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Abstract: Engineering design is a natural addition to STEM+C education, as it moti-
vates students to integrate science and computing while engaging in problem-solving
tasks. However, K-12 students face challenges in applying reasoning and critical think-
ing skills to find “optimal” design solutions. In this paper, we investigate students’ be-
haviors when they are engaged in engineering design tasks by analyzing the se-
quences of the design solutions they generate to find an “optimal” solution. We col-
lected data from sixth-grade students (N=88) working in pairs in an NGSS-aligned earth
sciences curriculum. Using Markov Models, we visualized students’ solution progres-
sions and identified instances where they became stuck in sub-optimal states. Our re-
sults show that (1) students’ scores improved significantly from pre-test to post-test; (2)
students’ problem-solving behaviors could be categorized as design space explorers
and conservative designers; and (3) students’ problem-solving behaviors influenced
the quality of their final designs. Additionally, our findings underscore the importance
of supporting design space exploration as a key aspect of scaffolding engineering de-
sign activities.
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1. Introduction

Engineering design (ED) helps advance STEM+C education, enabling students to combine
scientific and computational concepts and practices to solve real-world problems. ED builds
21st-century skills, such as critical thinking, creativity, collaboration, and communication (Al
& Tse, 2023). The National Research Council (2012) and the Next Generation Science Stand-
ards (NGSS Lead States, 2013) underscore the importance of integrating ED into K-12 sci-
ence curricula to foster problem-solving skills, design thinking, and deeper engagement with
core scientific practices.

Science-integrated engineering curricula offer a promising approach to helping stu-
dents learn by applying science concepts to meaningful design tasks (Kelly & Cunningham,
2019). Through computational modeling and simulation-based learning environments, stu-
dents can apply their disciplinary knowledge in authentic contexts and develop strategies to
search the design space and find an optimal design solution that meets specified constraints
(Zhang et al., 2019). However, students often find engineering design tasks challenging. They
must understand the scientific principles and also navigate complex design spaces where
trade-offs, such as cost versus performance, must be carefully considered (Purzer et al.,
2015). Prior research shows that students struggle to identify and manage these trade-offs
and often rely on trial-and-error approaches instead of systematic reasoning or science-based
justifications (Purzer et al., 2015; Zhang et al., 2019; Hutchins et al., 2021). Compounding this
challenge, teachers often lack formal training in engineering design, making it difficult for them
to support their students (Radolff & Capobianco, 2021). As a result, students often find it diffi-
cult to develop and apply systematic principles and critical thinking skills that support gener-
ating high-quality or optimal engineering design solutions.



In this paper, we examine the design solutions created by sixth-grade students partic-
ipating in the Water Runoff Challenge (WRC), a three-week STEM+C curriculum that seam-
lessly combines earth science, engineering, and computational thinking (Basu et al., 2022).
Students investigate the water absorption and runoff characteristics of different surface mate-
rials after heavy rainfall. They learn through hands-on experiments and then develop concep-
tual and computational models that estimate water runoff for various materials and rainfall
amounts, using their absorption capacities and the principle of conservation of matter.

The students work together in pairs to extend their computational models to redesign
a schoolyard, aiming to reduce water runoff while meeting constraints related to cost, acces-
sibility, and functionality for the play areas. They are encouraged to explore the design solution
space and submit their “best” designs that satisfy all specified criteria. By analyzing the se-
quence of design solutions students generate as they strive for their “best” solutions, our re-
search seeks to understand how students navigate the solution space, their awareness of the
design constraints, and how their problem-solving patterns affect the quality of their final de-
signs. Specifically, we analyze data collected from the WRC learning environment to address
the following research questions:

RQ1: How effective is the WRC curriculum in helping students develop engineer-
ing design knowledge? To answer RQ1, we analyzed students’ learning gains derived from
their pre- and post-test scores.

RQ2: How do students’ search patterns for design solutions vary as they work
toward the optimal solution? To address RQ2, we (i) applied an Expectation Maximization
Clustering algorithm to characterize their search patterns, and (ii) studied their problem-solv-
ing behaviors using Markov models.

