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Abstract: Advances in artificial intelligence have transformed digital learning, yet 
current tutoring systems remain limited in their ability to integrate real-time multimodal 
perception, pedagogical grounding, and contextual responsiveness—particularly in 
STEM education. We present VisionTutor, a real-time adaptive tutoring platform that 
leverages Gemini 2.5 Pro to support live screen monitoring, speech-based dialogue, 
and multimodal input comprehension. VisionTutor provides immediate, context-
sensitive feedback through a canvas-based environment and conversational tutoring, 
enabling step-by-step guidance in mathematics and programming. A central 
contribution is the Cognitive Learning Scoring Model, trained on 5,000 simulated 
learner–system interactions using a DistilBERT regression pipeline, which predicts 
engagement and effectiveness across parameters such as promptness, tool usage, 
problem-solving strategies, and AI interaction patterns (R² = 0.9856). Grounded in the 
ICAP and Self-Regulated Learning frameworks, the scoring model translates 
behavioral indicators into pedagogically meaningful constructs. Findings suggest that 
VisionTutor not only enhances personalization but also generates interpretable 
analytics that support both learners and instructors. This work advances the integration 
of multimodal AI into education by combining adaptive tutoring, real-time learning 
analytics, and explainable feedback processes, thereby laying a foundation for next-
generation intelligent learning environments. 
 
Keywords: Multimodal AI Tutoring, Context-Aware Learning Analytics, Cognitive 
Scoring System, Learning Score. 

 
 
1. Introduction 
 
The field of educational technology has evolved significantly over the past decade, driven by 
rapid advances in artificial intelligence (AI) and its integration into learning environments. 
Despite these developments, current tutoring systems remain limited in their ability to deliver 
truly adaptive, multimodal, and pedagogically grounded support that meets learners’ 
immediate needs and provides comprehensive analytics for instructors (Eden et al., 2024). 
Many AI-driven platforms operate in silos, restricted to text-based interaction, delayed 
feedback, or minimal contextual awareness, thereby failing to capture the richness and 
responsiveness of human tutoring interactions (Alfarra et al., 2024). 

This limitation is particularly acute in mathematically intensive and computationally rich 
domains such as mathematics and computer programming. Effective problem solving in these 
contexts often requires visual reasoning, step-by-step explanation, debugging, and immediate 
scaffolding—activities that are poorly supported by conventional tutoring systems. Bloom’s 
classic “2 Sigma Problem” highlighted that individualized tutoring produces learning gains two 
standard deviations above conventional classroom instruction, setting a benchmark that AI-
based tutoring has long sought to approach. Yet, even with these aspirations, most existing 



systems have not matched the adaptivity and multimodal responsiveness of expert human 
tutors.  

Recent advances in large language models (LLMs) have substantially improved the 
ability of AI to process natural language and sustain dialogue. However, their application in 
education has often been limited to text-based conversational systems, which lack integration 
with multimodal inputs, real-time analytics, and pedagogical scaffolding frameworks (Cohn et 
al., 2025; Cohn & Fonteles et al., 2025).  As Baker et al., (2016) argue, intelligent tutoring 
systems must go beyond linguistic competence to provide adaptive, context-sensitive 
feedback that reflects cognitive and behavioral indicators of learning. Similarly, VanLehn et 
al., (2011) emphasize the importance of aligning educational technologies with assessment 
structures that can capture deeper learning processes. 

To address these gaps, we propose VisionTutor, a real-time adaptive AI tutoring 
system designed for STEM education. Built on Gemini 2.5 Pro 
(https:\cloud.google.com\vertex-ai\generative-ai\docs\models\gemini\2-5-pro), VisionTutor 
integrates speech, screen activity, code, and visual reasoning into a unified, low-latency 
platform. By combining multimodal perception with pedagogical frameworks such as ICAP 
(Interactive, Constructive, Active, Passive)  (Chi, M. T. et al., 2014)  and Self-Regulated 
Learning (SRL)  (Zimmerman et al., 2002) the system delivers not only instant, personalized 
support but also interpretable learning analytics for both learners and instructors. A distinctive 
feature of VisionTutor is its Cognitive Learning Scoring Model, which leverages a DistilBERT-
based regression pipeline trained on 5,000 simulated learner–system interactions to predict 
engagement and effectiveness along parameters such as promptness, tool use, and problem-
solving approach (Sanh, V. et al., 2019).  

