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Abstract: Self-regulation positively impacts learning, which has prompted efforts to
detect and foster SRL strategies. We used Gaussian Mixture Modeling to cluster
students on five SRL strategies in problem solving (PS)—measured via SRL detectors
grounded in Winne’s SMART model (2017). Seven distinct SRL profiles emerged from
the data, which were examined for their relation to math beliefs, anxiety, and PS
measures. Findings show that SRL profiles with high proficiency across multiple SRL
skills achieved higher accuracy, spent more time on pre-tests, and reported more
opportunities to share their math thinking. These students also frequently engaged in
monitoring and ftranslation. Notably, profiles with strong assembling skills
underperformed peers who balanced SRL strategies with relatively higher monitoring
and translating. Overall, these results highlight the dynamic relationship between SRL
and math beliefs in PS, and suggest emerging profiles to design tailored interventions.
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1. Introduction

Self-regulation is important for effective learning and academic achievement. Engaging in self-
regulated learning (SRL) improves outcomes; yet, fostering SRL skills in students remains
challenging and requires targeted, personalized support (Schunk, 2001). Recent work on
automated SRL detection has leveraged trace data to capture fine-grained behaviors
(Azevedo et al., 2012), with an increasing shift in focus from measuring to fostering SRL skills
(Bouchet et al.,, 2013; Ting-Chia, 2024). Automated detectors can track individual SRL
behaviors in real time and inform adaptive scaffolds. However, designing separate scaffolds
for each SRL skill detector is resource-intensive and may overlook how strategies naturally
co-occur in problem-solving (PS). Instead, grouping learners based on similar SRL behavior
profiles offers a scalable approach to personalized support.

One way to identify learners with common SRL behaviors, as explored in multiple
projects, is through clustering techniques (Gasevic et al., 2017), which has provided insights
that advanced both theoretical and empirical understanding of SRL. A growing body of work
employs various clustering methods to form groups for targeted support (Bouchet et al., 2013;
Ting-Chia, 2024). These clustering approaches have shown connections to learner
engagement and achievement, with profiles characterized by SRL difficulties correlating with
poorer outcomes (Farhana et al., 2021). Grounding clustering analyses in established SRL
theories enhances the effectiveness and relevance of the research and informs scaffold
design. Winne's SMART model (2017) with cognitive behaviors of searching, monitoring,


mailto:*nasiar@upenn.edu

assembling, rehearsing, and translating, is widely applied in empirical SRL studies (Azevedo
et al., 2012; Farhana et al., 2021). Our study uniquely integrates a suite of automated SRL
detectors based on Winne’s (2017) model to capture students’ SRL behaviors, and then
clusters detectors’ outputs to identify distinct learner subgroups for targeted support.

The relationship between math beliefs, anxiety, and SRL is complex and cyclic
(Maloney & Beilock, 2012). Effective PS involves more than cognitive strategies; it is heavily
influenced by learners’ beliefs and affect (Pekrun et al., 2017). Students’ epistemic beliefs,
such as viewing math merely as rule memorization, shape their SRL behaviors, where positive
beliefs improve persistence and strategizing while negative ones reduce them (Dweck, 2014).
Math anxiety further disrupts strategy selection and progress monitoring (Maloney & Beilock,
2012). However, limited work has examined combinations of SRL skills necessary for effective
PS and math beliefs. This study seeks to address that gap by investigating how SRL behaviors
co-occur in math PS and their interaction with students’ math mindset and beliefs within
CueThink, an online math platform. The study is driven by two main questions: i) What distinct
SRL profiles emerge in math PS (based on distinct SRL strategies’ usage)?, ii) How are these
SRL profiles associated with measures of PS, math beliefs, and anxiety?

2. Methods

2.1. Learning Platform: CueThink

This study is based on CueThink, an online platform that scaffolds math PS and promotes
regulation. In CueThink, students complete “Thinklets” math problems that follow 4 phases
based on Winne (2017): in the Understand phase, they identify what’s given and asked, and
note observations; in Plan, they select strategies and outline steps for solving; in Solve, they
record screencast explanations using mathematical tools; and in Review, they refine their
solutions via a guided checklist. Students move freely between phases as needed. Data was
collected from 230 7™-8" grade students at a suburban Eastern U.S. middle school in 2022—
2023 for 768 problems. Pre- and post-tests were administered at the start and end of the year.