RQ3: How are the different problem-solving behaviors related to the quality of
the design solution reported by the students? To address RQ3, we developed scoring
schemes to compare the final design solutions of students from the two different clusters.

The results demonstrate that the WRC curriculum effectively supports student learning
in science, computational thinking, and engineering design. Findings highlight the need for
scaffolding design space exploration and trade-off analysis to help students optimize their so-
lutions. Insights from this work can inform curriculum design, and the development of person-
alized scaffolds to foster effective integration of engineering design into K—12 classrooms.

2. Literature Review

NGSS advocates for integrating engineering practices in K-12 education (NGSS Lead States,
2013); research on students’ engineering design (ED) processes primarily focuses on high
school students. For instance, Yu et al. (2020) used structural equation modeling to show that
the design process mediates the link between scientific knowledge, critical thinking, and de-
sign quality. Purzer et al. (2015) studied high school students designing energy-efficient build-
ings, highlighting challenges in trade-off analysis. Xing et al. (2023) applied learning analytics
to identify challenges related to behavioral features in an “energy-plus” model that was used
to design a house with minimal energy requirements.

The limited research on how middle schoolers engage with ED includes Bowen et al.
(2016), who noted that while prior knowledge affects initial performance in virtual bridge sim-
ulations, iterative practice can help fill these knowledge gaps. Similarly, Du et al. (2025) have
studied the dynamics between science concepts and design behaviors of different perfor-
mance groups using Markov Chain analysis. Montgomery et al. (2020) used click-stream data
to calculate sub-behaviors— exploration and systematicity— for understanding students’ opti-
mization behaviors. Still, these cumulative metrics fail to capture temporal transitions from
exploratory to systematic optimization. Prior work by Zhang et al. (2019) used 3-D visualiza-
tions of individual students’ trajectories to demonstrate how middle school students struggle
with navigating trade-offs. While trying to satisfy one constraint, they end up compromising on
another. Zhou et al. (2021) observed that high-performing middle school students effectively
integrated all verbal, visual, and physical modalities in a toy design workshop. However, such
analysis needs to be done individually and is not scalable (e.g., Kelly & Cunningham, 2019;



Wendell et al., 2017). We need to look at groups of students as a whole to find generalizable
trends in students’ problem-solving behaviors. To our knowledge, the process of evolution of
students' designs in a simulation-based design environment remains underexplored.
Evaluating and providing feedback on ED solutions is challenging, as the ED activities
comprise several objective and subjective design criteria. Goldstein et al. (2016) developed a
scoring criterion for ED projects, taking the subjectivity into account by adopting a Trade-off
Value approach that compares designs based on their performance on technical, economic,
and human factors. However, the suggested approach uses percentile calculation, which can
only evaluate an ED solution relative to other students’ solutions. On the other hand, the scor-
ing criteria in previous works (Zhang et al., 2019) did not fully consider human factors, such
as accessibility, of the ED challenge in the WRC curriculum. Hence, we adopted the two
frameworks to develop an objective metric to evaluate the ED solutions while accounting for
technical, economic, and human factors. It is important to understand how middle school stu-
dents' design behaviors evolve over time, and how we can analyze these behaviors on a scale.
In this research, we aim to extend our understanding of middle school students’ problem-
solving behaviors in ED activity by studying the progression of students’ design solutions.

3. The WRC Curriculum

The WRC curriculum (Basu et al., 2022) includes 12 lessons over three weeks, with daily 45-
minute classes conducted in-person, combining traditional pen-and-paper tasks with activities
in a computer-based learning environment. Students start with a pre-test and finish with a
post-test to evaluate their learning gains. The curriculum covers earth science concepts such
as the conservation of mass, rainfall, absorption, and runoff, helping students understand the
challenges of urban runoff. They investigate how different surfaces manage rainwater and
engage in an Engineering Design Challenge to design a schoolyard that reduces runoff after
a rainfall of 2 inches. Students create designs and develop models to simulate and improve
water runoff solutions based on the given criteria on the ED interface, as shown in Figure 1.