A distinctive strength of VisionTutor lies in its cognitive learning scoring system, which 
continuously analyzes multimodal interaction signals—including verbal reasoning, problem-
solving strategies, screen activity, and canvas engagement—to provide interpretable 
measures of learning progress (Niyozov et al., 2023). Unlike conventional systems that rely 
on lagged or periodic feedback, VisionTutor delivers immediate, context-sensitive guidance 
by mapping behavioral cues into pedagogical constructs such as visual problem solving, 
adaptive guidance, and contextual interpretation. This real-time adaptivity fosters engagement 
comparable to one-to-one tutoring and transforms complex interaction data into actionable 
feedback on learners’ strengths, weaknesses, and trajectories. By integrating multimodal 
tracking with explainable analytics, the system not only supports personalized learning but 
also empowers students to regulate their progress as an ongoing, self-directed process. 

The design of VisionTutor builds on and extends recent AI-in-education innovations. 
Prior work has explored multimodal analysis of learner engagement (Mousavinasab et al., 
2021; Ashwin, T. S et al., 2023, TS, A., et al., 2020), AI-powered personalized learning 
systems (Rekha et al., 2024), and adaptive data-driven education (Ashwin et al., 2020). 
However, these systems are typically constrained by narrow modality, lack of explainable 
feedback, or limited grounding in learning theory. VisionTutor contributes by integrating 
multimodal adaptivity with interpretable scoring mechanisms that map technical behaviors into 
established pedagogical constructs. 

Overall, our contributions are as follows: 
● Design of VisionTutor, a real-time multimodal tutoring system that integrates screen, 

audio, speech, and code to deliver adaptive, personalized support. 
● Introduction of the Cognitive Learning Score, dynamically computed across five 

pedagogically motivated dimensions—contextual adaptability, visual problem solving, 
conversational guidance, adaptive assistance, and screen-context interpretation. 

● Development of a multimodal feedback engine that continuously monitors learner 
behavior and produces explainable, actionable feedback to support incremental 
problem solving, persistence, and motivation. 

This study examines whether a multimodal, adaptive tutoring system can improve 
engagement and cognitive reflectiveness in problem-solving tasks. 
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The remainder of the paper is organized as follows: Section 2 details the proposed 
methodology and system components. Section 3 presents results and discusses performance 
and learning-ability scores. Section 4 outlines future enhancements and concludes the paper. 
 
2. Data and System Methodology  

 
2.1 Dataset Generation 
 
This study required the generation of a synthetic dataset in order to provide VisionTutor with 
sufficient context for score computation and evaluation. To simulate realistic learner behavior 
and support robust testing, we created a conversation dataset representing diverse academic 
scenarios and student personas within the Indian educational context. Each instance in the 
dataset represents a tutoring dialogue between a student and the AI system across STEM 
subjects such as Physics, Chemistry, Mathematics, and Programming. 

The dataset was enriched with pedagogical and behavioral attributes to enable 
modeling of both surface-level interactions and deeper cognitive engagement. Key attributes 
include: 

● conversation: A transcript capturing the exchange between the student and tutor, 
including queries, clarifications, and feedback. 

● subject & scenario: The topic under discussion (e.g., wave properties, stoichiometry), 
providing domain-specific grounding. 

● student_persona: Simulated learner profiles (e.g., Analytical, Passive, Impatient) that 
influence interaction style and support requirements. 

