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Abstract: GPT has become nearly synonymous with large language models (LLMs), 
an increasingly popular term in AIED proceedings. A simple keyword-based search 
reveals that 61% of the 76 long and short papers presented at AIED 2024 describe 
novel solutions using LLMs to address some of the long-standing challenges in 
education, and 43% specifically mention GPT. Although LLMs pioneered by GPT 
create exciting opportunities to strengthen the impact of AI on education, we argue that 
the field’s predominant focus on GPT and other resource-intensive LLMs (with more 
than 10B parameters) risks neglecting the potential impact that small language models 
(SLMs) can make in providing resource-constrained institutions with equitable and 
affordable access to high-quality AI tools. Supported by positive results on knowledge 
component (KC) discovery, a critical challenge in AIED, we demonstrate that SLMs 
such as Phi-2 can produce an effective solution without elaborate prompting strategies. 
Hence, we call for more attention to developing SLM-based AIED approaches. 
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1. Introduction 
 
It is an exciting time for AIED. Technological breakthroughs in large language models (LLMs) 
(Brown et al., 2020) have provided unprecedented opportunities for AIED researchers and 
practitioners to solve some of the long-standing challenges in the field (Kasneci et al., 2023). 
The excitement is aptly exemplified by the community’s fast adoption of LLMs in AIED 
research—of the 76 long and short papers accepted for AIED 2024, 61% (47 papers) describe 
innovative solutions using LLMs, as revealed by a simple keyword-based search in the 
proceedings (Olney et al., 2024). Among the ever-expanding constellation of available LLMs, 
the GPT family, including ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023), appears to 
be the community’s favorite: 33 of the 47 papers (70%) adopting LLMs also mention GPT. 
Although LLMs pioneered by GPT herald exciting possibilities to reinforce AI’s posit ive 
influence on education, we argue that the community’s predominant focus on GPT and other 
similar resource-intensive gigantic language models (with more than ten billion parameters) 
risks neglecting the critical impact that small language models (SLMs) can make in creating 
equitable and accessible education central to the mission of AIED. 

The definition of SLMs is constantly changing as new technologies emerge to shape 
the landscape of language models. The BERT model (Devlin et al., 2019) in its largest 
configuration, for example, has 340 million parameters—an overwhelming amount in 2018 but 
only a fraction by today’s standard. In relation to the current state of the art, we consider a 
language model small if it has fewer than ten billion parameters and requires modest hardware 
resources, such as a consumer-grade GPU. Canonical examples of SLMs include Llama-2 
7B (Touvron et al., 2023), Mistral 7B (Jiang et al., 2023), and Phi-2 (Javaheripi et al., 2023). 
Phi-2, a lightweight but capable model that has only 2.7B parameters, might be a particularly 
good fit for the AIED community and the range of problems we are trying to address. Trained 
on high-quality “textbook-like” data (Gunasekar et al., 2023), Phi-2 subsumes deep knowledge 
about various academic disciplines and aligns better with educational contexts, which require 
precision and reliability, than other SLMs trained on mixed-quality data sourced from the 



 

Internet. Its smaller size also enables local deployment on consumer-grade hardware, 
desirable for most educational settings where computational resources are limited. 

Educational institutions operate under distinct constraints that make their AI 
implementation needs different from those of commercial environments. Budget limitations, 
technical infrastructure, privacy requirements, and equity considerations all influence 
technology adoption in educational settings (Reich & Ito, 2017). GPT-scale LLMs typically 
require substantial computational resources for local deployment or incessant API costs for 
cloud access, not affordable to all teachers or students (Kasneci et al., 2023). SLMs, however, 
only require a fraction of the resources entailed by LLMs and can be deployed on modest 
hardware at a much lower cost—Phi-2’s 2.7 billion parameters only require about 5.4 GB of 
memory for storage with a 16-bit representation of floating-point numbers1, which can fit 
comfortably to a consumer-grade GPU. 