Students design a low-runoff schoolyard within a $750,000 budget in an interactive
computer environment. The schoolyard is visualized as a 4x4 grid with 12 editable squares
selectable from six materials: concrete, permeable concrete, natural grass, artificial turf, wood
chips, and poured rubber. Each material varies in cost, absorption, and accessibility. Poured
rubber is expensive (cost=$187,500), but it offers high absorption (1.2 inches) and is fully
accessible. In contrast, wood chips (cost=$37,500) provide moderate absorption (1.0 inches)
but lack accessibility. To solve the design challenge, students need to navigate these trade-
offs. As students adjust their designs, the cost updates in real time. They can evaluate their
design by clicking the “Test Design” button and entering a rainfall amount to visualize total
absorption and runoff values. The Design History table (see Figure 1) tracks all tested designs.
The engineering design challenge has 6'? potential solutions, and approximately 6° meet the
runoff, cost, and block constraints detailed in Table 1.
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Figure 1. WRC Engineering Design (ED) Environment. The design on the left represents the
optimal solution containing 6 permeable concrete, 5 natural grass, and 1 woodchips square.



4. Methodology

This section presents the study design, data collection, measures, and analytical methods,
including scoring pre- and post-tests to calculate learning gains, qualitative states, and quan-
titative scores for analyzing students’ engineering design solutions, and the statistical and
clustering methods used for understanding design behaviors.

4.1 Study Design and Participants

Our study involved 170 sixth-grade students from an urban public school in the southeastern
U.S., comprising 63% White, 17% Black/African American, 7% Hispanic, 9% Asian, and 4%
other races, with 51% female and 49% male students. The Vanderbilt University Institutional
Review Board approved the study with parental and student consent. The two participating
science teachers underwent professional development before the study and co-taught the
WRC curriculum with researcher support. The curriculum featured individual and collaborative
tasks where students worked in pairs. For engineering design activities, pairs used a shared
user ID in the web environment and submitted their final designs in the shared notebook.
Students could freely create and test as many solutions as they wished during three class
periods. The pairs generated 2 to 47 design solutions (M=19.86, SD=10.99). We analyzed
pre-post tests, submitted designs, and design sequences from the design history logs col-
lected in the WRC environment. After excluding incomplete records, our dataset comprises 88
students’ data (44 pairs) and 874 generated engineering design solutions.

4.2 Measures

Learning gains: To answer RQ1, we analyzed students’ responses to validated pre- and post-
test included in the WRC curriculum. The tests measure students’ knowledge in Science,
Computational Thinking (CT), and Engineering Design (ED), and the tests have a section on
each topic (Basu et al., 2022). Responses were graded by a researcher and an external grader
using validated rubrics. After two rounds, the graders achieved an average Cohen’s Quadratic
Weighted Kappa (QWK) of 0.9, indicating strong inter-rater reliability (McHugh, 2012).

States of Engineering Design (ED) Solutions: To answer RQ2 and assess the qual-
ity of students’ ED solutions, we organized their designs hierarchically by runoff levels and
compliance with the design constraints. Designs were categorized based on runoff generated
from two inches of rainfall: those below the median runoff value across all design solutions
were classified as Low Runoff, while others were labeled as High Runoff. Next, we assessed
the designs by determining their compliance with the design constraints. Designs that met
neither the cost criterion nor the blocks criteria were labeled as Nothing Satisfied. Those that
met one of the two criteria were identified as Cost Satisfied or Blocks Satisfied. Designs ful-
filling both criteria were classified as All Satisfied. This process resulted in 8 categories, but
we combined the high runoff designs into one state due to their smaller number.