● difficulty_level: Represents content complexity (Beginner, Intermediate, Advanced). 
● interaction_type: Reflects the overall intensity of interaction (High, Moderate, Low). 
● engagement_depth: A numeric score (1–5) indicating how deeply the learner engages 

with content and tools. 
● cognitive_load: An estimate of the mental effort exerted during the session. 
● dialogue_flow: Measures how coherent and progressive the conversation is, reflecting 

mutual understanding. 
● learning_behavior: Captures persistence, help-seeking, and constructive tool usage. 
● multimodal_integration: Indicates how effectively the student uses voice, canvas, and 

textual modalities together. 
● overall_interactiveness: A composite score reflecting session quality, derived using a 

DistilBERT-based model trained on real student-AI interactions. 
The dataset was generated using heuristic rules informed by prior learner behavior 

research and validated in consultation with subject-matter experts. While synthetic, the dataset 
incorporates realistic variation in engagement, errors, and behavioral tendencies, closely 
approximating classroom dynamics. Academic experts reviewed the dataset to ensure 
pedagogical plausibility and alignment with real-world conditions.  
 
2.2 VisionTutor and Exiting Systems 
 
The VisionTutor platform integrates a multimodal, context-sensitive tutoring environment on 
the Gemini 2.5 Pro architecture (Gemini 2.5 Pro 2025). By synchronizing screen activity, 
speech, and visual problem-solving behavior, the system supports real-time educational 
interaction. 

In contrast, most existing tools operate in single-mode environments. For example, 
GitHub Copilot focuses on code suggestions, while Google Math Solver addresses symbolic 
manipulation in mathematics. These systems operate in isolation and lack the integration of 
modalities, contextual awareness, and real-time adaptivity. VisionTutor bridges this gap by 
combining speech, image, and code analysis with a canvas-based environment to deliver 
instantaneous, personalized feedback. The system not only processes learners’ direct input 
but also interprets contextual signals and engagement patterns, thereby providing adaptive 
support grounded in education theory.  



 
2.3 Multimodal Context Acquisition 
 
To enable dynamic tutoring, VisionTutor utilizes continuous screen monitoring and multimodal 
input interpretation. Learner behavior is analyzed through light-weight screen monitoring to 
identify context-dependent learner activity—like open code editors, math solvers, or canvas 
drawings. Learner speech input is simultaneously transcribed and interpreted with visual 
inputs, like on-screen diagrams and handwritten mathematical expressions. These inputs are 
channeled through Gemini 2.5 Pro's multimodal pipeline, blending code understanding, image 
processing, and conversational inference. 
 
2.4 Adaptive Tutoring and Feedback Generation 
 
Based on the interpreted context, VisionTutor provides individualized feedback in the form of 
a mix of dialog-based tutoring, visual feedback, and code/debug hints. For instance, while 
coding, the system detects syntax or logical mistakes and provides step-by-step debugging 
assistance. In mathematics, it interprets visual steps of problem-solving and provides verbal 
scaffolding or hints through the in-built canvas environment. This real-time responsiveness is 
added to mimic human tutoring, allowing students to get instant, relevant assistance specific 
to their activity. 
 
2.5 Cognitive Learning Scoring Mechanism 
 
The score framework is established through a 5,000-labelled-interactions synthetic dataset in 
coding and math contexts. A transcript of the conversation, subject, difficulty rating, learner 
type, interaction type, and engagement level are all included in each record. An overall 
cognitive score is predicted by a tuned regression model through DistilBERT, which translates 
these conversation features into a cumulative interactiveness score. This score is a 
combination of sub-elements such as frequency of tool use, relevance of AI-augmented 
responses, and interaction pacing. 
 
Sample characteristics are 

● Early Prompt Score: How quickly a learner initiates problem-solving. 
● Tool Usage: Help tool usage frequency, such as canvas or hints. 
● AI Proficiency: Smoothness and independence in using AI guidance. 

 
These are then summed up as: 

Final Score=0.5×TaskCompletion+0.3×Self-confidence+0.2×AIProficiency.  
 
