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Abstract: Self-regulation positively impacts learning, which has prompted efforts to 
detect and foster SRL strategies. We used Gaussian Mixture Modeling to cluster 
students on five SRL strategies in problem solving (PS)—measured via SRL detectors 
grounded in Winne’s SMART model (2017). Seven distinct SRL profiles emerged from 
the data, which were examined for their relation to math beliefs, anxiety, and PS 
measures. Findings show that SRL profiles with high proficiency across multiple SRL 
skills achieved higher accuracy, spent more time on pre-tests, and reported more 
opportunities to share their math thinking. These students also frequently engaged in 
monitoring and translation. Notably, profiles with strong assembling skills 
underperformed peers who balanced SRL strategies with relatively higher monitoring 
and translating. Overall, these results highlight the dynamic relationship between SRL 
and math beliefs in PS, and suggest emerging profiles to design tailored interventions.  
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1. Introduction 
 
Self-regulation is important for effective learning and academic achievement. Engaging in self-
regulated learning (SRL) improves outcomes; yet, fostering SRL skills in students remains 
challenging and requires targeted, personalized support (Schunk, 2001). Recent work on 
automated SRL detection has leveraged trace data to capture fine-grained behaviors 
(Azevedo et al., 2012), with an increasing shift in focus from measuring to fostering SRL skills 
(Bouchet et al., 2013; Ting-Chia, 2024). Automated detectors can track individual SRL 
behaviors in real time and inform adaptive scaffolds. However, designing separate scaffolds 
for each SRL skill detector is resource-intensive and may overlook how strategies naturally 
co-occur in problem-solving (PS). Instead, grouping learners based on similar SRL behavior 
profiles offers a scalable approach to personalized support.  

One way to identify learners with common SRL behaviors, as explored in multiple 
projects, is through clustering techniques (Gasevic et al., 2017), which has provided insights 
that advanced both theoretical and empirical understanding of SRL. A growing body of work 
employs various clustering methods to form groups for targeted support (Bouchet et al., 2013; 
Ting-Chia, 2024). These clustering approaches have shown connections to learner 
engagement and achievement, with profiles characterized by SRL difficulties correlating with 
poorer outcomes (Farhana et al., 2021). Grounding clustering analyses in established SRL 
theories enhances the effectiveness and relevance of the research and informs scaffold 
design. Winne's SMART model (2017) with cognitive behaviors of searching, monitoring, 
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assembling, rehearsing, and translating, is widely applied in empirical SRL studies (Azevedo 
et al., 2012; Farhana et al., 2021). Our study uniquely integrates a suite of automated SRL 
detectors based on Winne’s (2017) model to capture students’ SRL behaviors, and then 
clusters detectors’ outputs to identify distinct learner subgroups for targeted support. 

The relationship between math beliefs, anxiety, and SRL is complex and cyclic 
(Maloney & Beilock, 2012). Effective PS involves more than cognitive strategies; it is heavily 
influenced by learners’ beliefs and affect (Pekrun et al., 2017). Students’ epistemic beliefs, 
such as viewing math merely as rule memorization, shape their SRL behaviors, where positive 
beliefs improve persistence and strategizing while negative ones reduce them (Dweck, 2014). 
Math anxiety further disrupts strategy selection and progress monitoring (Maloney & Beilock, 
2012). However, limited work has examined combinations of SRL skills necessary for effective 
PS and math beliefs. This study seeks to address that gap by investigating how SRL behaviors 
co-occur in math PS and their interaction with students’ math mindset and beliefs within 
CueThink, an online math platform. The study is driven by two main questions: i) What distinct 
SRL profiles emerge in math PS (based on distinct SRL strategies’ usage)?, ii) How are these 
SRL profiles associated with measures of PS, math beliefs, and anxiety? 