2.2. SRL Detectors used for Clustering

SRL strategies were detected from Zhang et al.’s (2022a) detectors developed using
qualitatively coded SRL behaviors from trace data, aligned with Winne’s SMART model
(2017). They were validated for generalizability using 10-fold student-level cross-validation,
using Area Under the ROC Curve (AUC) as primary metric (chance AUC = 0.5; perfect = 1.0),
and checked for algorithmic bias (see Zhang et al., 2022). The SRL detectors were developed
for i) numerical representation (NR; AUC = 0.894), showing learners’ understanding of
numerical components, and ii) contextual representation (CR; AUC = 0.813) for noting
contextual details-- both classified as Assembling. iii) Data transformation (DT; AUC =0.815),
as students manipulate data to find a solution (Translating). iv) Following plans (FP; AUC =
0.808) as correctly including chosen strategies into the plan (Monitoring), and v) incorporating
information (II; AUC = 0.803) as correctly including previously assembled information into the
plan (Rehearsing). These SRL detectors identified students’ SRL processes in the Understand
and Plan phase within each problem they solved, using their interaction data. The usage of
the 5 SRL strategies was calculated for every student across all their solved problems based
on the probability outputs of the 5 SRL detectors, which was then used as input to clustering.

2.3. Research Instruments
Three PS measures were used: i) Accuracy Score, with one PS item given per trimester, with

items from a standard curriculum. ii) Normalized learning gains (LG), calculated as (post-
pre)/(1-pre) when post>pre and (post-pre)/pre when post<=pre. iii) Duration of Pre & Post test,



seconds spent from the start to the end time on test. We measured math beliefs using three
SRL subscales (0—100) from the abbreviated Indiana Math Beliefs Scale (Cipora et al., 2015):
Speed Orientation (4-items), the degree to which a student values thinking deeply (100) over
the speed of solving math problems (0); Nature of Math (7-item), whether students see math
from a constructionist lens (100) or as rigid and non-creative (0); Math Share, a single-item
asking about the opportunities that students have to talk about math. Math anxiety was
assessed with the 9-item Modified Abbreviated Math Anxiety Scale (Carey et al., 2017), slightly
modified for American English, scored 0—100, with two factors—Learning and Evaluation.

2.4. Gaussian Mixture Modeling (GMM) clustering

We used Gaussian Mixture Modeling (GMM) clustering, with oval-shaped covariance and an
outlier threshold of 0.7, to cluster the proportion of strategy usage based on each student’s 5
SRL detector outputs. The function returned probabilities of a data point belonging to each
cluster. We evaluated different N of clusters using the Bayesian Information Criterion (BIC),
Akaike Information Criterion (AIC), and Silhouette score. Overall, 7 clusters performed best.

Differences in PS and survey measures across SRL clusters were tested using the
Kruskal-Wallis (KW) H test, a nonparametric test for non-normal continuous data. A significant
result indicated that at least one cluster differed. For those measures, pairwise Mann—-Whitney
U tests identified the cluster pairs that differed, limiting comparisons to reduce Type | error.
Benjamini—Hochberg correction was applied to control the false discovery rate and mean ranks
were used to determine which cluster exhibited higher/lower values for the measures.

3. Results

3.1. RQ1: Examining SRL Profiles from GMM Clustering

Students were clustered by their SRL strategy use; Table 1 lists each cluster’s median of
variables (NR, CR, DT, DP, Il). Each median was classified relative to its overall detector
distribution percentiles (Table 2): low(<25"), moderately low(25" to <50"), intermediate(50™),
moderately high(>50" to <75"), and high(>=75"). Cluster names reflect these labels—
“advanced” for high or moderately high levels, “intermediate” for median levels, and “beginner”
for moderately low levels—omitting skills at low levels except in clusters with uniformly minimal
use. E.g., A's NR median(0.87) is between 50"(0.77) and 75™"(0.95) percentiles, and is labeled
moderately high. Clusters are ordered from the most advanced to emerging SRL strategists.

Table 1. Cluster Medians for 5 SRL strategies, shaded as per detector distribution of each
Strategy (see Table 2), with darker shading indicating higher values

Assemble Translate Monitor Rehearse
N (%) NR CR DT FP Il
Cluster A 82 (36.1) 0.87 0.85 0.84 0.99 1
Cluster B 45 (19.8) 0.73 0.69 0.75 0.95 0.99
Cluster C 52 (22.9) 0.77 0.61 0.64 0.78 0.92
Cluster D 9 (4.0) 0.92 0.91 0.2 0.44 0.93
Cluster E 6 (2.6) 0.93 0.2 0.31 0.52 0.85
Cluster F 27 (11.9) 0.63 0.57 0.37 0.54 0.91
Cluster G 6 (2.6) 0.22 0.02 0.06 0.7 0.11
Table 2. Detector output distribution
Assemble Translate Monitor Rehearse
Level NR CR DT FP 1l
High. x=0.95 x20.87 x20.85 x=0.99 x=1

Mod high 0.77<x<0.95 .69<=<x<0.87 0.7<x<0.85 0.93=x<0.99 0.99 < x <1
Mod low 0.63=<x<0.77 0.51=<x<0.69 0.47<x<0.7 0.74<x<0.93 0.9sx<0.99
low x <0.63 x <0.51 x<0.47 x<0.74 x<0.9



