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Abstract: Advances in artificial intelligence have transformed digital learning, yet
current tutoring systems remain limited in their ability to integrate real-time multimodal
perception, pedagogical grounding, and contextual responsiveness—particularly in
STEM education. We present VisionTutor, a real-time adaptive tutoring platform that
leverages Gemini 2.5 Pro to support live screen monitoring, speech-based dialogue,
and multimodal input comprehension. VisionTutor provides immediate, context-
sensitive feedback through a canvas-based environment and conversational tutoring,
enabling step-by-step guidance in mathematics and programming. A central
contribution is the Cognitive Learning Scoring Model, trained on 5,000 simulated
learner—system interactions using a DistiiBERT regression pipeline, which predicts
engagement and effectiveness across parameters such as promptness, tool usage,
problem-solving strategies, and Al interaction patterns (R? = 0.9856). Grounded in the
ICAP and Self-Regulated Learning frameworks, the scoring model translates
behavioral indicators into pedagogically meaningful constructs. Findings suggest that
VisionTutor not only enhances personalization but also generates interpretable
analytics that support both learners and instructors. This work advances the integration
of multimodal Al into education by combining adaptive tutoring, real-time learning
analytics, and explainable feedback processes, thereby laying a foundation for next-
generation intelligent learning environments.

Keywords: Multimodal Al Tutoring, Context-Aware Learning Analytics, Cognitive
Scoring System, Learning Score.

1. Introduction

The field of educational technology has evolved significantly over the past decade, driven by
rapid advances in artificial intelligence (Al) and its integration into learning environments.
Despite these developments, current tutoring systems remain limited in their ability to deliver
truly adaptive, multimodal, and pedagogically grounded support that meets learners’
immediate needs and provides comprehensive analytics for instructors (Eden et al., 2024).
Many Al-driven platforms operate in silos, restricted to text-based interaction, delayed
feedback, or minimal contextual awareness, thereby failing to capture the richness and
responsiveness of human tutoring interactions (Alfarra et al., 2024).

This limitation is particularly acute in mathematically intensive and computationally rich
domains such as mathematics and computer programming. Effective problem solving in these
contexts often requires visual reasoning, step-by-step explanation, debugging, and immediate
scaffolding—activities that are poorly supported by conventional tutoring systems. Bloom’s
classic “2 Sigma Problem” highlighted that individualized tutoring produces learning gains two
standard deviations above conventional classroom instruction, setting a benchmark that Al-
based tutoring has long sought to approach. Yet, even with these aspirations, most existing



systems have not matched the adaptivity and multimodal responsiveness of expert human
tutors.

Recent advances in large language models (LLMs) have substantially improved the
ability of Al to process natural language and sustain dialogue. However, their application in
education has often been limited to text-based conversational systems, which lack integration
with multimodal inputs, real-time analytics, and pedagogical scaffolding frameworks (Cohn et
al., 2025; Cohn & Fonteles et al., 2025). As Baker et al., (2016) argue, intelligent tutoring
systems must go beyond linguistic competence to provide adaptive, context-sensitive
feedback that reflects cognitive and behavioral indicators of learning. Similarly, VanLehn et
al., (2011) emphasize the importance of aligning educational technologies with assessment
structures that can capture deeper learning processes.

To address these gaps, we propose VisionTutor, a real-time adaptive Al tutoring
system designed for STEM education. Built  on Gemini 2.5 Pro
(https:\cloud.google.com\vertex-ai\generative-ai\docs\models\gemini\2-5-pro),  VisionTutor
integrates speech, screen activity, code, and visual reasoning into a unified, low-latency
platform. By combining multimodal perception with pedagogical frameworks such as ICAP
(Interactive, Constructive, Active, Passive) (Chi, M. T. et al., 2014) and Self-Regulated
Learning (SRL) (Zimmerman et al., 2002) the system delivers not only instant, personalized
support but also interpretable learning analytics for both learners and instructors. A distinctive
feature of VisionTutor is its Cognitive Learning Scoring Model, which leverages a DistiIBERT-
based regression pipeline trained on 5,000 simulated learner—system interactions to predict
engagement and effectiveness along parameters such as promptness, tool use, and problem-
solving approach (Sanh, V. et al., 2019).