 
 

2. Methods 
 
2.1. Learning Platform: CueThink 
 
This study is based on CueThink, an online platform that scaffolds math PS and promotes 
regulation. In CueThink, students complete “Thinklets” math problems that follow 4 phases 
based on Winne (2017): in the Understand phase, they identify what’s given and asked, and 
note observations; in Plan, they select strategies and outline steps for solving; in Solve, they 
record screencast explanations using mathematical tools; and in Review, they refine their 
solutions via a guided checklist. Students move freely between phases as needed. Data was 
collected from 230 7th-8th grade students at a suburban Eastern U.S. middle school in 2022–
2023 for 768 problems. Pre- and post-tests were administered at the start and end of the year.  
 
2.2. SRL Detectors used for Clustering 
 
SRL strategies were detected from Zhang et al.’s (2022a) detectors developed using 
qualitatively coded SRL behaviors from trace data, aligned with Winne’s SMART model 
(2017). They were validated for generalizability using 10-fold student-level cross-validation, 
using Area Under the ROC Curve (AUC) as primary metric (chance AUC = 0.5; perfect = 1.0), 
and checked for algorithmic bias (see Zhang et al., 2022). The SRL detectors were developed 
for i) numerical representation (NR; AUC = 0.894), showing learners’ understanding of 
numerical components, and ii) contextual representation (CR; AUC = 0.813) for noting 
contextual details-- both classified as Assembling. iii) Data transformation (DT; AUC =0.815), 
as students manipulate data to find a solution (Translating). iv) Following plans (FP; AUC = 
0.808) as correctly including chosen strategies into the plan (Monitoring), and v) incorporating 
information (II; AUC = 0.803) as correctly including previously assembled information into the 
plan (Rehearsing). These SRL detectors identified students’  SRL processes in the Understand 
and Plan phase within each problem they solved, using their interaction data. The usage of 
the 5 SRL strategies was calculated for every student across all their solved problems based 
on the probability outputs of the 5 SRL detectors, which was then used as input to clustering. 
 
2.3. Research Instruments 
 
Three PS measures were used: i) Accuracy Score, with one PS item given per trimester, with 
items from a standard curriculum. ii) Normalized learning gains (LG), calculated as (post-
pre)/(1-pre) when post>pre and (post-pre)/pre when post<=pre. iii) Duration of Pre & Post test, 



 

seconds spent from the start to the end time on test. We measured math beliefs using three 
SRL subscales (0–100) from the abbreviated Indiana Math Beliefs Scale (Cipora et al., 2015): 
Speed Orientation (4-items), the degree to which a student values thinking deeply (100) over 
the speed of solving math problems (0); Nature of Math (7-item), whether students see math 
from a constructionist lens (100) or as rigid and non-creative (0); Math Share, a single-item 
asking about the opportunities that students have to talk about math. Math anxiety was 
assessed with the 9-item Modified Abbreviated Math Anxiety Scale (Carey et al., 2017), slightly 
modified for American English, scored 0–100, with two factors—Learning and Evaluation.  
 
2.4. Gaussian Mixture Modeling (GMM) clustering 
 
We used Gaussian Mixture Modeling (GMM) clustering, with oval-shaped covariance and an 
outlier threshold of 0.7, to cluster the proportion of strategy usage based on each student’s 5 
SRL detector outputs. The function returned probabilities of a data point belonging to each 
cluster. We evaluated different N of clusters using the Bayesian Information Criterion (BIC), 
Akaike Information Criterion (AIC), and Silhouette score. Overall, 7 clusters performed best.  

Differences in PS and survey measures across SRL clusters were tested using the 
Kruskal–Wallis (KW) H test, a nonparametric test for non-normal continuous data. A significant 
result indicated that at least one cluster differed. For those measures, pairwise Mann–Whitney 
U tests identified the cluster pairs that differed, limiting comparisons to reduce Type I error. 
Benjamini–Hochberg correction was applied to control the false discovery rate and mean ranks 
were used to determine which cluster exhibited higher/lower values for the measures. 
 
