,
technical infrastructure, privacy requirements, and equity considerations all influence
technology adoption in educational settings (Reich & Ito, 2017). GPT-scale LLMs typically
require substantial computational resources for local deployment or incessant API costs for
cloud access, not affordable to all teachers or students (Kasneci et al., 2023). SLMs, however,
only require a fraction of the resources entailed by LLMs and can be deployed on modest
hardware at a much lower cost—Phi-2’s 2.7 billion parameters only require about 5.4 GB of
memory for storage with a 16-bit representation of floating-point numbers’, which can fit
comfortably to a consumer-grade GPU.

One argument that justifies the higher costs of GPT-scale LLMs is their superior
performance in various tasks. However, we argue that the more affordable and accessible
SLMs can also deliver impressive results if we manage to exploit their potential adequately. In
Section 3, we present a case study of knowledge component (KC) discovery (Koedinger et
al., 2012), a critical challenge in AIED, and describe our unique solution using Phi-2 (Wei et
al., 2025). Our approach makes creative use of Phi-2 as a probability machine to measure
question similarity and applies a clustering algorithm to identify questions belonging to the
same KC; results on two datasets show that instructors can better predict student performance
using the KCs generated by our approach than using those produced by experts or the more
powerful GPT-40. These positive findings from the case study reinforce our position that small
language models such as Phi-2 can provide effective solutions to critical AIED
problems and hold great promise as a catalyst for inclusive, personal, and ethical
education equitably accessible to teachers and students.

2. Background
2.1 The Rise of Large Language Models in Education

The field of education has tremendously benefited from the advances in natural language
processing (NLP) in recent decades, which have evolved from rule-based approaches to
statistical methods and eventually to neural-network models (Litman, 2016). Early educational
applications used relatively simple NLP techniques for tasks such as automated essay scoring
(Shermis & Burstein, 2013); more recent work, however, uses advanced language models to
tackle increasingly complex challenges in education.

Introduced in 2017, the Transformer architecture (Vaswani et al., 2017) enables
researchers to build more sophisticated language models with enhanced language
understanding and generation capabilities. Together with more efficient hardware and better
available corpora, this architectural innovation spurred the development of models with
progressively larger parameter counts—some prominent milestones include GPT-3 (Brown et
al., 2020) (175B parameters), PaLM (Chowdhery et al., 2022) (540B parameters), and GPT-
4 (OpenAl, 2023) (estimated 1.76T parameters). These gigantic language models have
demonstrated remarkable capabilities across various educational applications, including but
not limited to hint creation (Pardos & Bhandari, 2023), question generation (Sarsa et al., 2022),
and KC discovery (Moore et al., 2024).

Concomitant to the development of more capable models is the emphasize of scaling—
increasing model size, training data, and computational resources—as the primary
mechanism for improving model performance (Kaplan et al., 2020). This scaling law suggests
that many unexpected capabilities can emerge as model size increases, with larger models
generally outperforming smaller ones across diverse tasks (J. Wei et al., 2022). While the
successful application of the scaling law has nearly depleted the available benchmarks to
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measure the progress of LLMs, urging the development of the “Humanity’s Last Exam”?, it has
also raised the computational and financial requirements that prevent resource-constrained
educational institutions from equitably using LLMs, and necessitated stricter, more private
access to the source code and training data that could have helped researchers build more
effective AIED tools. Moreover, the community’s widespread predilection for large and even
larger models can exacerbate the danger of overlooking the impact that SLMs can make in
providing effective and accessible AIED solutions.

2.2 The Potential of Small Language Models in Education

In contrast to the scaling efforts, researchers have also developed smaller and more
efficient models that challenge the dominance of scaling as the only way to attain good
performance. More recently, models like Phi-2 (2.7B parameters) have demonstrated that
careful data curation and innovative training methodologies can produce surprisingly capable
models at significantly smaller scales (Javaheripi et al., 2023).

Developed by Microsoft Research, Phi-2 is an epitome of efficient language models.
This SLM is built on the standard Transformer decoder-only architecture and is trained with
the conventional next-token prediction objective. What makes it special, however, is not
architectural innovations but the unique training methodology used. Unlike many larger models
trained on vast but heterogeneous corpora sourced from the Internet, Phi-2 was trained
predominantly on what the researchers call “textbook-quality data” (Gunasekar et al., 2023)—
carefully curated content with an emphasis on educational materials, synthetic texts designed
for reasoning capabilities, and filtered web content with high educational value.

This unique training methodology, which ranks data quality higher than quantity, results
in an efficient SLM that is particularly useful for educational applications. In competitive
benchmarks that evaluate reasoning skills in math (GSM8k (Cobbe et al., 2021)) and coding
(HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021)), Phi-2 substantially outperformed
Mistral 7B (Jiang et al., 2023) and Llama-2 13B (Touvron et al., 2023), which are 1.6x and
3.8x% larger than Phi-2. Compared to the 25x larger Llama-2 70B (Touvron et al., 2023), Phi-2
achieved significantly better performance in coding and demonstrated comparable reasoning
skills in math (Javaheripi et al., 2023). In the MMLU benchmark (Hendrycks et al., 2021), which
assesses language model knowledge in 57 academic subjects, Phi-2 outperformed Llama-2
13B (54.8) and achieved a score (56.7) comparable to that achieved by Mistral 7B (60.1).

From a computational efficiency perspective, Phi-2 also offers distinct advantages for
educational applications. Requiring approximately 5.4 GB of memory for storage (with
additional memory for inference), Phi-2 can be deployed on consumer-grade hardware with
modest requirements (the conventional 16-GB GPU), enabling local inference without cloud
infrastructure dependencies. This flexibility in deployment helps reduce the first digital divide
(Attewell, 2001) that prevents resource-constrained schools from using the latest Al tools, and
protects student privacy (Prinsloo & Slade, 2017) by not requiring student data to be shared
with a third party.