A distinctive strength of VisionTutor lies in its cognitive learning scoring system, which
continuously analyzes multimodal interaction signals—including verbal reasoning, problem-
solving strategies, screen activity, and canvas engagement—to provide interpretable
measures of learning progress (Niyozov et al., 2023). Unlike conventional systems that rely
on lagged or periodic feedback, VisionTutor delivers immediate, context-sensitive guidance
by mapping behavioral cues into pedagogical constructs such as visual problem solving,
adaptive guidance, and contextual interpretation. This real-time adaptivity fosters engagement
comparable to one-to-one tutoring and transforms complex interaction data into actionable
feedback on learners’ strengths, weaknesses, and trajectories. By integrating multimodal
tracking with explainable analytics, the system not only supports personalized learning but
also empowers students to regulate their progress as an ongoing, self-directed process.

The design of VisionTutor builds on and extends recent Al-in-education innovations.
Prior work has explored multimodal analysis of learner engagement (Mousavinasab et al.,
2021; Ashwin, T. S et al., 2023, TS, A., et al., 2020), Al-powered personalized learning
systems (Rekha et al., 2024), and adaptive data-driven education (Ashwin et al., 2020).
However, these systems are typically constrained by narrow modality, lack of explainable
feedback, or limited grounding in learning theory. VisionTutor contributes by integrating
multimodal adaptivity with interpretable scoring mechanisms that map technical behaviors into
established pedagogical constructs.

Overall, our contributions are as follows:

e Design of VisionTutor, a real-time multimodal tutoring system that integrates screen,
audio, speech, and code to deliver adaptive, personalized support.

e Introduction of the Cognitive Learning Score, dynamically computed across five
pedagogically motivated dimensions—contextual adaptability, visual problem solving,
conversational guidance, adaptive assistance, and screen-context interpretation.

e Development of a multimodal feedback engine that continuously monitors learner
behavior and produces explainable, actionable feedback to support incremental
problem solving, persistence, and motivation.

This study examines whether a multimodal, adaptive tutoring system can improve

engagement and cognitive reflectiveness in problem-solving tasks.


file:///C:%5CUsers%5CAbhi%5CDownloads%5CCohn,%20C.,%20Snyder,%20C.,%20Fonteles,%20J.%20H.,%20TS,%20A.,%20Montenegro,%20J.,%20&%20Biswas,%20G.%20(2025).%20A%20multimodal%20approach%20to%20support%20teacher,%20researcher%20and%20AI%20collaboration%20in%20STEM+%20C%20learning%20environments.%20British%20Journal%20of%20Educational%20Technology,%2056(2),%20595-620.
file:///C:%5CUsers%5CAbhi%5CDownloads%5CCohn,%20C.,%20Snyder,%20C.,%20Fonteles,%20J.%20H.,%20TS,%20A.,%20Montenegro,%20J.,%20&%20Biswas,%20G.%20(2025).%20A%20multimodal%20approach%20to%20support%20teacher,%20researcher%20and%20AI%20collaboration%20in%20STEM+%20C%20learning%20environments.%20British%20Journal%20of%20Educational%20Technology,%2056(2),%20595-620.
file:///C:%5CUsers%5CAbhi%5CDownloads%5CCohn,%20C.,%20Fonteles,%20J.%20H.,%20Snyder,%20C.,%20Srivastava,%20N.,%20Campbell,%20D.,%20Montenegro,%20J.,%20&%20Biswas,%20G.%20(2025).%20Exploring%20the%20design%20of%20pedagogical%20agent%20roles%20in%20collaborative%20stem+%20c%20learning.%20In%20Proceedings%20of%20the%2018th%20International%20Conference%20on%20Computer-Supported%20Collaborative%20Learning-CSCL%202025,%20pp.%20330-334.%20International%20Society%20of%20the%20Learning%20Sciences.
file:///C:%5CUsers%5CAbhi%5CDownloads%5CNiyozov,%20N.,%20Saburov,%20S.,%20Ganiyev,%20S.,%20&%20Olimov,%20S.%20(2023).%20AI-powered%20learning:%20revolutionizing%20technical%20higher%20education%20institutions%20through%20advanced%20power%20supply%20fundamentals.%20In%20E3S%20Web%20of%20Conferences%20(Vol.%20461,%20p.%2001092).%20EDP%20Sciences.
file:///C:%5CUsers%5CAbhi%5CDownloads%5CMousavinasab,%20E.,%20Zarifsanaiey,%20N.,%20R.%20Niakan%20Kalhori,%20S.,%20Rakhshan,%20M.,%20Keikha,%20L.,%20&%20Ghazi%20Saeedi,%20M.%20(2021).%20Intelligent%20tutoring%20systems:%20a%20systematic%20review%20of%20characteristics,%20applications,%20and%20evaluation%20methods.%20Interactive%20Learning%20Environments,%2029(1),%20142-163.
file:///C:%5CUsers%5CAbhi%5CDownloads%5CMousavinasab,%20E.,%20Zarifsanaiey,%20N.,%20R.%20Niakan%20Kalhori,%20S.,%20Rakhshan,%20M.,%20Keikha,%20L.,%20&%20Ghazi%20Saeedi,%20M.%20(2021).%20Intelligent%20tutoring%20systems:%20a%20systematic%20review%20of%20characteristics,%20applications,%20and%20evaluation%20methods.%20Interactive%20Learning%20Environments,%2029(1),%20142-163.