 
3. Results 
 
3.1. RQ1: Examining SRL Profiles from GMM Clustering 
 
Students were clustered by their SRL strategy use; Table 1 lists each cluster’s median of 
variables (NR, CR, DT, DP, II). Each median was classified relative to its overall detector 
distribution percentiles (Table 2): low(<25th), moderately low(25th to <50th), intermediate(50th), 
moderately high(>50th to <75th), and high(>=75th). Cluster names reflect these labels— 
“advanced” for high or moderately high levels, “intermediate” for median levels, and “beginner” 
for moderately low levels—omitting skills at low levels except in clusters with uniformly minimal 
use. E.g., A’s NR median(0.87) is between 50th(0.77) and 75th(0.95) percentiles, and is labeled 
moderately high. Clusters are ordered from the most advanced to emerging SRL strategists. 
 
Table 1. Cluster Medians for 5 SRL strategies, shaded as per detector distribution of each 
strategy (see Table 2), with darker shading indicating higher values 

   Assemble Translate Monitor Rehearse 
  N (%) NR CR DT FP II 

Cluster A 82 (36.1) 0.87 0.85 0.84 0.99 1 
Cluster B 45 (19.8) 0.73 0.69 0.75 0.95 0.99 
Cluster C 52 (22.9) 0.77 0.61 0.64 0.78 0.92 
Cluster D 9 (4.0) 0.92 0.91 0.2 0.44 0.93 
Cluster E 6 (2.6) 0.93 0.2 0.31 0.52 0.85 
Cluster F 27 (11.9) 0.63 0.57 0.37 0.54 0.91 
Cluster G 6 (2.6) 0.22 0.02 0.06 0.7 0.11 

 
Table 2. Detector output distribution 

Level 
     Assemble   Translate   Monitor Rehearse 
NR CR    DT  FP       II 

High.  x ≥ 0.95    x ≥ 0.87 x ≥ 0.85 x ≥ 0.99 x=1 
Mod high  0.77 ≤ x <0.95  .69 ≤ x<0.87 0.7 ≤ x<0.85  0.93 ≤ x <0.99 0.99 ≤ x <1 
Mod low 0.63 ≤ x <0.77 0.51 ≤x <0.69 0.47 ≤ x <0.7  0.74 ≤ x <0.93 0.9 ≤ x < 0.99 
low x < 0.63 x < 0.51 x < 0.47 x < 0.74 x < 0.9 



 

Cluster A (Advanced SRL strategists) is characterized by high levels of CR, FP, and II, and 
moderately high usage of NR, and DT. Learners have high usage of SRL, including rehearsing 
(using information from their plan), monitoring (applying selected strategies), and assembling 
contextual information. While overall SRL engagement is high, some variability was found in 
NR, CR, and DT. All students consistently show high levels of FP and II. 
Cluster B (Advanced Monitors and Translators with intermediate contextual assembling and 
rehearsing) is characterized by moderately high DT and FP, medium levels of CR and II, and 
moderately low NR. These students engage in data manipulation (translation) and follow their 
plan. Strengthening their assembling skills for NR could create a more balanced SRL profile 
for these students. Low variability is observed across students.  
Cluster C (Intermediate Numerical Assemblers, beginner for other strategies) is characterized 
by medium values of NR with moderately low CR, DT, FP, and II. These students engage in 
average amounts of NR math word problems (assembling), but less monitoring, rehearsing, 
and translating. Students had low variability across strategies. 
Cluster D (Advanced Assemblers with beginner rehearsing) is characterized by high CR, 
moderately high NR, moderately low II, and low DT and FP. These students frequently engage 
in problem representation and assembling, and sometimes use rehearsing strategies.  
Cluster E (Advanced Numerical Assemblers only) is characterized by moderately high NR but 
low levels of all other strategies. Students in this group often assemble numerical information 
from math problems, but they do not independently show contextual understanding, DT, FP, 
and II. Low to moderate variability is observed across SRL strategies, other than for DT. 
Cluster F (Beginner Numerical and Contextual Assemblers) is characterized by moderately 
low NR and CR, and low DT, FP, and II. Low variability is seen across strategies, except II. 
Cluster G (Emerging SRL Strategists) is characterized by the lowest usage of all SRL 
strategies. This group represents students who are failing to use these SRL strategies in math 
PS. Low variability is observed across all strategies except NR. 