One argument that justifies the higher costs of GPT-scale LLMs is their superior 
performance in various tasks. However, we argue that the more affordable and accessible 
SLMs can also deliver impressive results if we manage to exploit their potential adequately. In 
Section 3, we present a case study of knowledge component (KC) discovery (Koedinger et 
al., 2012), a critical challenge in AIED, and describe our unique solution using Phi-2 (Wei et 
al., 2025). Our approach makes creative use of Phi-2 as a probability machine to measure 
question similarity and applies a clustering algorithm to identify questions belonging to the 
same KC; results on two datasets show that instructors can better predict student performance 
using the KCs generated by our approach than using those produced by experts or the more 
powerful GPT-4o. These positive findings from the case study reinforce our position that small 
language models such as Phi-2 can provide effective solutions to critical AIED 
problems and hold great promise as a catalyst for inclusive, personal, and ethical 
education equitably accessible to teachers and students. 
 

2. Background 
 

2.1 The Rise of Large Language Models in Education 
 
The field of education has tremendously benefited from the advances in natural language 
processing (NLP) in recent decades, which have evolved from rule-based approaches to 
statistical methods and eventually to neural-network models (Litman, 2016). Early educational 
applications used relatively simple NLP techniques for tasks such as automated essay scoring 
(Shermis & Burstein, 2013); more recent work, however, uses advanced language models to 
tackle increasingly complex challenges in education. 

Introduced in 2017, the Transformer architecture (Vaswani et al., 2017) enables 
researchers to build more sophisticated language models with enhanced language 
understanding and generation capabilities. Together with more efficient hardware and better 
available corpora, this architectural innovation spurred the development of models with 
progressively larger parameter counts—some prominent milestones include GPT-3 (Brown et 
al., 2020) (175B parameters), PaLM (Chowdhery et al., 2022) (540B parameters), and GPT-
4 (OpenAI, 2023) (estimated 1.76T parameters). These gigantic language models have 
demonstrated remarkable capabilities across various educational applications, including but 
not limited to hint creation (Pardos & Bhandari, 2023), question generation (Sarsa et al., 2022), 
and KC discovery (Moore et al., 2024). 

Concomitant to the development of more capable models is the emphasize of scaling—
increasing model size, training data, and computational resources—as the primary 
mechanism for improving model performance (Kaplan et al., 2020). This scaling law suggests 
that many unexpected capabilities can emerge as model size increases, with larger models 
generally outperforming smaller ones across diverse tasks (J. Wei et al., 2022). While the 
successful application of the scaling law has nearly depleted the available benchmarks to 
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measure the progress of LLMs, urging the development of the “Humanity’s Last Exam”2, it has 
also raised the computational and financial requirements that prevent resource-constrained 
educational institutions from equitably using LLMs, and necessitated stricter, more private 
access to the source code and training data that could have helped researchers build more 
effective AIED tools. Moreover, the community’s widespread predilection for large and even 
larger models can exacerbate the danger of overlooking the impact that SLMs can make in 
providing effective and accessible AIED solutions. 
 

2.2 The Potential of Small Language Models in Education 
 

In contrast to the scaling efforts, researchers have also developed smaller and more 
efficient models that challenge the dominance of scaling as the only way to attain good 
performance. More recently, models like Phi-2 (2.7B parameters) have demonstrated that 
careful data curation and innovative training methodologies can produce surprisingly capable 
models at significantly smaller scales (Javaheripi et al., 2023). 

Developed by Microsoft Research, Phi-2 is an epitome of efficient language models. 
This SLM is built on the standard Transformer decoder-only architecture and is trained with 
the conventional next-token prediction objective. What makes it special, however, is not 
architectural innovations but the unique training methodology used. Unlike many larger models 
trained on vast but heterogeneous corpora sourced from the Internet, Phi-2 was trained 
predominantly on what the researchers call “textbook-quality data” (Gunasekar et al., 2023)—
carefully curated content with an emphasis on educational materials, synthetic texts designed 
for reasoning capabilities, and filtered web content with high educational value. 

