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Abstract: In Japanese junior high schools, while digital logs of students' handwritten 
math answers offer utilization opportunities for classroom sharing, manually reviewing 
them is burdensome for teachers, and existing automatic classification methods often 
fail to meet their pedagogical needs. This study, co-designed with teachers, defined 
four pedagogically classification labels, identified their associated handwriting features, 
and subsequently evaluated classification models. Among the models tested, XGBoost 
was most effective, notably meeting our success criterion (precision > 0.5) for teacher 
support on the diagram problem type (0.532), thus demonstrating the practical 
feasibility of this approach. Our findings highlight the importance of a teacher-involved 
approach to designing learning analytics systems for practical classroom use. 
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1. Introduction 
 
In Japanese elementary and junior high schools, students are provided with a digital device 
such as PC, tablets and pen devices for educational purposes through the GIGA School 
Program, and these devices are now used instead of paper for math problem-solving (MEXT, 
2020). This enables the accumulation of students’ handwriting processes as learning logs 
(Ogata et al., 2018), and visualization through the conversion and replay of these logs as 
videos has been achieved (Yoshitake et al., 2020). Teachers can use the replay function to 
observe students’ thought processes regarding their difficulties and diverse ways of thinking, 
share these with the entire class, and create opportunities for mutual learning. 
 However, checking each student's log requires significant time and effort, placing a 
heavy burden on teachers. To reduce the burden on teachers and enable them to quickly 
access answers that match their purpose for sharing answers, it is important to provide support 
for summarizing and classifying the characteristics of each answer. 

While various studies have classified handwritten answers, their criteria are often 
defined by researchers. These have included rule-based models focused on student stumbles 
(Asai et al., 2012), machine-learning for clustering (Yoshitake et al., 2020) or predicting 
performance (Stahovich & Lin, 2016), and LLMs for content recognition (Caraeni et al., 2025). 
However, these approaches did not consider labels required by teachers, even though 
incorporating user perspectives is crucial in Learning Analytics (Mavrikis et al., 2019). 

This study proposed a teacher-involved co-design process for defining classification 
labels and criteria for handwritten math answers. To verify the feasibility of this co-design 
approach, several basic classification models were developed and evaluated. To guide this 
process, we address the following research questions:  
RQ1: Which categories of handwriting process characteristics can be derived from teachers’ 
observations? 
RQ2: Which features of the handwriting process affect the teacher-focused characteristics? 
RQ3: Is it feasible to classify handwritten answers based on teacher-defined labels for real-
world practice? 



2. Context 
 
This study analyzed the handwriting problem-solving processes of 226 first- and second-year 
junior high school students in Japan using the Learning and Evidence Analytics Framework 
(LEAF) system (Ogata et al., 2018). The problems were answered using a pen device on the 
eBook tool (Book Roll) within the LEAF system, and two teachers—one proficient in using its 
analysis tool (Log Palette) for student assessment, and the other an experienced math teacher 
skilled in interpreting answer characteristics—reviewed replay videos of each student’s 
answer using Log Palette (Yoshitake et al., 2020). The dataset comprised 292 description-
type (law of exponents) and 222 diagram-type (inscribed angle theorem) answers, derived 
from three problems of each type presented one problem per page (Figure 1, left). We used 
two problem types because prior research suggests that both student handwriting behavior 
and the characteristics teachers focus on can differ by problem type (Tonosaki et al., 2024). 
 

 
Figure 1. Examples and the Labeling Function of Handwriting Answering Process 

 
 To collect data for analysis, we first asked two teachers to label answers suitable for 
sharing in class, using a Log Palette function that allowed predefined or custom labels to each 
answer (Figure1, right). For the subsequent automatic classification, we used two data types 
from the logs: the performance score (PFM) and 13 handwriting process features (Table 1), 
all of which were standardized per problem type. 
 