Cluster A (Advanced SRL strateqists) is characterized by high levels of CR, FP, and Il, and
moderately high usage of NR, and DT. Learners have high usage of SRL, including rehearsing
(using information from their plan), monitoring (applying selected strategies), and assembling
contextual information. While overall SRL engagement is high, some variability was found in
NR, CR, and DT. All students consistently show high levels of FP and II.
Cluster B (Advanced Monitors and Translators with intermediate contextual assembling and
rehearsing) is characterized by moderately high DT and FP, medium levels of CR and Il, and
moderately low NR. These students engage in data manipulation (translation) and follow their
plan. Strengthening their assembling skills for NR could create a more balanced SRL profile
for these students. Low variability is observed across students.
Cluster C (Intermediate Numerical Assemblers, beqinner for other strategies) is characterized
by medium values of NR with moderately low CR, DT, FP, and Il. These students engage in
average amounts of NR math word problems (assembling), but less monitoring, rehearsing,
and translating. Students had low variability across strategies.
Cluster D (Advanced Assemblers with beginner rehearsing) is characterized by high CR,
moderately high NR, moderately low I, and low DT and FP. These students frequently engage
in problem representation and assembling, and sometimes use rehearsing strategies.
Cluster E (Advanced Numerical Assemblers only) is characterized by moderately high NR but
low levels of all other strategies. Students in this group often assemble numerical information
from math problems, but they do not independently show contextual understanding, DT, FP,
and Il. Low to moderate variability is observed across SRL strategies, other than for DT.
Cluster F (Beginner Numerical and Contextual Assemblers) is characterized by moderately
low NR and CR, and low DT, FP, and Il. Low variability is seen across strategies, except Il.
Cluster G (Emerging SRL Strateqists) is characterized by the lowest usage of all SRL
strategies. This group represents students who are failing to use these SRL strategies in math
PS. Low variability is observed across all strategies except NR.

Overall, Clusters A and B show well-balanced and comprehensive SRL profiles, with a
range of key processes of assembling, monitoring, rehearsing, and translating. Clusters C, D,
and E exhibit a mixed pattern of strategy utilization, with learners exhibiting strengths in some
strategies but struggling to use others (or not realizing they are useful). Clusters F and G show
minimal usage of SRL strategies, and are likely require support to develop SRL skills.

3.2. RQ2: Association of PS, beliefs, and anxiety measures to SRL profiles
The KW H statistic (Table 3) is used to test differences in the survey measures among clusters.

Table 3. Results from Kruskal-Wallis (KW) H test for measures. Significant values are shaded

Type Measures Pretest Posttest
H p H p
. Duration (Dur) 20.91 0.002 | 7.38 0.288
(F’F[gt)"em SoVing | A ccuracy (Acc) 921 0162 | 1535 0.010
Norm. Learning Gains (LG) NA NA 6.48 0.372
Anxiety MAMAS Anxiety Learning (AxL) mMAMAS | 580  0.446 4.07 0.67
Anxiety Evaluation (AXEV) 1.41 0.965 2.18 0.90
IMBS Speed Orientation (Speed) 3.04 0.804 18.79 0.005
Beliefs IMBS Nature of Math (Nature) 7.04 0317 12.90 0.045
IMBS Math Share 6.23  0.398 13.35 0.038

The PS measure of duration of the pre-test was significantly different (p=0.002) across
at least one cluster pair. By the post-test, differences in duration between clusters were not
observed. There was no difference among clusters in accuracy in the pre-test, however, there
was a significant difference between clusters for the post-test (p=0.010).

No cluster differences were observed for learning gains or either form of anxiety.
However, all three math belief constructs -- measure of speed orientation, nature of math, and
math share -- had significant post-test differences among clusters (p=0.005, 0.045, 0.038) but
not the pre-test (p=0.804, 0.317, 0.398), meaning the SRL usage clusters had different beliefs



on what math was about, growth mindset in math, sharing math ideas, and on importance of
thinking deeply over quickly on a math problem. Differences at post but not pre suggest that
these beliefs may have been influenced by students’ experience of using SRL strategies to
solve problems in CueThink for a year, although a between-conditions comparison would be
needed to be certain. Next, pairwise Mann-Whitney U tests were conducted for significant KW
test measures (i.e. pre-test duration, and post-test measures of accuracy, speed, and nature).

Table 4. Pairwise Mann-Whitney U tests only with p <0.05; significant values after B&H
correction are shaded.