This unique training methodology, which ranks data quality higher than quantity, results 
in an efficient SLM that is particularly useful for educational applications. In competitive 
benchmarks that evaluate reasoning skills in math (GSM8k (Cobbe et al., 2021)) and coding 
(HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021)), Phi-2 substantially outperformed 
Mistral 7B (Jiang et al., 2023) and Llama-2 13B (Touvron et al., 2023), which are 1.6× and 
3.8× larger than Phi-2. Compared to the 25× larger Llama-2 70B (Touvron et al., 2023), Phi-2 
achieved significantly better performance in coding and demonstrated comparable reasoning 
skills in math (Javaheripi et al., 2023). In the MMLU benchmark (Hendrycks et al., 2021), which 
assesses language model knowledge in 57 academic subjects, Phi-2 outperformed Llama-2 
13B (54.8) and achieved a score (56.7) comparable to that achieved by Mistral 7B (60.1). 

From a computational efficiency perspective, Phi-2 also offers distinct advantages for 
educational applications. Requiring approximately 5.4 GB of memory for storage (with 
additional memory for inference), Phi-2 can be deployed on consumer-grade hardware with 
modest requirements (the conventional 16-GB GPU), enabling local inference without cloud 
infrastructure dependencies. This flexibility in deployment helps reduce the first digital divide 
(Attewell, 2001) that prevents resource-constrained schools from using the latest AI tools, and 
protects student privacy (Prinsloo & Slade, 2017) by not requiring student data to be shared 
with a third party. 

Phi-2’s solid results on academic benchmarks and modest requirements on computer 
hardware make it a competitive alternative to gigantic language models that entail substantial 
computational resources and provoke critical privacy concerns. Its extensive pre-training on 
high-quality textbook-like data makes Phi-2 particularly tuned to educational applications. In 
what follows, we describe a concrete case study in which we creatively used Phi-2 to design 
a KC discovery algorithm that outperformed instructional experts and its GPT counterpart. 
 

3. Case Study: Knowledge Component Discovery 
 
Representing specific concepts or skills that students acquire through learning to perform a 
task or solve a problem, knowledge components (KCs) are essential elements in the KLI 
framework (Koedinger et al., 2012) that help instructors assess student learning. Traditionally, 
instructional experts are elicited to participate in Cognitive Task Analysis (CTA) (Clark et al., 
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2008) to identify the KCs associated with each assessment item, but CTA incurs considerable 
time and labor cost (Stamper et al., 2011) even when applied to moderately sized question 
banks. The accelerating adoption of AI in education aggravates the burden on instructional 
designers, who are overwhelmed by the growing amount of AI-generated questions that each 
needs to be analyzed by hand. 

To address this challenge, a recent approach (Moore et al., 2024) uses GPT-4 
(OpenAI, 2023) to extract KCs from multiple-choice questions (MCQs). The authors devised 
elaborate prompting strategies to ask GPT-4 to simulate instructional experts or textbook 
authors. Although in an evaluation study, the majority of the three participants preferred GPT-
generated KCs to those designed by experts for more than 60% of the evaluated questions, 
this approach produced KC labels with slightly different wording for questions that instructors 
think should belong to the same KC (Moore et al., 2024). In our replication of their study using 
more advanced GPT-4o, the most intelligent non-reasoning LLM offered by OpenAI, we 
obtained 614 unique KC labels for 630 MCQs from the same e-learning dataset3 used by 
Moore et al., 2024. The large number of KC labels comparable to the number of questions 
suggests that some labels can be merged. In fact, we discovered that GPT-4o had produced 
unnecessarily refined labels (e.g., “Analyze CTA”, “Analyze CTA in E-learning”, and “Analyze 
CTA methodologies”) that could have been merged. 