Overall, Clusters A and B show well-balanced and comprehensive SRL profiles, with a 
range of key processes of assembling, monitoring, rehearsing, and translating. Clusters C, D, 
and E exhibit a mixed pattern of strategy utilization, with learners exhibiting strengths in some 
strategies but struggling to use others (or not realizing they are useful). Clusters F and G show 
minimal usage of SRL strategies, and are likely require support to develop SRL skills. 
 
3.2. RQ2: Association of PS, beliefs, and anxiety measures to SRL profiles 
 
The KW H statistic (Table 3) is used to test differences in the survey measures among clusters. 
 
Table 3. Results from Kruskal-Wallis (KW) H test for measures. Significant values are shaded 

Type Measures Pretest Posttest 
H p H p 

Problem Solving 
(PS) 

Duration (Dur) 
Accuracy (Acc) 
Norm. Learning Gains (LG) 

  20.91 
9.21 
NA 

0.002 
0.162 
NA 

  7.38 
  15.35 
  6.48 

0.288 
0.010 
0.372 

Anxiety mAMAS Anxiety Learning (AxL) mAMAS 
Anxiety Evaluation (AxEV) 

5.80 
1.41 

0.446 
0.965 

4.07 
2.18 

0.67 
0.90 

Beliefs 
IMBS Speed Orientation (Speed) 
IMBS Nature of Math (Nature) 

3.04 
7.04 

0.804 
0.317 

18.79 
12.90 

0.005 
0.045 

 IMBS Math Share 6.23 0.398 13.35 0.038 
 The PS measure of duration of the pre-test was significantly different (p=0.002) across 
at least one cluster pair. By the post-test, differences in duration between clusters were not 
observed. There was no difference among clusters in accuracy in the pre-test, however, there 
was a significant difference between clusters for the post-test (p=0.010). 

No cluster differences were observed for learning gains or either form of anxiety. 
However, all three math belief constructs -- measure of speed orientation, nature of math, and 
math share -- had significant post-test differences among clusters (p=0.005, 0.045, 0.038) but 
not the pre-test (p=0.804, 0.317, 0.398), meaning the SRL usage clusters had different beliefs 

Cluster C: Intermediate 
Numerical Assemblers with 
other beginner SRL strategies 



 

on what math was about, growth mindset in math, sharing math ideas, and on importance of 
thinking deeply over quickly on a math problem. Differences at post but not pre suggest that 
these beliefs may have been influenced by students’ experience of using SRL strategies to 
solve problems in CueThink for a year, although a between-conditions comparison would be 
needed to be certain. Next, pairwise Mann-Whitney U tests were conducted for significant KW 
test measures (i.e. pre-test duration, and post-test measures of accuracy, speed, and nature). 

 
Table 4. Pairwise Mann-Whitney U tests only with p <0.05; significant values after B&H 
correction are shaded. 

 Pre Duration. Significant differences were found in the time taken to finish pre-test 
between clusters A and C, and A and F (see Table 4). Students in cluster A spent more time 
on the pre-test than those in C and F, suggesting that advanced SRL strategists invested more 
time during initial assessment. In contrast, students with lower and intermediate SRL strategy 
usage spent less time, possibly indicating less engagement or cognitive effort . These effects 
were not found for the duration of the post-test, however, perhaps due to familiarity with the 
test, or due to practice with similar math problems in CueThink for a year. 

Accuracy at Post. There were significant post-test accuracy differences between 
clusters B-D, C-D, D-E, and D-F. Students in C, B, and F achieved significantly higher post-
test accuracy than in D, indicating that students who balance assembling with other SRL 
strategies like translation and monitoring (Clusters C and B), or even beginners (Cluster F), 
have higher accuracy than those focusing solely on assembling skills (Cluster D). Conversely, 
Cluster D had higher post-test accuracy than E, suggesting that contextual understanding of 
the problem may support better performance.  