In summary, we classified the designs into five states: (i) High Runoff (above-median
runoff); (ii) NS-Low Runoff (low runoff, no design constraints met); (iii) CostS-Low Runoff (low
runoff, only budget criterion met); (iv) BlockS-Low Runoff (low runoff, meeting blocks criteria
only); and (v) AlIS-Low Runoff, for designs meeting all constraints, deemed high quality. This
categorization provided insights into students’ search patterns, including how they navigate
the design space, prioritize constraints, and approach design challenges. While these states
primarily reflect solution quality in terms of constraint satisfaction and do not directly measure
cognitive processes, analyzing transitions between them using Markov Models allows us to
infer consistent problem-solving patterns and strategies.

Final Design Solutions Score: To answer RQ3, we developed a scoring scheme to
evaluate students’ final designs systematically. Following Goldstein et al (2016), we calculated
sub-scores for the design challenge's technical (minimizing runoff under two inches of rainfall),
economic (keeping redesign costs below $750,000), and human factors (ensuring accessibility,
grassy field, play area, and parking).



Figure 1 shows the optimal design for this challenge, achieving the lowest possible
runoff of 1.07 inches with a cost of $693,750 while meeting the accessibility and facilities cri-
teria, which is collectively termed the blocks criteria. Our 12-point scoring system assigns up
to 5 points for the runoff value, with full points for the optimal runoff and O for incomplete
solutions. The cost criterion contributes up to 3 points: 2 points for staying under budget, plus
one for improving cost-efficiency towards the optimal design cost. The blocks criteria are
scored binarily: 1 point for meeting the accessibility criterion (at least six accessible squares)
and 1 point each for satisfying the grassy field, play area, and parking/hardcourt requirements.
This scoring scheme, detailed in Table 1, was used to assess the final schoolyard designs
submitted by the students at the end of the Engineering Design activity. As it was developed
post-hoc, students relied on their judgment to evaluate their design solutions during the activity.

Table 1. Design constraints of the ED task and the proposed scoring scheme.

Criteria Criteria and Score Description Sub-
score
Runoff Design should minimize runoff for 2 inches of rainfall.
Scored on a linear scale (0-5), with the optimum runoff value getting a 5
score of 5, and higher runoff solutions getting lower scores.
Cost Crite- Design must not exceed the budget of $750,000.
rion 2 points for meeting the budget constraint, and a linear scale (continu- 3

ous, 0-1) for getting closer to the optimal cost.
Accessibility  Design must have 6 squares made of accessible materials (concrete,

Criterion permeable concrete, artificial turf, or poured rubber). 1
Binary score for meeting the accessibility criterion.

Facilities (a) Field: Design must have 4 squares of grassy field made of grass or 1

Criteria artificial turf.

(b) Play area: The Design must have 1 square for the play area made of 1
wood chips or poured rubber.

(c) Parking and Hardcourt: Design must have 5 squares for parking 1
and hardcourt made of concrete or permeable concrete.

Awarded binary scores for meeting each of the Facilities Criteria.

Total Score 12

4.3 Data Analysis Methods
4.3.1 Effectiveness of the WRC Curriculum - Statistical Tests

To evaluate the effectiveness of the curriculum, we assessed whether the scores for each
section (Science, CT, and ED) on the pre-post tests followed a normal distribution using the
Shapiro-Wilk test. Because the data was not normally distributed, we used the non-parametric
Wilcoxon signed-rank test to compare student performance on pre- and post-tests.

4.3.2 Identification of Problem-Solving behaviors - FOMM and Clustering analysis

We identified clusters based on problem-solving behaviors using a two-step method involving
a First-Order Markov Model (FOMM) and Expectation-Maximization (EM) clustering, following
a methodology inspired by prior process mining research (Gatta et al, 2017; Srivastava et al,
2022). First, we classified students’ designs into the five states, representing the quality of
design solutions (detailed in Section 4.2). We then calculated the sequences of design states
for each student pair — the sequences represent the progression of quality of the designs
generated iteratively over multiple sessions. Next, using the pMineR package in R (Gatta et
al, 2017), we trained a First-Order Markov Model (FOMM) to estimate the transition probabil-
ities between the states, creating transition matrices for each pair’'s sequence. These transition
matrices were input to an EM clustering algorithm to identify distinct problem-solving profiles.
The Elbow method suggested an optimal solution of k=2 clusters. Model convergence was
monitored using the log-likelihood change across iterations, and cluster performance was