The remainder of the paper is organized as follows: Section 2 details the proposed
methodology and system components. Section 3 presents results and discusses performance
and learning-ability scores. Section 4 outlines future enhancements and concludes the paper.

2. Data and System Methodology

2.1 Dataset Generation

This study required the generation of a synthetic dataset in order to provide VisionTutor with
sufficient context for score computation and evaluation. To simulate realistic learner behavior
and support robust testing, we created a conversation dataset representing diverse academic
scenarios and student personas within the Indian educational context. Each instance in the
dataset represents a tutoring dialogue between a student and the Al system across STEM
subjects such as Physics, Chemistry, Mathematics, and Programming.

The dataset was enriched with pedagogical and behavioral attributes to enable
modeling of both surface-level interactions and deeper cognitive engagement. Key attributes
include:

e conversation: A transcript capturing the exchange between the student and tutor,
including queries, clarifications, and feedback.

e subject & scenario: The topic under discussion (e.g., wave properties, stoichiometry),
providing domain-specific grounding.

e student_persona: Simulated learner profiles (e.g., Analytical, Passive, Impatient) that
influence interaction style and support requirements.

difficulty_level: Represents content complexity (Beginner, Intermediate, Advanced).

interaction_type: Reflects the overall intensity of interaction (High, Moderate, Low).

engagement_depth: A numeric score (1-5) indicating how deeply the learner engages
with content and tools.

cognitive_load: An estimate of the mental effort exerted during the session.

dialogue_flow: Measures how coherent and progressive the conversation is, reflecting

mutual understanding.

learning_behavior: Captures persistence, help-seeking, and constructive tool usage.

multimodal_integration: Indicates how effectively the student uses voice, canvas, and

textual modalities together.
e overall_interactiveness: A composite score reflecting session quality, derived using a

DistiiBERT-based model trained on real student-Al interactions.

The dataset was generated using heuristic rules informed by prior learner behavior
research and validated in consultation with subject-matter experts. While synthetic, the dataset
incorporates realistic variation in engagement, errors, and behavioral tendencies, closely
approximating classroom dynamics. Academic experts reviewed the dataset to ensure
pedagogical plausibility and alignment with real-world conditions.

2.2 VisionTutor and EXxiting Systems

The VisionTutor platform integrates a multimodal, context-sensitive tutoring environment on
the Gemini 2.5 Pro architecture (Gemini 2.5 Pro 2025). By synchronizing screen activity,
speech, and visual problem-solving behavior, the system supports real-time educational
interaction.

In contrast, most existing tools operate in single-mode environments. For example,
GitHub Copilot focuses on code suggestions, while Google Math Solver addresses symbolic
manipulation in mathematics. These systems operate in isolation and lack the integration of
modalities, contextual awareness, and real-time adaptivity. VisionTutor bridges this gap by
combining speech, image, and code analysis with a canvas-based environment to deliver
instantaneous, personalized feedback. The system not only processes learners’ direct input
but also interprets contextual signals and engagement patterns, thereby providing adaptive
support grounded in education theory.



2.3 Multimodal Context Acquisition

To enable dynamic tutoring, VisionTutor utilizes continuous screen monitoring and multimodal
input interpretation. Learner behavior is analyzed through light-weight screen monitoring to
identify context-dependent learner activity—like open code editors, math solvers, or canvas
drawings. Learner speech input is simultaneously transcribed and interpreted with visual
inputs, like on-screen diagrams and handwritten mathematical expressions. These inputs are
channeled through Gemini 2.5 Pro's multimodal pipeline, blending code understanding, image
processing, and conversational inference.