PS (Pre) PS (Post) Beliefs (Post)
Dur Acc* Share Speed Nature

U p U p U p U p U p
Avs.B - - - - 1042.5 0.03 | 983.5 0.01 - -
Avs.C 2555.5 0.002 | 1354.5 0.036 - - - - 1073 0.01
Avs.D 445 0.04 - - - - 3975 0.02 - -
Avs. E 370 0.015 116 0.049 - - 101 0.03 - -
Avs. F 1391 0.001 583.5 0.027 - - - - - -
Bvs.D - - 213 0.012 - - 2315 0.002 210 0.017
Bvs.F 689.5 0.03 - - 685.5 0.003 625 0.036 - -
Cvs.D - - 228 0.016 - - 2405 0.008 248 0.004
Cvs. F - - - - 703.5 0.021 - - - -
Dvs.E - - 4 0.018 - - 0 0.001 - -
Dvs.F - - 111 0.02 - - - - - -
Evs. F - - - - - - 34 0.04 - -

Pre Duration. Significant differences were found in the time taken to finish pre-test
between clusters A and C, and A and F (see Table 4). Students in cluster A spent more time
on the pre-test than those in C and F, suggesting that advanced SRL strategists invested more
time during initial assessment. In contrast, students with lower and intermediate SRL strategy
usage spent less time, possibly indicating less engagement or cognitive effort . These effects
were not found for the duration of the post-test, however, perhaps due to familiarity with the
test, or due to practice with similar math problems in CueThink for a year.

Accuracy at Post. There were significant post-test accuracy differences between
clusters B-D, C-D, D-E, and D-F. Students in C, B, and F achieved significantly higher post-
test accuracy than in D, indicating that students who balance assembling with other SRL
strategies like translation and monitoring (Clusters C and B), or even beginners (Cluster F),
have higher accuracy than those focusing solely on assembling skills (Cluster D). Conversely,
Cluster D had higher post-test accuracy than E, suggesting that contextual understanding of
the problem may support better performance.

Speed Orientation Post. For this measure, a higher value indicated greater preference
for deep thinking over speed wile solving problems. Significant differences were found in the
post-test between Clusters C-D, B-D, and E-D. Based on their mean ranks (B=23, C=26,
D=4.5, E=3.5), students in C and B valued deep thinking over speed more than D, suggesting
that C and B cluster students prioritize thoughtful PS while engaging deeply with concepts. In
turn, D valued deep thinking more than E. Cluster E students, frequently engaged in NR but
had low usage of other SRL strategies and preferred solved problems more quickly.

Math Share Post. Significant differences were found in the post-test Math Share scores
between Cluster B and Cluster F (p=0.03). Students in B reported sharing their mathematical
thinking in class more than Cluster F, based on their mean ranks (B=23, F=14). This suggests
that students with lower levels of SRL strategy usage may perceive fewer opportunities to
share their mathematical ideas in class.

Nature of Math Post. Significant differences were observed in post-test perceptions of
the nature of mathematics between Clusters C and D (p=0.004), and Clusters B and D
(p=0.017). Clusters C and B hold more constructivist views of mathematics (highlighting
creative, exploratory, and interconnected nature of math) than Cluster D.




4. Discussion and Conclusion

This study identified 7 student SRL profiles, revealing differences across the use of 5 SRL
strategies, math problem solving (PS), and beliefs. Key findings show that students in clusters
with a higher proficiency and balance of SRL skills (cluster A and B) have better PS accuracy,
spent more time on the pre-tests and reported sharing of their math thinking than clusters with
lower usage of fewer SRL skills (cluster E and F). Results further show that these clusters A
and B integrate considerable usage of monitoring and translating strategies, processes critical
for learning (Winne et al., 2017), whereas other students (in cluster E and F) primarily engaged
in NR and sometimes in CR (assembling) but not as much in other SRL strategies. Notably,
even students with strong assembling (cluster D) underperformed peers who balanced SRL
strategies with a relatively higher monitoring and translating (B, C, and F), illustrating the
importance of a well-rounded and diverse SRL profile in general, and specifically these two
SRL strategies, for math problem solving. Post-test differences in beliefs (e.g., cluster D
showed a lower preference for deep thinking over speed in solving math than clusters B and
C, but higher than cluster E; and cluster D exhibited more fixed-mindset, maladaptive math
beliefs than B and C, who showed a growth mindset) further highlight the nuances of how SRL
experiences shape math beliefs over time.

A limitation of the study is seen in the small sample sizes for Clusters D, E, and G,
suggesting these results should be replicated in the future with larger datasets across more
types of content and grade levels. Also, the absence of significant links between SRL
strategies and anxiety contrasts with prior work (Pekrun et al., 2017), and merits further
investigation. Longitudinal analyses could also clarify whether cluster membership shifts as
students gain experience. Correlating to additional motivational and affective variables (e.g.,
self-efficacy) could enrich interpretation. Overall, this study highlights the dynamic interplay
between SRL and evolving math beliefs, with potential to inform future studies for personalized
learner support based on their SRL gaps and math beliefs. In addition, the ML-detector—based
clustering pipeline can be used to automate support for students with distinctive SRL profiles.
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