evaluated using within-cluster and between-cluster distance metrics derived from the FOMM-
based representations. To further interpret the identified clusters, we employed descriptive
statistical analysis to summarize key characteristics and differences among the clusters, and
FOMM process mining to investigate the transitions between different design states within
each cluster. The transition matrices and subsequent clustering reveal consistent patterns in
design changes, suggesting intentional problem-solving rather than random modifications.

4.3.3 Influence of Design Behaviors on Final Design Solutions - Statistical Tests

We used descriptive analysis and Mann-Whitney U tests to investigate how different design
behaviors influenced the final design solutions that students submitted in their notebooks.

5. Results
5.1 RQ1: Effectiveness of the WRC curriculum

The pre- and post-test analysis for the 88 students showed that the intervention produced
significant learning gains (p<0.001) for all three domains— Science, CT, and ED. The accumu-
lated average scores (maxscore=40) improved from 25.47 (SD=5.95) to 30.34 (SD=4.64)
points, showing a significant improvement (W=264.5, =—0.751, p<0.001). Science scores
(maxscore=12) improved from 7.76 (SD=2.59) to 8.83 (SD=2.33) (W=599.5, r=—-0.603,
p=0.001); CT scores (maxscore=13) improved from 8.06 (SD=2.96) to 10.556 (SD=2.02)
(W=268.5, r=—0.749, p<0.001); and ED scores (maxscore=15) from 9.64 (SD=2.46) to 10.97
(SD=2.14) (W=612.0, r=—0.597, p<0.001).
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Figure 2. (a) State frequencies over design iterations for the two clusters. Box plots of (b)
average cost of generated designs; and (c) Final Design Scores of students in the two clusters.

5.2 RQ2 (i): Identifying Problem-Solving Behaviors

Using the clustering approach (see Section 4.3.2), we identified two distinct clusters of student
pairs characterized by their exploration strategies. Figure 2(a) shows state frequencies over
design iterations for the two clusters. Notably, pairs in Cluster 2 spent more time in the CostS-
Low Runoff state, indicating a stronger emphasis on cost optimization. The box plot (Figure
2(b)) also shows that the average cost of designs in Cluster 2 was lower (M=$726,023.45,
SD=55,513.41) than Cluster 1 (M=$776,305.04, SD=73,957.01). This difference was statisti-
cally significant (p=0.02, Mann—-Whitney U=339.0, Z=2.333, r=0.352). Given their cost-focused
and cautious strategy, we refer to Cluster 2 as conservative designers. In contrast, students



in Cluster 1 explored a wider range of design states, demonstrating a more exploratory ap-
proach; we therefore refer to this cluster as design space explorers.

5.3 RQZ2 (ii): Understanding Students’ Engineering Design Process

To analyze the exploration strategies of the two clusters—conservative designers (N=20) and
design space explorers (N=24)—we constructed First-Order Markov models (FOMM) based
on the sequences of their design solutions. Figure 3 presents a comparative FOMM for the
two clusters, where states (see Section 4.2) represent the quality of design solutions, while
edges indicate transitions between states with corresponding probabilities of transition.
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Figure 3. First-order Markov models for “design space explorers” and “conservative design-
ers”. Only transitions with probabilities > 0.1 are shown. Labels show the transition probability
for design space explorers | conservative designers. Colored edges indicate probability differ-
ences >0.1 (pink: higher for design space explorers; blue: higher for conservative designers).
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The conservative designers typically began from suboptimal states, such as High Run-
off (prob=0.4), and only a few student pairs achieved the optimal state (AllS-Low Runoff) early
in their search process (prob=0.25 of generating the optimal design in the first step). The stu-
dents initially generated a sequence of High Runoff solutions, often not succeeding in improv-
ing their solutions (prob=0.39) or moving to another sub-optimal state before eventually finding
an optimal solution. Interestingly, there are no incoming edges to the NS-Low Runoff state,
suggesting students achieved low runoff through various approaches and did not backtrack
once they had satisfied at least one of the design constraints.