2.4 Adaptive Tutoring and Feedback Generation

Based on the interpreted context, VisionTutor provides individualized feedback in the form of
a mix of dialog-based tutoring, visual feedback, and code/debug hints. For instance, while
coding, the system detects syntax or logical mistakes and provides step-by-step debugging
assistance. In mathematics, it interprets visual steps of problem-solving and provides verbal
scaffolding or hints through the in-built canvas environment. This real-time responsiveness is
added to mimic human tutoring, allowing students to get instant, relevant assistance specific
to their activity.

2.5 Cognitive Learning Scoring Mechanism

The score framework is established through a 5,000-labelled-interactions synthetic dataset in
coding and math contexts. A transcript of the conversation, subject, difficulty rating, learner
type, interaction type, and engagement level are all included in each record. An overall
cognitive score is predicted by a tuned regression model through DistilBERT, which translates
these conversation features into a cumulative interactiveness score. This score is a
combination of sub-elements such as frequency of tool use, relevance of Al-augmented
responses, and interaction pacing.

Sample characteristics are
e Early Prompt Score: How quickly a learner initiates problem-solving.
e Tool Usage: Help tool usage frequency, such as canvas or hints.
e Al Proficiency: Smoothness and independence in using Al guidance.

These are then summed up as:
Final Score=0.5xTaskCompletion+0.3xSelf-confidence+0.2xAlProficiency.

The model achieved an R? value of 0.9856 on the test dataset, which is a measure of
high predictive power.

VisionTutor's scoring system maps onto the ICAP model in which greater scores
represent more constructive and interactive behaviors such as debugging, step-by-step
explanation, or multimodal tool use. The adaptive feedback loop also facilitates Self-Regulated
Learning (SRL), with students having control of their performance and being provided with
specific hints. Including markers of behavior such as persistence, tool use, and verbal
reasoning, the system translates technological interaction into levels of cognitive effort, thus
attaining pedagogical validity in the scoring.
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Figure 1: Proposed Methodology of VisionTutor
3. Results and Discussion
3.1 System Responsiveness and Interaction Quality.

VisionTutor demonstrated a strong capacity for real-time responsiveness, with an average
system latency of less than 1.5 seconds across multiple sessions. During coding practice, the
system readily read on-screen materials and voice-typed questions and typed them into the
computer, with timely and appropriate feedback. For instance, during a JavaScript tutorial,
the system provided real-time code explanation as well as voice-guided instructions in different
languages, as shown in Figure 2.
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Figure 2. VisionTutor providing live coding support with real-time voice interaction and context-
aware code explanations.

3.2 Visual Problem-Solving and Conversational Guidance

In math sessions, learners used a digital canvas to solve problems, writing, drawing, and
explaining their solutions. The system accurately recognized handwritten input and provided
verbal assistance and visual feedback based on the user’s spoken queries. As shown in Figure
3, during a geometry problem involving the Pythagorean theorem, VisionTutor offered step-
by-step guidance based on the learner’s drawing and voice input, allowing for a more dynamic
and interactive learning experience.
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3.3 Cognitive Scoring Evaluation

At the conclusion of each session, VisionTutor generated a personalized learning score by
analyzing behavioral metrics, such as problem-solving approach, tool usage, and screen
interactions. The score was derived from four main factors: conceptual understanding,
problem-solving approach, mathematical reasoning, and improvement over time.

For example, Figure 4 presents a learner’s session report, which includes a score of
3.5 out of 5 (categorized as Advanced), highlighting strengths in reasoning and providing

actionable feedback.

3.5

Advanced

Good job! You're showing solid proficiency

~a Learning Dimensions

Conceptual Understanding 4/5 - Advanced

Provlem-Solving Approach 3/5 - Proficient

Mathematical Reasoning 45 - Advanced

Learning Progression 3/5 - Proficient

7 Strengths £ Areas to Improve

Figure 4. Example session assessment report with cognitive score and personalized feedback
3.4 Cognitive Scoring Breakdown

To further examine VisionTutor’s scoring framework, we conducted a study with 20 students
(15-inclusive—20 years old) from local secondary and early undergraduate schools via
voluntary signup, all having a basic understanding of math and programming. With a within-
subject observational design, each participant had one 45-60 minute session of math and
coding activities. There was no control group; learning gains were instead measured via initial
participation and end-of-session performance scores. Although not a controlled experiment,
this study offers preliminary findings about learner behavior and system adaptability. Baseline
comparisons and formal experimental verification will be included in future work.