In our recent work proposing a new KC discovery method called KCluster (Wei et al., 
2025), we demonstrate that exploiting the native potential of a language model as a 
“probability machine” rather than the more conventional text generation capabilities can lead 
to a strong KC discovery algorithm even with SLMs such as Phi-2. The core idea is that 
language models can induce a novel measure of question similarity, which a clustering 
algorithm can use to identify groups of similar questions that are likely to share the same KC. 
Specifically, for an arbitrary pair of questions 𝒒𝒔 and 𝒒𝒕 from a large collection of questions, 
we evaluate the change in log-probability of 𝒒𝒔 with and without the presence of 𝒒𝒕: 

∆ (𝒒𝒔, 𝒒𝒕) ≝ 𝐥𝐨𝐠 𝐏𝐫(𝒒𝒔 | 𝒒𝒕) −  𝐥𝐨𝐠 𝐏𝐫(𝒒𝒔) 
and define a novel measure of question similarity called “congruity”: 

Congruity (𝒒𝒔, 𝒒𝒕) ≝  
𝟏

𝟐
 [∆ (𝒒𝒔, 𝒒𝒕) +  ∆ (𝒒𝒕, 𝒒𝒔)] 

The formula for ∆ is mathematically equivalent to the pointwise mutual information 

(PMI) (Church & Hanks, 1989) between two questions (instead of words). The idea was 
nevertheless inspired by word collocations. We postulate that if one question increases the 
likelihood of another question appearing, the two questions are congruent and likely to relate 
to the same KC; on the other hand, if one question barely changes or even decreases the 
probability that another question occurs, the two questions are incongruent and likely to belong 
to different KCs. SLMs such as Phi-2, which were specifically trained to calculate next-token 
probabilities, are exceptional at evaluating conditional log-probabilities of the form 
𝐥𝐨𝐠 𝐏𝐫(𝒒𝒔 | 𝒒𝒕) . An algorithm that uses Phi-2 to calculate various required probabilities is 
described in the original paper (Wei et al., 2025). 

We evaluated our approach against instructional experts and our replication of the 
previous study (Moore et al., 2024) using more advanced GPT-4o, on two datasets collected 
in a graduate e-learning course taught by two different instructors in 2022 and 20234. A 
common practice to compare different KC discovery approaches is to fit an Additive Factors 
Model (AFM) (Cen et al., 2007) with the KCs generated by each method to student response 
data; a better KC discovery approach should allow an instructor to predict student responses 
with a lower root mean square error (RMSE). On the 2022 dataset, KCluster generated 114 
KCs (comparable to the 101 KCs in the best expert KC model) and achieved an RMSE of 
0.4220, outperforming both experts (0.4235) and GPT-4o (0.4395); likewise, on the 2023 
dataset, KCluster generated 92 KCs (comparable to the 75 KCs in the best expert KC model) 
and scored 0.4066, leading both experts (0.4075) and GPT-4o (0.4101). We did not merge 
similar KC labels generated by KCluster unless they were identical. Notably, GPT-4o, a highly 
capable LLM, performed the worst on the two distinct datasets. This strengthens our claim 

 
3 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5426 
4  https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5843 



 

that SLMs can also deliver superior results if their potential is adequately exploited. 

 
4. Conclusion 
 
Through this forward-looking paper, we did not argue that the AIED community should eschew 
LLMs in favor of their more efficient counterparts, nor did we suggest that SLMs are capable 
of everything LLMs can do. Similar to many AIED researchers, we share the excitement about 
the complementary development of both lines of NLP research and their potential application 
to education. However, to empower teachers and students for an equitable future, the promise 
of SLMs in providing accessible AIED solutions is not to be neglected. As shown in the case 
study and more in our recent paper (Wei et al., 2025), an innovative exploitation of SLM’s 
potential can deliver superior results than the standard use of LLMs based on intensive prompt 
engineering. We urge the AIED community to reconsider, next time when making a 
convenient API call to an LLM, whether it endangers the accessibility to the target 
audience, who may actually benefit from an SLM. 
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