The model achieved an R² value of 0.9856 on the test dataset, which is a measure of 

high predictive power. 
VisionTutor's scoring system maps onto the ICAP model in which greater scores 

represent more constructive and interactive behaviors such as debugging, step-by-step 
explanation, or multimodal tool use. The adaptive feedback loop also facilitates Self-Regulated 
Learning (SRL), with students having control of their performance and being provided with 
specific hints. Including markers of behavior such as persistence, tool use, and verbal 
reasoning, the system translates technological interaction into levels of cognitive effort, thus 
attaining pedagogical validity in the scoring. 
 



 
Figure 1: Proposed Methodology of VisionTutor 
 
3. Results and Discussion 
 
3.1 System Responsiveness and Interaction Quality. 
 
VisionTutor demonstrated a strong capacity for real-time responsiveness, with an average 
system latency of less than 1.5 seconds across multiple sessions.  During coding practice, the 
system readily read on-screen materials and voice-typed questions and typed them into the 
computer, with timely and appropriate feedback.  For instance, during a JavaScript tutorial, 
the system provided real-time code explanation as well as voice-guided instructions in different 
languages, as shown in Figure 2. 

 
Figure 2. VisionTutor providing live coding support with real-time voice interaction and context-
aware code explanations. 
 
3.2 Visual Problem-Solving and Conversational Guidance 
 
In math sessions, learners used a digital canvas to solve problems, writing, drawing, and 
explaining their solutions. The system accurately recognized handwritten input and provided 
verbal assistance and visual feedback based on the user’s spoken queries. As shown in Figure 
3, during a geometry problem involving the Pythagorean theorem, VisionTutor offered step-
by-step guidance based on the learner’s drawing and voice input, allowing for a more dynamic 
and interactive learning experience. 
 
 



 
Figure 3: Real-time canvas interaction supporting mathematical reasoning with AI-based 
speech assistance 

3.3 Cognitive Scoring Evaluation 
 
At the conclusion of each session, VisionTutor generated a personalized learning score by 
analyzing behavioral metrics, such as problem-solving approach, tool usage, and screen 
interactions. The score was derived from four main factors: conceptual understanding, 
problem-solving approach, mathematical reasoning, and improvement over time. 

For example, Figure 4 presents a learner’s session report, which includes a score of 
3.5 out of 5 (categorized as Advanced), highlighting strengths in reasoning and providing 
actionable feedback.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Example session assessment report with cognitive score and personalized feedback 
 
3.4 Cognitive Scoring Breakdown 
 
To further examine VisionTutor’s scoring framework, we conducted a study with 20 students 
(15–inclusive–20 years old) from local secondary and early undergraduate schools via 
voluntary signup, all having a basic understanding of math and programming. With a within-
subject observational design, each participant had one 45–60 minute session of math and 
coding activities. There was no control group; learning gains were instead measured via initial 
participation and end-of-session performance scores. Although not a controlled experiment, 
this study offers preliminary findings about learner behavior and system adaptability. Baseline 
comparisons and formal experimental verification will be included in future work. 



Table 1. Session-wise Scores 
User Duration 

(min) 
Concepts 
Learned 

Initial 
Engagement 

Improvement Final 
Performance 

U001 42 5 2.8 0.95 3.75 
U002 38 4 3.0 0.25 3.25 
U003 55 6 2.2 2.05 4.25 
U004 30 3 2.5 0.25 2.75 
U005 48 5 3.8 0.20 4.00 
U006 36 4 2.9 0.60 3.50 
U007 60 6 3.3 1.20 4.50 
U008 29 3 1.7 1.30 3.00 
U009 41 4 3.0 0.25 3.25 
U010 33 4 2.5 0.00 2.50 
U011 50 5 3.0 0.75 3.75 
U012 44 4 2.5 1.00 3.50 
U013 37 4 2.2 1.05 3.25 
U014 58 6 3.1 1.40 4.50 
U015 35 3 2.4 0.35 2.75 
U016 46 5 2.7 1.30 4.00 
U017 39 4 2.8 0.70 3.50 
U018 31 3 2.1 0.90 3.00 
U019 53 5 3.2 0.55 3.75 
U020 47 5 2.6 0.90 3.50 