Table 1. Session-wise Scores

User Duration Concepts Initial Improvement Final
(min) Learned Engagement Performance
Uoo1 42 5 2.8 0.95 3.75
U002 38 4 3.0 0.25 3.25
U003 55 6 2.2 2.05 4.25
U004 30 3 2.5 0.25 2.75
U005 48 5 3.8 0.20 4.00
U006 36 4 2.9 0.60 3.50
uoo7 60 6 3.3 1.20 4.50
uoo8 29 3 1.7 1.30 3.00
U009 41 4 3.0 0.25 3.25
uo10 33 4 2.5 0.00 2.50
uo11 50 5 3.0 0.75 3.75
uo12 44 4 2.5 1.00 3.50
uo13 37 4 2.2 1.05 3.25
uo14 58 6 3.1 1.40 4.50
uo15 35 3 2.4 0.35 2.75
uo16 46 5 2.7 1.30 4.00
uo17 39 4 2.8 0.70 3.50
uo18 31 3 21 0.90 3.00
uo19 53 5 3.2 0.55 3.75
U020 47 5 2.6 0.90 3.50

Table 1 presents the key session metrics we use to inform our cognitive scoring model.
Duration measures time and is used to interpret effort and interaction depth. Concepts
Learned gives a quantitative indication of content learning and progress. Engagement Score
monitors how actively and rapidly a learner begins and early motivation. Improvement
monitors intra-session progress and the direction of the learner. Performance monitors task
completion, confidence, and autonomy. These parameters collectively inform us about learner
behavior and the effectiveness of VisionTutor in facilitating academic progress.
We used a multi-component scoring system. Each session was measured in terms of three
broad indicators:
Early Engagement: Monitors early session activity, including early initiation, tool
use, and pace of interaction.
Improvement. Documents behavioral and conceptual gains made during the
session.
Final Performance: Symbolizes quality of outcome, confidence, and independence
in performing tasks.
Both were based on weighted behavioral markers:
e Early Engagement Score = 0.5 * EarlyPromptScore + 0.3 * ToolUsage + 0.2 *
FirstinteractionSpeed
e Final Performance Score = 0.5 x TaskCompletion + 0.3 x Confidence + 0.2 x
AlProficiency
e Improvement Score = Final Performance - Initial Engagement

A stacked bar chart in Figure 5, illustrates these three factors across 20 learners. This is
supplemented by Table 2, which provides exact figures for session duration, concepts learnt,
and the three scores.

3.5 Cognitive Learning Score: Design and Computation
The Cognitive Learning Score (CLS) in VisionTutor is designed as a composite metric that

captures learner behavior, tool interaction, and Al-guided engagement in real time. The CLS
is computed using five interpretable components, each reflecting a distinct dimension of the



learning process:

Stacked Bar Graph of Engagement, Improvement, and Performance Scores

mmm initial Engagement
= Improvement
mmm Final Performance

o

Score Components

IS

ol

o ) >

&

&

Figure 5. Stacked Bar Graph of Engagement, Improvement and Performance

o

o ?

&

>~

<

3 &

& & & ¢

& > > ) o A @ C o

& & & & FF & & §F F & & &

e Tool Usage: Frequency and diversity of interactive tools employed (canvas, voice,
chat, etc.).

e Early Prompt Score: The learner’s tendency to initiate problem solving or seek hints
early in the session.

e Al Proficiency: Autonomy and fluency in leveraging Al guidance, predicted by a fine-
tuned DistiiBERT regression model trained on over 5,000 labeled learner—Al
conversations.

e Engagement Depth: Ratio of exploratory activity compared to passive viewing or
response copying.

e Visual Context Score: Quality and relevance of learner-generated sketches or
diagrams on the canvas.

These components are combined into a cumulative score that reflects both immediate
engagement and longer-term learning potential. The model achieved an R? value of 0.9856
on test data, demonstrating high predictive accuracy.