Speed Orientation Post. For this measure, a higher value indicated greater preference 
for deep thinking over speed wile solving problems. Significant differences were found in the 
post-test between Clusters C-D, B-D, and E-D. Based on their mean ranks (B=23, C=26, 
D=4.5, E=3.5), students in C and B valued deep thinking over speed more than D, suggesting 
that C and B cluster students prioritize thoughtful PS while engaging deeply with concepts. In 
turn, D valued deep thinking more than E. Cluster E students, frequently engaged in NR but 
had low usage of other SRL strategies and preferred solved problems more quickly. 

Math Share Post. Significant differences were found in the post-test Math Share scores 
between Cluster B and Cluster F (p=0.03). Students in B reported sharing their mathematical 
thinking in class more than Cluster F, based on their mean ranks (B=23, F=14). This suggests 
that students with lower levels of SRL strategy usage may perceive fewer opportunities to 
share their mathematical ideas in class. 

Nature of Math Post. Significant differences were observed in post-test perceptions of 
the nature of mathematics between Clusters C and D (p=0.004), and Clusters B and D 
(p=0.017). Clusters C and B hold more constructivist views of mathematics (highlighting 
creative, exploratory, and interconnected nature of math) than Cluster D.  

 

 PS (Pre) PS (Post)                             Beliefs (Post) 
 Dur Acc* Share Speed Nature 

  U p U p U p U p       U p 
A vs. B  - - - - 1042.5 0.03 983.5 0.01 - - 
A vs. C 2555.5 0.002 1354.5 0.036 - - - - 1073 0.01 
A vs. D  445 0.04 - - - - 397.5 0.02 - - 
A vs. E 370 0.015 116 0.049 - - 101 0.03 - - 
A vs. F 1391 0.001 583.5 0.027 - - - - - - 
B vs. D - - 213 0.012 - - 231.5 0.002 210 0.017 
B vs. F 689.5 0.03 - - 685.5 0.003 625 0.036 - - 
C vs. D - - 228 0.016 - - 240.5 0.008 248 0.004 
C vs. F - - - - 703.5 0.021 - - - - 
D vs. E - - 4 0.018 - - 0 0.001 - - 
D vs. F - - 111 0.02 - - - - - - 
E vs. F - - - - - - 34 0.04 - - 



 

4. Discussion and Conclusion 
 
This study identified 7 student SRL profiles, revealing differences across the use of 5 SRL 
strategies, math problem solving (PS), and beliefs. Key findings show that students in clusters 
with a higher proficiency and balance of SRL skills (cluster A and B) have better PS accuracy, 
spent more time on the pre-tests and reported sharing of their math thinking than clusters with 
lower usage of fewer SRL skills (cluster E and F). Results further show that these clusters A 
and B integrate considerable usage of monitoring and translating strategies, processes critical 
for learning (Winne et al., 2017), whereas other students (in cluster E and F) primarily engaged 
in NR and sometimes in CR (assembling) but not as much in other SRL strategies. Notably, 
even students with strong assembling (cluster D) underperformed peers who balanced SRL 
strategies with a relatively higher monitoring and translating (B, C, and F), illustrating the 
importance of a well-rounded and diverse SRL profile in general, and specifically these two 
SRL strategies, for math problem solving. Post-test differences in beliefs (e.g., cluster D 
showed a lower preference for deep thinking over speed in solving math than clusters B and 
C, but higher than cluster E; and cluster D exhibited more fixed-mindset, maladaptive math 
beliefs than B and C, who showed a growth mindset) further highlight the nuances of how SRL 
experiences shape math beliefs over time. 

A limitation of the study is seen in the small sample sizes for Clusters D, E, and G, 
suggesting these results should be replicated in the future with larger datasets across more 
types of content and grade levels. Also, the absence of significant links between SRL 
strategies and anxiety contrasts with prior work (Pekrun et al., 2017), and merits further 
investigation. Longitudinal analyses could also clarify whether cluster membership shifts as 
students gain experience. Correlating to additional motivational and affective variables (e.g., 
self-efficacy) could enrich interpretation. Overall, this study highlights the dynamic interplay 
between SRL and evolving math beliefs, with potential to inform future studies for personalized 
learner support based on their SRL gaps and math beliefs. In addition, the ML-detector–based 
clustering pipeline can be used to automate support for students with distinctive SRL profiles. 
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