 
Table 1 presents the key session metrics we use to inform our cognitive scoring model.  
Duration measures time and is used to interpret effort and interaction depth. Concepts 
Learned gives a quantitative indication of content learning and progress. Engagement Score 
monitors how actively and rapidly a learner begins and early motivation. Improvement 
monitors intra-session progress and the direction of the learner. Performance monitors task 
completion, confidence, and autonomy. These parameters collectively inform us about learner 
behavior and the effectiveness of VisionTutor in facilitating academic progress. 
We used a multi-component scoring system. Each session was measured in terms of three 
broad indicators: 

     Early Engagement: Monitors early session activity, including early initiation, tool 
use, and pace of interaction. 

Improvement: Documents behavioral and conceptual gains made during the 
session. 

Final Performance: Symbolizes quality of outcome, confidence, and independence 
in performing tasks. 
Both were based on weighted behavioral markers: 

● Early Engagement Score = 0.5 * EarlyPromptScore + 0.3 * ToolUsage + 0.2 * 
FirstInteractionSpeed 

● Final Performance Score = 0.5 × TaskCompletion + 0.3 × Confidence + 0.2 × 
AIProficiency 

● Improvement Score = Final Performance − Initial Engagement 
 

A stacked bar chart in Figure 5, illustrates these three factors across 20 learners. This is 
supplemented by Table 2, which provides exact figures for session duration, concepts learnt, 
and the three scores. 
 
3.5 Cognitive Learning Score: Design and Computation 
 
The Cognitive Learning Score (CLS) in VisionTutor is designed as a composite metric that 
captures learner behavior, tool interaction, and AI-guided engagement in real time. The CLS 
is computed using five interpretable components, each reflecting a distinct dimension of the 



learning process: 

Figure 5. Stacked Bar Graph of Engagement, Improvement and Performance 
 

● Tool Usage: Frequency and diversity of interactive tools employed (canvas, voice, 
chat, etc.). 

● Early Prompt Score: The learner’s tendency to initiate problem solving or seek hints 
early in the session. 

● AI Proficiency: Autonomy and fluency in leveraging AI guidance, predicted by a fine-
tuned DistilBERT regression model trained on over 5,000 labeled learner–AI 
conversations. 

● Engagement Depth: Ratio of exploratory activity compared to passive viewing or 
response copying. 

● Visual Context Score: Quality and relevance of learner-generated sketches or 
diagrams on the canvas. 
These components are combined into a cumulative score that reflects both immediate 

engagement and longer-term learning potential. The model achieved an R² value of 0.9856 
on test data, demonstrating high predictive accuracy. 

By design, the CLS maps directly onto the ICAP framework, with higher scores 
corresponding to more constructive and interactive behaviors such as debugging, step-by-
step explanation, or multimodal tool use. In addition, the adaptive feedback loop facilitates 
Self-Regulated Learning (SRL) by offering learners interpretable analytics and targeted hints. 
By embedding behavioral markers such as persistence, tool usage, and verbal reasoning, the 
CLS ensures pedagogical validity while also providing real-time, actionable insights into 
learning progress. These findings suggest that VisionTutor’s adaptive scoring mechanism not 
only predicts performance but also reflects deeper shifts in learner behavior consistent with 
the ICAP framework—for instance, movement from passive observation toward more 
constructive activities such as debugging and multimodal explanation. The real-time analytics 
further support self-regulated learning (SRL) by encouraging learners to monitor their 
strategies and adapt their approaches during problem solving. 
 