Table 1. Handwriting Process Features 

Features Description 
TAT Total answering time (second) 
TNS Total number of strokes 
TNE Total number of erasers 
Speed Whole answering speed (TNS / TAT) 
AD Average of duration 
TSD Total number of short durations (< AD) from each previous stroke 
TLD Total number of long durations (≥ AD) from each previous stroke 
VD Variance of duration 
AST Average of stroke time (second) 
TSL Total number of stroke lengths 
ASL Average of stroke lengths 
ASLS Average of each stroke speed (stroke length / stroke time) 
VSLS Variance of each stroke speed 

 
3. Analysis & Results 
 
3.1 Categorized Labels (RQ1) 
 
We unified and categorized teacher labels through semi-structured interviews and the Card 
Sorting method (Upchurch et al., 2001). In this process, teachers first discussed the meaning 



and criteria for each label and then grouped them based on their practical classroom use. We 
refined these provisional categories, and the final labels and their definitions were confirmed 
by the teachers via email, at which point data saturation was reached. 
 The initial 12 labels provided by teachers, reflecting criteria such as performance, 
content, and stroke movement, were grouped into the four final classification labels. These 
labels, whose definitions are shown in Table 2, had the following distribution: "Standard Model 
Answer" (n=33 Description, n=14 Diagram), "Creative Alternative Answer" (n=15, n=12), 
"Trial-and-Error or Mistake Answer" (n=6, n=68), and "Unclear Process Answer" (n=1, n=37). 
 
Table 2. Categorized Labels and Their Definitions by Teachers (translated) 

 
3.2 Feature Selection & Analysis (RQ2) 
 
To identify characteristic features, we examined the relationship between the features in Table 
1 and categorized labels using two approaches: a teacher-driven questionnaire and a data-
driven analysis. First, in the questionnaire, two teachers rated the relationship between each 
feature and label as 'Positive,' 'Negative,' or 'No Relationship.' Second, for the data-driven 
analysis, we used SHAP to quantify the explanatory power of each feature independently of 
the model (Lundberg & Lee, 2017). We trained an XGBoost model and considered the top five 
features ranked by their SHAP values as highly explanatory for each label. 

Comparing the questionnaire and data analysis (Table 3), several features were 
commonly identified as significant, such as PFM for "Standard Model Answer" (description-
type), TAT for the same label (diagram-type). In contrast, feature selection for “Unclear 
Process Answer” was challenging, as teachers reported 'No Relationship' for the diagram-
type, and insufficient data prevented data-driven analysis for the description-type. 
 
 Table 3. Results of each Feature Selection Method (Positive: +, Negative: -) 

Categorized Labels Definition 
Standard Model 
Answer 

Uses appropriate mathematical notation and terminology, proceeds 
smoothly with sufficient detail, and reaches an expected answer. 

Creative Alternative 
Answer 

An answer reached through an original process, different from the 
model answer. 

Trial-and-Error or 
Mistake Answer 

Regardless of correctness, the answer shows visible trial and error 
or mistakes recognizable by others. 

Unclear Process 
Answer 

Regardless of correctness, the answer includes unclear steps that 
require additional explanation from the student. 

Labels Problem type Questionnaire Data Analysis (SHAP) 

Standard Model 
Answer 

Description PFM+, TAT+, TNS+, 
Speed+ 

TNE+, ASLS-, PFM+, 
VSLS-, Speed- 

Diagram TAT+, TNS-, TNE-, Speed-, 
ASLS+, AD-, TSD- 

PFM+, TAT+, TSD+, AST+, 
VSLS+ 

Creative Alternative 
Answer 

Description TAT-, TSL+ ASLS-, PFM+, AD-, TAT+, 
Speed+ 

Diagram TAT+, TNS+, TNE+, 
Speed+, ASLS+, AD+, TSD- 

TNS+, VD-, AST+, PFM+, 
VSLS+ 

Trial-and-Error or 
Mistake Answer 

Description TAT+, TNE+, AD+ Speed+, AST+, AD-, PFM-, 
ASLS- 

Diagram TNE+, Speed+, ASLS-, 
VSLS+, TSL+, ASL+, AST- 

Speed-, VD+, TLD+, TSD+, 
TNS- 

Unclear Process 
Answer 

Description TAT-, TNS-, Speed-, AD- (Nothing) 