Phi-2’s solid results on academic benchmarks and modest requirements on computer
hardware make it a competitive alternative to gigantic language models that entail substantial
computational resources and provoke critical privacy concerns. Its extensive pre-training on
high-quality textbook-like data makes Phi-2 particularly tuned to educational applications. In
what follows, we describe a concrete case study in which we creatively used Phi-2 to design
a KC discovery algorithm that outperformed instructional experts and its GPT counterpart.

3. Case Study: Knowledge Component Discovery

Representing specific concepts or skills that students acquire through learning to perform a
task or solve a problem, knowledge components (KCs) are essential elements in the KLI
framework (Koedinger et al., 2012) that help instructors assess student learning. Traditionally,
instructional experts are elicited to participate in Cognitive Task Analysis (CTA) (Clark et al.,
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2008) to identify the KCs associated with each assessment item, but CTA incurs considerable
time and labor cost (Stamper et al., 2011) even when applied to moderately sized question
banks. The accelerating adoption of Al in education aggravates the burden on instructional
designers, who are overwhelmed by the growing amount of Al-generated questions that each
needs to be analyzed by hand.

To address this challenge, a recent approach (Moore et al., 2024) uses GPT-4
(OpenAl, 2023) to extract KCs from multiple-choice questions (MCQs). The authors devised
elaborate prompting strategies to ask GPT-4 to simulate instructional experts or textbook
authors. Although in an evaluation study, the majority of the three participants preferred GPT -
generated KCs to those designed by experts for more than 60% of the evaluated questions,
this approach produced KC labels with slightly different wording for questions that instructors
think should belong to the same KC (Moore et al., 2024). In our replication of their study using
more advanced GPT-40, the most intelligent non-reasoning LLM offered by OpenAl, we
obtained 614 unique KC labels for 630 MCQs from the same e-learning dataset® used by
Moore et al., 2024. The large number of KC labels comparable to the number of questions
suggests that some labels can be merged. In fact, we discovered that GPT-40 had produced
unnecessarily refined labels (e.g., “Analyze CTA”, “Analyze CTA in E-learning”, and “Analyze
CTA methodologies”) that could have been merged.

In our recent work proposing a new KC discovery method called KCluster (Wei et al.,
2025), we demonstrate that exploiting the native potential of a language model as a
“probability machine” rather than the more conventional text generation capabilities can lead
to a strong KC discovery algorithm even with SLMs such as Phi-2. The core idea is that
language models can induce a novel measure of question similarity, which a clustering
algorithm can use to identify groups of similar questions that are likely to share the same KC.
Specifically, for an arbitrary pair of questions g4 and q, from a large collection of questions,
we evaluate the change in log-probability of g, with and without the presence of q,:

A (qs5,9,) = logPr(qs | q;) — log Pr(qy)
and define a novel measure of question similarity called “congruity”:

1
Congruity (qs,q) & ) [A(gs,.q0) + A(qeq5)]

The formula for A is mathematically equivalent to the pointwise mutual information
(PMI) (Church & Hanks, 1989) between two questions (instead of words). The idea was
nevertheless inspired by word collocations. We postulate that if one question increases the
likelihood of another question appearing, the two questions are congruent and likely to relate
to the same KC; on the other hand, if one question barely changes or even decreases the
probability that another question occurs, the two questions are incongruent and likely to belong
to different KCs. SLMs such as Phi-2, which were specifically trained to calculate next-token
probabilities, are exceptional at evaluating conditional log-probabilities of the form
logPr(q, | q;) - An algorithm that uses Phi-2 to calculate various required probabilities is
described in the original paper (Wei et al., 2025).

We evaluated our approach against instructional experts and our replication of the
previous study (Moore et al., 2024) using more advanced GPT-40, on two datasets collected
in a graduate e-learning course taught by two different instructors in 2022 and 2023%. A
common practice to compare different KC discovery approaches is to fit an Additive Factors
Model (AFM) (Cen et al., 2007) with the KCs generated by each method to student response
data; a better KC discovery approach should allow an instructor to predict student responses
with a lower root mean square error (RMSE). On the 2022 dataset, KCluster generated 114
KCs (comparable to the 101 KCs in the best expert KC model) and achieved an RMSE of
0.4220, outperforming both experts (0.4235) and GPT-40 (0.4395); likewise, on the 2023
dataset, KCluster generated 92 KCs (comparable to the 75 KCs in the best expert KC model)
and scored 0.4066, leading both experts (0.4075) and GPT-40 (0.4101). We did not merge
similar KC labels generated by KCluster unless they were identical. Notably, GPT-40, a highly
capable LLM, performed the worst on the two distinct datasets. This strengthens our claim
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that SLMs can also deliver superior results if their potential is adequately exploited.

4. Conclusion

Through this forward-looking paper, we did not argue that the AIED community should eschew
LLMs in favor of their more efficient counterparts, nor did we suggest that SLMs are capable
of everything LLMs can do. Similar to many AIED researchers, we share the excitement about
the complementary development of both lines of NLP research and their potential application
to education. However, to empower teachers and students for an equitable future, the promise
of SLMs in providing accessible AIED solutions is not to be neglected. As shown in the case
study and more in our recent paper (Wei et al., 2025), an innovative exploitation of SLM’s
potential can deliver superior results than the standard use of LLMs based on intensive prompt
engineering. We urge the AIED community to reconsider, next time when making a
convenient API call to an LLM, whether it endangers the accessibility to the target
audience, who may actually benefit from an SLM.
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