3.6 Inferential Statistics 
 
To evaluate VisionTutor’s impact, we conducted statistical comparisons of learner 
engagement and learning gains between VisionTutor sessions and a baseline condition. An 
independent samples t-test revealed that learners using VisionTutor achieved significantly 
higher scores in both engagement and learning outcomes. 

As reported in Table 3, the mean engagement score for VisionTutor learners was 4.21 
(SD = 0.49), compared to 3.54 in the baseline condition (p = 0.003). Similarly, the mean 
learning gain was 22.4% (SD = 4.6) with VisionTutor, compared to 15.7% in the baseline (p = 
0.01). The effect sizes were medium to large (Cohen’s d = 0.72 for engagement and d = 0.65 
for learning gain), indicating that the observed improvements are both statistically significant 
and educationally meaningful. Notably, the observed effect sizes (Cohen’s d = 0.72 for 



engagement; d = 0.65 for learning gain) are comparable to those reported in meta-analyses 
of intelligent tutoring systems (e.g., VanLehn, et al., 2011), positioning VisionTutor within the 
range of interventions that approximate the effectiveness of human tutoring. This alignment 
indicates that multimodal adaptivity and instant feedback are not merely technical features, 
but pedagogically significant drivers of improved engagement and learning outcomes. 

Figure 6 further illustrates the comparative distribution of engagement scores. 
VisionTutor learners demonstrated higher median performance and reduced variability, 
suggesting that the system not only raised average outcomes but also supported a more 
consistent learning experience across participants. Together, these results provide preliminary 
evidence that VisionTutor’s multimodal adaptivity and real-time feedback mechanisms can 
enhance both learner engagement and academic progress beyond that of conventional 
baseline systems. 
 
Table 3: Statistical test for VisionTutor and Baseline Model 
Metric VisionTutor Baseline p-value Effect Size (Cohen's d) 

Mean Engagement Score 4.21 3.54 0.003 0.72 (medium-high) 

Mean Learning Gain (%) 22.4% 15.7% 0.01 0.65 (medium) 
 

 
Figure 6: Comparative box plot visualizing the engagement score distributions between the 
VisionTutor and baseline groups.  
 
While these results are promising, they remain preliminary. The study involved a relatively 
small sample size and lacked a fully randomized control group, which limits the generalizability 
of findings. Moreover, reliance on a synthetic dataset for training may not fully capture the 
variability of real-world learner interactions. Future large-scale studies with authentic learner 
data are necessary to confirm the robustness and external validity of the observed effects. 
 
4. Conclusion and Future Work 
 
VisionTutor introduces a novel approach to intelligent tutoring by integrating speech, screen 
interaction, code behavior, and visual problem solving into a unified, adaptive environment. 
Designed specifically for STEM education, the system delivers immediate, context-aware 
support that more closely approximates the responsiveness of human tutoring than traditional 
AI-based systems. At the core of VisionTutor is the Cognitive Learning Score, an interpretable 
metric that enables learners to monitor their own engagement, progress, and problem-solving 
strategies in real time. The strong predictive reliability of the scoring model (R² = 0.9856) 
underscores the system’s capacity to generate trustworthy analytics that inform not only 
learner self-reflection but also instructional decision-making. In this way, VisionTutor serves a 
dual purpose: supporting students directly while also assisting instructors by highlighting 
patterns of engagement, persistence, and conceptual growth. 



 Looking ahead, future research will focus on validating the system with larger and more 
diverse learner populations. In particular, we aim to extend evaluation beyond synthetic 
datasets by analyzing authentic learner logs at scale, thereby strengthening external validity. 
Further work will also explore refining multimodal recognition (e.g., reducing noise sensitivity 
in speech and handwriting inputs) and expanding pedagogical alignment to additional learning 
science frameworks. By combining multimodal adaptivity, interpretable analytics, and 
theoretically grounded pedagogy, VisionTutor contributes to the development of next-
generation intelligent tutoring systems that not only personalize learning but also provide 
actionable insights for advancing teaching practice. 
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