Diagram (Nothing) VSLS+, TNS-, ASL+, TSD+, 
VD- 



3.3 Multi-Label Classification (RQ3) 
 
To verify the feasibility of automatically classifying answers using the teacher-defined labels, 
we evaluated three multi-label classification models, each offering different practical benefits: 
a transparent teacher-driven (rule-based) model, a high-performance data-driven (machine-
learning) model, and a content-aware LLM-driven model. For evaluation, we prioritized macro-
average precision to ensure the reliability of labels suggested to teachers. To define the 
effectiveness criterion for RQ3, we set a success threshold of a precision of at least 0.5. The 
threshold was chosen because it implies that if a teacher reviews two answers flagged by the 
models with a certain label at least one will be correctly classified, which we considered a 
sufficient level for supporting teachers. We also calculated Recall, F1 score, and Accuracy as 
the overall evaluations of the models. All models used the 13 handwriting features (Table 1) 
and performance score (PFM) as input. 

First, for the teacher-driven classification, we implemented a rule-based model. We 
tested four feature selection strategies based on two sources—teacher questionnaires and 
data analysis (SHAP): (1) using only features from the questionnaire, (2) using only features 
from data analysis, (3) using features common to both (AND), and (4) using features from 
either source (OR). The classification rule was based on whether a feature's value exceeded 
its median, with the threshold adjusted to maximize precision. 

Second, we implement machine-learning using handwriting process features for data-
driven classification. The XGBoost, Support Vector Machine (SVM), and Random Forest were 
used in this study. For the three models, we conducted classification tasks using the features 
selected by SHAP, followed by parameter tuning using Grid Search. The models' 
performances were evaluated using 5-fold cross-validation, and the differences between the 
machine-learning models were tested for statistical significance using paired t-tests. 
 Third, for the LLM-driven classification, we used OpenAI's GPT-4o for multi-label 
image recognition. The prompt provided the model with the problem context, the student's 
answer image, label definitions, the desired output format, and few-shot examples, and 
instructed it as follows: "Look at the answer below and, based on the definitions, assign all 
applicable labels (all independent) accurately and return them in an array." We then tested 
three prompt variations: one with no features (None), one with all 14 features (All), and one 
with a pre-selected subset of features (Selected). For the 'Selected' condition, we identified 
the top five features that most improved precision when added to the prompt individually in a 
preliminary test. All features provided to the LLM were expressed in natural language on a 
five-point scale (e.g., "Answering Time: Top"). 

As shown in Table 4, the machine-learning models significantly outperformed the other 
approaches. XGBoost achieved the highest precision for the description-type (0.496) and the 
diagram-type (0.532), with the latter meeting our success criterion. Paired t-tests confirmed 
that XGBoost's precision was statistically significantly higher than the other models for both 
types (p < .05). In contrast, both the rule-based and LLM-based models resulted in low 
precision. 
 
 Table 4. Evaluations of Each Multi-Label Classification Model 

 

 Method Precision Recall F1 Score Accuracy 
(a) Rule-Based (comparison by feature selections) 

Description Only Questionnaire 0.106 0.438 0.161 0.716 
Diagram OR 0.200 0.551 0.268 0.650 

(b) Machine-Learning (comparison by models) 
Description XGBoost 0.496 0.501 0.496 0.880 
Diagram XGBoost 0.532 0.525 0.515 0.747 

(c) LLM (comparison by feature selections) 
Description Selected 0.128 0.348 0.182 0.107 
Diagram None 0.149 0.283 0.187 0.107 



4. Discussion 
 
4.1 Co-Designing Pedagogical Labels (RQ1) 
 
Through our labeling process with teachers, we identified four types of labels intended for 
classroom use. Based on the interview responses and our interpretation, each label has a 
distinct usage scenario. For example, “Standard Model Answer” can be used as exemplary 
and "Creative Alternative Answer" to spark student interest. "Trial-and-Error or Mistake 
Answer” is seen as opportunities to share common mistakes, while "Unclear Process Answer” 
serves as a reminder for students to show their work. 