A recurring theme among the conservative designers is their focus on cost-driven tran-
sitions. The CostS-Low Runoff state is the only sub-optimal state with incoming edges from
every other state, indicating that students consistently prioritized optimizing the cost of their
designs regardless of their starting point. Moreover, the only outgoing edge from the CostS-
Low Runoff state leads to the optimal state, suggesting that students made a concerted effort
to improve cost by either experimenting within the CostS-Low Runoff state (prob=0.62) or they
transitioned to the optimal state (prob=0.18) by meeting the blocks criteria as well. The back
and forth between the optimal AllIS-Low Runoff state and the suboptimal CostS-Low Runoff
state shows their cost optimization behavior.

On the other hand, design space explorers began their exploration with either opti-
mal(prob=0.46) or High Runoff states (prob=0.42). Once in the AllS-Low Runoff or High Runoff
states, design space explorers were likely to remain there (with probabilities of 0.65 and 0.52,
respectively). The design space explorers were more willing to experiment with different de-
signs early in their process, as evidenced by the loop between the NS-Low Runoff and High
Runoff states, suggesting that they were more willing to sacrifice low runoff in their pursuit of



satisfying the design constraints. A commonality in both the conservative designers and the
design space explorers is that there are no incoming edges to the BlockS-Low Runoff state,
indicating that both groups prioritized the other design constraints, like the cost criterion over
the blocks criteria. The Markov model in Figure 3 also suggests that design space explorers
prefer to minimize runoff while addressing design constraints simultaneously, for instance, in
the NS-Low Runoff state, where design space explorers had a strong tendency to remain
(prob=0.41) before eventually transitioning directly to the optimal state (prob=0.26).

5.4 RQ3: Influence of design behaviors on Final Design Solutions

We graded the final designs submitted in their notebooks using the scoring criteria described
in Section 4.2. We found that design space explorers (M=11.23, SD=0.91) scored higher than
the conservative designers (M=10.62, SD=0.98) (see Figure 2(b)). The Mann-Whitney U test
showed a significant difference (p=0.046, U=323.5, Z=1.968, r=0.297) among the clusters.
Further, analysis revealed that 10 of 20 conservative designers (50%) and 19 of 24 design
space explorers (79.2%) submitted an AllS-Low Runoff designs; the remainder submitted sub-
optimal designs with various constraint combinations. 10 conservative designers (50%) and
three design space explorers (12.5%) submitted designs that achieved low runoff and met the
cost criterion; 1 design space explorers pair (4.2%) submitted designs that only met blocks
criteria; and one design space explorers pair (4.2%) submitted a design that met both the cost
and blocks criteria but had High Runoff. Overall, only four conservative designer pairs (20%),
while 11(45.8%) design space explorer pairs submitted the optimal design achieving 12 points.

6. Discussion

Our results demonstrate significant learning gains (p < 0.001, see Section 5.1), indicating that
the WRC curriculum effectively facilitated students’ understanding of science, computational
thinking, and engineering design concepts. However, only 29 pairs (65.9%) submitted a de-
sigh meeting all constraints with low runoff, suggesting that while most students grasp the
primary concepts of the WRC curriculum, several struggle to apply these concepts effectively
in real-life problem-solving scenarios.

Markov analysis revealed students' diverse approaches in their search for optimal de-
sign solutions. Students struggled to integrate multiple constraints into their decision-making
process— for instance, the loop between CostS-Low Runoff and AllS-Low Runoff suggests that
students’ attempts to optimize one constraint often came at the expense of another— a trend
also seen in prior research (Zhang et al, 2019; Purzer et al, 2015). While trade-offs are inher-
ent in design tasks, the WRC curriculum does not explicitly emphasize the role of trade-off
analysis in the problem-solving process. Incorporating this analytical perspective into the cur-
riculum could help students develop critical design thinking skills.