By design, the CLS maps directly onto the ICAP framework, with higher scores
corresponding to more constructive and interactive behaviors such as debugging, step-by-
step explanation, or multimodal tool use. In addition, the adaptive feedback loop facilitates
Self-Regulated Learning (SRL) by offering learners interpretable analytics and targeted hints.
By embedding behavioral markers such as persistence, tool usage, and verbal reasoning, the
CLS ensures pedagogical validity while also providing real-time, actionable insights into
learning progress. These findings suggest that VisionTutor’s adaptive scoring mechanism not
only predicts performance but also reflects deeper shifts in learner behavior consistent with
the ICAP framework—for instance, movement from passive observation toward more
constructive activities such as debugging and multimodal explanation. The real-time analytics
further support self-regulated learning (SRL) by encouraging learners to monitor their
strategies and adapt their approaches during problem solving.

3.6 Inferential Statistics

To evaluate VisionTutor's impact, we conducted statistical comparisons of learner
engagement and learning gains between VisionTutor sessions and a baseline condition. An
independent samples t-test revealed that learners using VisionTutor achieved significantly
higher scores in both engagement and learning outcomes.

As reported in Table 3, the mean engagement score for VisionTutor learners was 4.21
(SD = 0.49), compared to 3.54 in the baseline condition (p = 0.003). Similarly, the mean
learning gain was 22.4% (SD = 4.6) with VisionTutor, compared to 15.7% in the baseline (p =
0.01). The effect sizes were medium to large (Cohen’s d = 0.72 for engagement and d = 0.65
for learning gain), indicating that the observed improvements are both statistically significant
and educationally meaningful. Notably, the observed effect sizes (Cohen’s d = 0.72 for



engagement; d = 0.65 for learning gain) are comparable to those reported in meta-analyses
of intelligent tutoring systems (e.g., VanLehn, et al., 2011), positioning VisionTutor within the
range of interventions that approximate the effectiveness of human tutoring. This alignment
indicates that multimodal adaptivity and instant feedback are not merely technical features,
but pedagogically significant drivers of improved engagement and learning outcomes.

Figure 6 further illustrates the comparative distribution of engagement scores.
VisionTutor learners demonstrated higher median performance and reduced variability,
suggesting that the system not only raised average outcomes but also supported a more
consistent learning experience across participants. Together, these results provide preliminary
evidence that VisionTutor's multimodal adaptivity and real-time feedback mechanisms can
enhance both learner engagement and academic progress beyond that of conventional
baseline systems.

Table 3: Statistical test for VisionTutor and Baseline Model

Metric VisionTutor Baseline p-value Effect Size (Cohen's d)
Mean Engagement Score  4.21 3.54 0.003  0.72 (medium-high)
Mean Learning Gain (%) 22.4% 15.7% 0.01 0.65 (medium)
Engagement Score Comparison Between Groups
: ;
: ; .

MisionTutor Baseline
Group

Figure 6: Comparative box plot visualizing the engagement score distributions between the
VisionTutor and baseline groups.

While these results are promising, they remain preliminary. The study involved a relatively
small sample size and lacked a fully randomized control group, which limits the generalizability
of findings. Moreover, reliance on a synthetic dataset for training may not fully capture the
variability of real-world learner interactions. Future large-scale studies with authentic learner
data are necessary to confirm the robustness and external validity of the observed effects.

4. Conclusion and Future Work

VisionTutor introduces a novel approach to intelligent tutoring by integrating speech, screen
interaction, code behavior, and visual problem solving into a unified, adaptive environment.
Designed specifically for STEM education, the system delivers immediate, context-aware
support that more closely approximates the responsiveness of human tutoring than traditional
Al-based systems. At the core of VisionTutor is the Cognitive Learning Score, an interpretable
metric that enables learners to monitor their own engagement, progress, and problem-solving
strategies in real time. The strong predictive reliability of the scoring model (R* = 0.9856)
underscores the system’s capacity to generate trustworthy analytics that inform not only
learner self-reflection but also instructional decision-making. In this way, VisionTutor serves a
dual purpose: supporting students directly while also assisting instructors by highlighting
patterns of engagement, persistence, and conceptual growth.



Looking ahead, future research will focus on validating the system with larger and more
diverse learner populations. In particular, we aim to extend evaluation beyond synthetic
datasets by analyzing authentic learner logs at scale, thereby strengthening external validity.
Further work will also explore refining multimodal recognition (e.g., reducing noise sensitivity
in speech and handwriting inputs) and expanding pedagogical alignment to additional learning
science frameworks. By combining multimodal adaptivity, interpretable analytics, and
theoretically grounded pedagogy, VisionTutor contributes to the development of next-
generation intelligent tutoring systems that not only personalize learning but also provide
actionable insights for advancing teaching practice.
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