Unlike labels from prior work aimed at detecting when students stumble (Asai et al., 
2012), our labels were defined for the pedagogical purpose of sharing answers in class. This 
highlights the need to design classification labels flexibly according to their educational use. 
 
4.2 Analysis of Teacher-Focused Features (RQ2) 
 
Our analysis revealed a difference in focus between the teacher questionnaires and the data 
analysis (Table 3). The teachers tended to select visually distinguishable, time-level features 
like total answering time (TAT), while the data-driven approach identified fine-grained, stroke-
level features (e.g., ASLS, AD). These features reflected different student states depending 
on the problem type. For description-type problems, stroke timing features were prominent, 
suggesting that a student's calm or rushed state was a key indicator. For instance, a "Standard 
Model Answer" was associated with calm, consistent work. For diagram-type problems, 
features related to process accumulation like the number of strokes (TNS) were more 
significant, reflecting statuses such as having a clear goal despite many steps ("Creative 
Alternative Answer") or making repeated corrections ("Trial-and-Error or Mistake Answer").  

Notably, performance (PFM) was rarely a top feature, distinguishing our study from 
those focused on performance prediction (Caraeni et al., 2025; Stahovich & Lin, 2016) and 
highlighting the value of behavioral data in capturing teacher-defined characteristics. 
 
4.3 Effectiveness of Classification for Teacher Support (RQ3) 
 
Our results show that the XGBoost machine-learning model performed significantly better than 
the other models. Notably, it achieved effective classification for the diagram-type (0.532) by 
meeting our success criterion (precision > 0.5), though it fell just short for the description-type 
(0.496). This demonstrates the practical feasibility of building a teacher-support tool, at least 
for diagram-type problems. Such a tool can effectively surface relevant student answers for 
review, thereby reducing teachers' search effort. In contrast, the rule-based and LLM-based 
approaches showed limited effectiveness. 
 The differing results among the models can be attributed to the unique complexity of 
the handwriting process. Machine-learning models likely succeeded by identifying complex 
patterns within this behavioral data. In contrast, the rule-based model's low precision suggests 
that simple rules are insufficient. This difficulty implies that the process's complexity may be a 
factor in the burden teachers face when identifying answer characteristics. Similarly, the LLM 
likely struggled as it analyzed only the final static image, lacking access to the crucial time-
series data of the writing process. 
 
4.4 Limitation & Future Work 
 
This study has several limitations that suggest directions for future work, including: (1) Data 
Scale and Imbalance: The data was labeled by only two teachers, and the inter-rater reliability 
was not calculated, resulting in a small, imbalanced dataset that could lead to overfitting. 
Future work should involve more teachers and problems to create a more robust data set. (2) 
Feature Selection: As our use of SHAP may not be optimal for all models (e.g., SVM). 
Employing model-specific feature selection techniques could further improve performance. (3) 



LLM Application: The LLM approach showed low precision and high computational costs. 
Performance could be enhanced through prompt optimization and fine-tuning, while costs 
could be reduced by using open-source models. (4) Hybrid Model Development: A key future 
direction is to combine the teacher-driven, data-driven, and LLM approaches. Integrating rule-
based pedagogical intent with machine-learning's behavioral pattern recognition and the 
LLM's content understanding could create a more accurate and educationally relevant hybrid 
system. (5) Practical System Implementation: To ensure any resulting tool effectively reduces 
teacher burden, it is crucial to visualize the classification results and continue the co-design 
process by including teacher feedback from the prototype stage (Mavrikis et al., 2019). 
 
5. Conclusion 
 
This study, co-designed with teachers, established four pedagogical labels for classifying 
handwritten math answers intended for classroom sharing. We identified the process features 
influencing these labels and found that among the models tested, the XGBoost machine-
learning model was the most effective at automatic classification. While not for full automation, 
these models offer practical support by helping teachers efficiently select relevant answers for 
classroom discussion. This study's primary contribution is its teacher-involved methodology, 
demonstrating the importance of co-designing learning analytics systems to reflect classroom 
needs, especially when dealing with abstract data like handwriting processes. 
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