Analysis of the submitted designs reveals that design space explorers indeed reported
better design solutions than conservative designers. More design space explorers submitted
an AlIS-Low runoff solution, sometimes also the optimal solution, as reported in section 5.4.
This finding also supports the claim that to optimize a design truly, engineers must sufficiently
explore the possible design space (Montgomery et al, 2020) and underscores the need to
encourage such exploration in design activities. We can assert that the patterns observed are
likely intentional design changes rather than random exploration as if students’ actions were
random, optimal solutions would be unlikely or take considerably longer to reach as there are
6'? possible solutions to this engineering design challenge.

Additionally, we found that students’ final designs prioritized low runoff and the cost
criterion, values that are visually emphasized on the design interface, while overlooking the
blocks criteria. “Informed” designers use words and graphics when considering plans or justi-
fying decisions (Purzer et al, 2015). Our findings support this, and we conjecture that display-
ing additional criteria (e.g., the blocks criteria) within the ED interface may encourage students
to focus more holistically on all design constraints. In future studies, we will incorporate this to
display the design criteria on the interface.



Some students generated better solutions than the ones they reported as their final
submissions. Our previous investigations (Zhang et al, 2019) found that fewer than 10% of
students reported their best design. Recognizing this, we added a “design history” table in the
simulation environment, allowing students to compare their current designs to ones they gen-
erated earlier. We conjecture that this feature supported students in identifying their best de-
sign, as 15 pairs (34.1%) submitted the “optimal design”, which was the best design they gen-
erated. This finding suggests that supporting the recording and reviewing of design solutions
can scaffold students’ optimization processes.

While the results are specific to the WRC curriculum, our approach to analyzing design
strategies is generalizable. The specific states depend on the problem statement and associ-
ated design constraints, the methods for categorizing solutions, and identifying strategies from
sequences of design solutions are broadly applicable. For other multi-constraint challenges
(e.g., Du et al., 2025; Montgomery et al., 2020; Bowen et al., 2016), solutions can similarly be
divided into states and analyzed for strategy patterns. Future work will test and validate these
methods across other engineering design and open-ended learning environments.

7. Conclusion and Future Work

This paper presents an effective approach to unpacking the problem-solving behaviors of mid-
dle school students by analyzing the sequences of their generated designs. This contributes
to the limited research on the design behaviors of middle school students. Furthermore, the
WRC curriculum is unique as it combines Science, CT, and ED while studying the relationships
between science and engineering design in a manner proposed in the NGSS curricula (Lilly
et al, 2022). The results demonstrate the effectiveness of the WRC curriculum and emphasize
the need for scaffolding exploration to successfully engage with Engineering Design activities.

This research has implications for incorporating Engineering Design tasks into
STEM+C learning environments. Our findings suggest that students require support in per-
forming tradeoff analysis and learning to compare and evaluate their design solutions. One
potential way to assist with tradeoff analysis in these exploratory environments is to display
students' design sequences and the design constraints that must be met on the interface.
Students tend to focus more on the constraints visible on their screens. Future work should
concentrate on effectively scaffolding students to systematically explore design solutions.

This work has limitations. The design histories used in this analysis did not capture
intermediate actions between tests, so the Markov analysis misses nuances of students’ prob-
lem-solving strategies, such as reasons for specific changes from one design solution to the
next. Although clustering analysis suggested distinct groups and FOMM revealed consistent
patterns, further validation of problem-solving strategies will require analysis of student con-
versations during the design sessions. As this was a retrospective analysis, further research
is needed to assess how our approach can improve instruction and scaffolding in classroom
settings. In the future, we aim to leverage online analysis of students’ design solutions to iden-
tify struggling students and to provide targeted support for those using less effective explora-
tion strategies during the design process.
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